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ABSTRACT Time-series forecasting is a fundamental problem associated with a wide range of engineering,
financial, and social applications. The challenge arises from the complexity due to the time-variant property
of time series and the inevitable diminishing utility of predictive models. Therefore, it is generally difficult
to accurately predict values, especially in a multi-step ahead setting. However, in domains such as financial
time series forecasting, an ex-ante prediction of the relative order of values in the near future is sufficient;
i.e., the next 100 days can help make meaningful investment decisions. In this paper, we propose a dynamic
prediction framework that makes it possible to make an ex-ante forecast of time series with a special focus
on the relative ordering of the forecast within a forward-looking time horizon. Through the lens of the
concordance index (CI), we compare the proposed method with conventional regression-based time-series
forecasting methods, discriminative learning methods and hybrid methods. Moreover, we discuss the use
of the proposed framework for different types of time series and under a variety of conditions. Extensive
experimental results on financial time series across a majority of liquid asset classes show that the proposed
framework outperforms the benchmark methods significantly.

INDEX TERMS Ranking estimation, time series, multi-step forecasting, concordance index, asset pricing,
investment strategy.

I. INTRODUCTION
Time-series forecasting is a fundamental problem associ-
ated with a wide range of science, engineering, finance,
and societal issues. In science and engineering applications,
time-series forecasting is applied to areas such as energy
management [1], predictive maintenance [2], and anomaly
detection [3]. Normally, it is evaluated based on the now-
casting performance, which reduces to certain evaluation
metrics such as the tracking error. In the financial and social
domains, the impact of time-series forecasting goes beyond
nowcasting and it shifts its focus from the near future to
the long-term horizon, bringing in other perspectives such as
concordance, causality, in order to guide the decision makers
to intervene appropriately. In this case, the use of a fore-
casted time series is prioritized over the conventional tracking
error. Examples of this include empirical economics [4], [5],
asset pricing [6], [7], business cycle analysis [8], monetary
policy [9], and others that span all of the UN Sustainable

The associate editor coordinating the review of this manuscript and

approving it for publication was Jerry Chun-Wei Lin .

Development goals, which address a blueprint for achieving
a better and more sustainable future for all [10]. In addition
to this discretion of appropriate utility function and evalu-
ation metric, the length of the forward-looking horizon is
an equally important aspect for such time-series forecast-
ing task [11]. However, the majority of research work in
time-series forecasting focuses on short-term forecasting,
and often even on one-step ahead setting. For this reason,
the potential variations in optimization objectives and eval-
uation metrics are not well explored beyond a predominant
focus on tracking error. On the one hand, it is trivial to show
the deterioration in forecast quality assuming a random walk
prediction with no prior knowledge of what will happen in
the next time epoch. On the other hand, the conviction that
near-term nowcasting is accurate can provide meaningful
support for long-term forecasting, especially in applications
where the sequential dependency matters for multiple time
epochs of interest. At the intersection of nowcasting and long-
term forecasting, the predictability of time series is involved
not only theoretically but also empirically [12]. Assuming
that the forecasting task is ergodic, the predictability can
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be formulated as the ratio of the variance in the optimal
prediction to the variance in the ground truth time series. This
sheds light on feasibility issues in time-series forecasting.

To address the many challenges in time-series forecast-
ing, a variety of time-series forecasting approaches have
been developed to capture certain structural assumptions of
time series. Traditional methods include the non-stationary
model [1], [13], the moving average method [14], the auto-
regressive model [15], the auto-regressive moving average
model [16], the auto-regressive integrated moving average
(ARIMA) model [14], the tree-based model [17], and the
fuzzy time series models that consider different types of
uncertainties, varying from the formulation in evidence the-
ory [18] to the formulation in statistics or fuzzy logic and
set [19]. Independently, machine learning and deep neu-
ral network approaches, which have been developed in the
past few decades with a focus on discriminating between
observations, have also been adopted in time-series analysis
to tackle the forecasting problem [17], [20]–[26]. Overall,
the above techniques provide sound founding elements for
time-series analysis and forecasting, but the simplicity of the
model results in its limited capability to deal with sophisti-
cated situations. Moreover, because many of these techniques
are derived independently in terms of notations and termi-
nology, the alignment and synergy between these methods
become extremely challenging [27]. As a result, the imple-
mentation of machine learning methods in the context of
time-series forecasting oversimplifies the time-series fore-
casting problem by assuming i.i.d. samples and neglecting
the sequential nature of the observed signals. Although the
actual utility of the forecast in a one-step ahead setting varies
by application, the corresponding evaluation metric is often
monotonously inherited from that of regression-based meth-
ods. In such scenarios, the common determinant criterion is
the tracking error calculated from the point-wise difference
between the ground truth and the forecasted value. Among the
most widely used performance metrics in this category [28],
the symmetric mean absolute percentage error (SMAPE) and
the mean absolute scaled error are frequently used in existing
literature [29], [30].

However, in a multi-step ahead setting, tracking error is
no longer the only aspect of interest in performance eval-
uation [31]. Depending on how the forecasted values are
further utilized, other discriminative metrics, such as direc-
tional symmetry [31], trajectory affinity [32], relative orders
and concordance [33], become equally important or even
more important when evaluating performance. For instance,
in situations where privileged information is available, local
forecasting around the privileged time epoch is less vulner-
able from the perspective of tracking error [34], whereas
the relative disordering phenomenon remains considerable.
Among others, the relative ordering and concordance of the
forecast are unique and critical to problems where the struc-
tural insights of time series matter [35].

Recently, the advancement of time-series forecastingmeth-
ods has been featured by the construction of hybrid methods

and the use of alternative perspectives. The traditional for-
mulation and evaluation can be extended to a multi-step
ahead forecasting setting by introducing a structured output,
e.g., multiple output and recursive output. Such forecasting
strategies and the essential techniques for multi-step ahead
settings have been comprehensively reviewed by [36], [37].
Moreover, in contrast to traditional approaches, many stud-
ies have begun to adopt novel perspectives for time-series
forecasting. Hybrid methods have proposed to highlight the
benefits of combining the traditional time-series forecasting
models with alternative objectives or complementary tech-
niques [38], [39]. Some examples include the use of com-
plex networks [30], [40], the ordered weighted averaging
aggregation operator [29] and deep-neural-networks-based
approaches [26], [34], [41]. These hybrid methods bring
together different objectives from a mathematical program-
ming perspective and some even enhance the expression
power of existing architectures by incorporating deep neural
networks [26], [42]. As with the growth of model complexity
and the number of hyperparameters, the generalization of a
model’s predictive power in a multi-step forecasting setting
becomes a greater challenge. Rather than contributing to this
increasing sophistication, we argue that alternative objectives
of certain time-series forecasting models, which are expected
to deliver a higher explanation power by leveraging a limited
number of model parameters, are critical to the time-series
forecasting research. Specifically, in this study, we investi-
gate the relative ordering objective, which has not yet been
thoroughly formulated and explored.

In the financial domain, the relative ordering of the mar-
ket values of asset prices at different time epochs is an
essential component, because it is associated with theoretical
and practical issues, e.g., mispricing, arbitraging, and market
inefficiency. On the hunt for excessive investment returns,
asset managers and hedge funds can leverage a variety of
financial instruments, including futures, swaps, and options
to monetize investment ideas and to optimize the invest-
ment performance given the investment ideas originated from
such relative ordering. However, despite the wide adoption
of stochastic mathematics and regression-based techniques
in time-series analysis, limited efforts have been made to
explore the relative orderings of time series within a speci-
fied horizon. Therefore, developing a method to forecast the
relative ordering of the observations in time series is funda-
mental to time-series forecasting and critical in many finan-
cial applications [43], [44]. To an extreme degree, census
data or variables in macroeconomics are released at a lower
frequency in contrast to the data available at the exchange
markets. This results in a gap between the tremendous num-
ber of model parameters and the small number of available
observations [45], which further induces difficulty in model
generalization. As an addition to the traditional econometric
approaches, alternative methods [46]–[48] have been pro-
posed to achieve robust parameter estimation, where vector
auto-regressive models [45], [48], [49] suffer from an out-
of-sample prediction performance in the mid-long horizon.
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The intrinsic problem related to such application is that direc-
tional guidance and timing become more important issues
than tracking error [50], [51]; therefore, alternative tech-
niques that can leverage alternative utility functions of the
forecast values should be highlighted [52].

In this paper, we propose a multi-step ahead forecasting
framework that is capable of forecasting relative orders at
multiple time epochs within a forward-looking horizon. The
framework has three key components, including pairwise
discriminative learning, local learning (LL) of privileged
information, and dynamicmulti-step ahead predictionwith ex
ante information. First, the pairwise discriminative learning
module follows the learning-to-rank principles that directly
optimise ranking objective rather than tracking error and
output a ranking list instead of an array of forecasted values.
Second, a LL algorithm is proposed to infer the values with
the concept of neighboring or auxiliary samples, so that the
optimised ranking list is interpretable and comparable to
the conventional forecasts. Finally, all the above proposed
elements are integrated into a dynamic multi-step ahead pre-
diction scheme iteratively, aiming to boost the overall pre-
dictive performance. By bridging the best of two orthogonal
evaluation metrics, i.e. relative ordering and tracking error,
this scheme delivers an overlaying synergy of all the proposed
elements underneath.

The layout of the paper is as follows. Section II describes
the notations, the problem formulation, and some prelimi-
naries. Section III introduces the proposed pairwise learn-
ing method for multi-step ahead time-series forecasting.
Section IV presents the LL module and the overlaying
dynamic prediction scheme. In Section VI, the dataset and
the experimental settings are introduced. Section VII sum-
marizes the key experimental results and discusses both the
impact and the concerns regarding the proposed method.
Section VIII draws conclusions and outlines proposals for
future works.

II. PRELIMINARY
In this section, we describe the problem setting and the
notations. As depicted in Section I, one major challenge in
multi-step ahead forecasting is the domain-specific utility of
the forecasted values. The other challenge is the diminishing
utility of the trained model when the forecast horizon is
expanded from one-step ahead to multi-step ahead.

To tackle the first challenge, we employ the learning-
to-rank technique, which is considered as a fundamental
method for ranking estimation, recommender systems, and
data science [53]. Although being unexplored in time-series
forecasting, the objective of learning-to-rank technique is to
minimize the mismatch between the ground-truth ranking list
and the estimated ranking list, which is in practice orthogonal
to the conventional objective of minimizing the point-to-point
euclidean error. In recent years, a variety of machine learning
approaches to ranking estimation have been discovered via
techniques such as Bayesian modeling [54], generalization of
the Bradley-Terry model [55], the structured support vector

machine (SVM) [56], optimal transport [57], the tree-based
models [22], and fuzzy logic [29], [30], [40], etc. Different
from the others, ranking SVM directly models and optimises
the ranking loss on the data, which is essential to the ranking
estimation problem. Although we only consider the linear
ranking SVM in this study, the formulation is flexible for
further extension to tackle the non-linear features via ker-
nel tricks with a minor revision of the framework; there-
fore, ranking SVM is favourable among others, especially in
applications where the availability of high quality features
is limited. Overall, formulating time-series forecasting in a
ranking setting remains an open and challenging problem.
In this study, we leverage the ranking SVM because it tackles
the ranking estimation problem with an end-to-end objective
and with a favourable flexibility. In the following parts of this
section, we establish the notations and define the problem
setting, which are innovative in themselves.

To tackle the second challenge, we devise an iterative pre-
diction scheme that follows the dynamic forecasting strategy
in [36] in order to make informative inference. This scheme
is motivated by LL techniques that bridge the two orthogonal
worlds of tracking error and relative ordering. Although the
details will be discussed in Section IV, the key notations and
preliminaries will be described in this section.

A. PROBLEM SETTING
We consider multi-step time-series prediction. AssumeX[0:N ]
is the ground truth time series with a span of [0 : N ].
At time t , the observation of the time series is given as X[t] =
(x[t], r[t]) ∈ X, where x[t] ∈ Rp is the observation of the
time series and r[t] ∈ [0 : N ] is the associated rank of the
observation within the whole span of the time series during
[0 : N ]. We define R : Rp

→ [n] as an invertible ranking
function that transforms x[t] to r̂[t]. The corresponding inverse
function is denoted asR−1 : [n]→ Rp and transforms r[t] to
x̂[t]. The transform function is formulated as

r̂[t] = R(x̂[t]), (1)

x̂[t] = R−1(r̂[t], x[0:t]). (2)

The goal is to make an informed forecast of a ranking
list π (h)

[t] := r̂[t+1:t+h], which is a ranking list of length h
that expresses the relative relationships of the observations
that are obtained from the multi-step forecast X̂[t+1:t+h] =
(x̂, r̂)[t+1:t+h] at time t = T . Given all the historical observa-
tions (X[0],X[1], . . . ,X[T ]) at t = T , we aim to forecast the
relative relationships in the time series in a forward-looking
horizon of h during [T + 1 : T + h], where the ground truth
of the forecast r[T+1:T+h] is a subset of X[0:N ]. Without loss
of generality, by setting p = 1, we address the problem of
forecasting time series with only one dimension. However,
to implement all the competing methods and the proposed
methods in a fair and qualitative manner, we construct mul-
tidimensional features based on generic feature engineering
techniques for time series, especially time series in the finan-
cial domain.
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FIGURE 1. Illustration of the multi-step time-series forecasting scheme. There are in total five values of interest including the r̂[t ],
whose ground truth of x[t ] is known and highlighted in red color.

In this study, we use π (h)
[t] ∈ [0 : h] to denote the h-step

ahead forecast of relative relationships at time t . An auxiliary
set x̃[t−q:t] = x[t−q:t] representing the q auxiliary anchors is
deployed in LL to boost the performance of the forecast. The
simplest case is q = 0, indicating no privileged information
other than the observation at time t can be utilized during the
inference phase. However, in common cases, it is natural to
assume that we have access to and can reuse all the historical
observations up to time t . In the extreme scenario where q =
t , the auxiliary set is identical to the training set and is denoted
by x̃[t−q:t] = x[0:t].

Figure 1 illustrates this relative-value-focused multi-step
time-series forecasting scheme with an example that uses
h = 4 and q = 0. In this extreme case, x[t] is the only
available privileged information in inference, and therefore
it becomes difficult to infer x̂[t+1:t+h], regardless of whether
the ranking estimation is perfectly aligned with the ground
truth ranking or not within the test horizon. In a nutshell, only
x[t] can be exploited for a hint as to whether the observations
within the test horizon will be higher or lower than x[t].
In cases where the relative ordering is not the only metric
of interest, the learning-to-rank model requires deliberate
revision before it can provide meaningful guidance.

B. FEATURE EXTRACTION
Among the various techniques that have been proposed to
extract informative features from time series, we adopt two
fundamental suites of indicators for financial time series,
i.e., level indicators and momentum indicators [44].

Level indicators consist of the historical prices denoted
by Fprice(t, i) and the moving averages of the historical
prices [15] denoted by Fma(t, i), for i ∈ {5, 10, 20, 60, 120,
250, 500, 1000}, where

Fprice(t, i; x[0:t]) = x[t−i] (3)

Fma(t, i; x[0:t]) =

i∑
j=1

x[t−i]

i
(4)

Momentum indicators include the moving average conver-
gence divergence (MACD) [58] and rolling returns over the
past {5, 10, 20, 60, 120, 250, 500, 1000} days. In considera-
tion of the fact that volatility is a critical facet of financial time
series and the fact that the volatility scaling technique plays
a significant role in the construction of investment strate-
gies [59], we adopt the risk-adjusted momentum features
FrollingReturn(t, i) by

FrollingReturn(t, i; x[0:t]) =
x[t] − x[t−i]
std(ẋ[t−i:t])

(5)

where std(ẋ[t−i:t]) is the standard deviation of the daily price
change ẋ during the period [t − i, t].

With the feature extraction defined as above, we construct
multidimensional features for each observation x[t] that is
obtained from the environment at time t . Finally, the level
indicators and momentum indicators are combined by a con-
catenation denoted by

Fall(t, i; x[0:t]) = [Fprice,Fma,FrollingReturn] (6)

where i ∈ {5, 10, 20, 60, 120, 250, 500, 1000}. Overall,
17 features are employed this study for the proposed
framework.

III. PAIRWISE LEARNING TO RANK
We formulate the multi-step time-series forecasting task as a
multi-step learning-to-rank process that incorporates a learn-
ing phase and an inference phase. In the inference phase,
a ranking model takes the historically observed objects and
their associated feature matricesX[0:t] as an input and outputs
the inferred scoring of the observed objects π̂[0:t].

π̂[t:t+h] = f (X[0:t],W;w) (7)

The overall learning objective of the ranking model is to
discriminate the observed objects from a relative relationship
perspective so that the inferred ranking list π̂[t:t+h] is close
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enough to the ground truth π[t:t+h]. Assuming the observa-
tions being forecasted, X[0:t], by the ranking model follow
the same distribution of historical observations, the learning
objective in Equation (7) is approached by devising a pairwise
ranking model based on the observed time series by time t .
Given a rank order r[i] ∈ π[0:t] where i ∈ [0 : t], a scoring
function φ(X[i]) is devised to measure the relative ordering of
the objectives.

φ(i) = φ(X[i];w) (8)

=

∑
j

wjXj
[i] (9)

An array of such scoring φ(·) can be trivially converted to a
corresponding ranking list by using Equation (1). In fact, it is
identical to the primal model output π̂[t,t+h] from the ranking
perspective and is used as an input in the calculation of the
ranking performance metric, which we will introduce later in
Section V.

Assume that W ∈ Rt,t is a match-up matrix indicating the
soft constraints that can be incorporated into the learning part
of the framework, where an entryWi,j denotes the importance
weight of each pairwise comparison (i, j) in the ranking list.
Given the ground truth π[0,t], each entry in the match-up
matrixWi,j is defined as follows:

Wi,j =


+1 if r[i] � r[j]
−1 if r[i] ≺ r[j]
0 pair (i, j) is not considered

where i, j ∈ [0 : t].
The ranking loss between the ground truth π and the

inferred ranking list π̂ is expressed as

1(i, j) = Wi,j(φ(X[i];w)− φ(X[j];w)) (10)

where φ(X[i];w) is the scoring function defined by
Equation (8) for the observation at time i.

Note that the feature for the observation at t is often a func-
tion of the observation by that time; however, the values are
not available between t and t + h in multi-step ahead setting.
Therefore, the construction of pseudo features is necessary
for forecasting the future observation at t + h. As a naive
solution, we adopt the latest available observation for the ex-
ante observations at each future time epoch t + h, formulated
as

x̃[t+j] = x[t] (11)

for all j ∈ [0 : h]. Therefore, the features X̃[t+h] are calculated
by calling the feature construction function with the above
pseudo estimates by

X̃[t+h] = Fall(t + h; x[0:t], x̃[t:t+h]) (12)

The overall loss function is written as

L(X,W;w) =
1

|P||N |
∑
x∈P

∑
y∈N

d(1(i, j)) (13)

where

d(1(i, j)) = max(0, 1−1(i, j)) (14)

is the Hinge loss [60]. In Equation (13), P and N denote the
upper-ranked object subset and the lower-ranked object sub-
set, respectively. Without loss of generality, one can extend
the definition ofP andN to the full list, which is also referred
to as the list-wise ranking operation [56].

In our proposed framework, we restrict ourselves to solving
the classic RankSVM optimization problem [56], [60], [61].
The overall optimization objective is expressed as

min
w

λ

2
||w||2 + L(X,W;w) (15)

where λ is the hyperparameter regularizing the learning
objective in SVM via the soft margin embedded in the first
term of the optimization objective in Equation (15).

A. OPTIMIZATION
Solving for w∗ in Equation (15) is a numerical optimization
problem. Generic solutions to such a problem include the
stochastic subgradient descent method in the Support Vec-
tor Machine optimization [62], [63]. Specifically, we adopt
the stochastic subgradient descent method for solving the
L2-regularized L1-loss SVM implemented in the scikit-learn
library [64] as the solver for our proposed pairwise learning-
to-rank method. The subgradient update is given as

w← w− η∇w(Wi,jwT (X[i] − X[j])) (16)

where η > 0 is the learning rate and is chosen as η(t) =
1

λ(t+t0)
. t is the epoch of gradient update and t0 is chosen by

the heuristic proposed in [65]. For a cross-temporal pair (i, j)
sampled from the training set, the corresponding subgradient
is estimated by

∇w(i, j)

=

{
λw if Wi,j(φ(i)− φ(j)) > 1,
λw−Wi,j(X[i] − X[j]) otherwise

The selection of regularization term λ was done through
a set of predefined hyperparameters {10−4, 10−2, . . . , 104}.
Empirically, we would like to emphasize that the pairwise
ranking approach faces certain issues like scalability when
the volume of training data grows and computational conver-
gence when the learning rate is not chosen properly. However,
with a fine-tuning of the key hyperparameters, e.g. the learn-
ing rate η and the λ associated with the regularization term as
we suggested, these issues can be mitigated.

Algorithm 1 describes the proposed learning-to-rank
framework for multi-step ahead time-series forecasting. The
input of the algorithm is the forward-looking horizon. After
initialization of the model parameters including w, λ, and
the forward-looking horizon h, the pairwise learning-to-rank
model is trained until the convergence condition is met. This
training phase is followed by a standalone inference phase
where the forecast of relative ordering r̂[t:t+h] is inferred.
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FIGURE 2. Illustration of the local learning that is embedded into the dynamic prediction scheme for multi-step time-series forecasting scheme.

Algorithm 1 Pairwise Ranking - Learning to rank for
multi-step ahead time-series forecasting
Input: Forward-looking horizon h
Data: Observed time series x[0:t]
initialization;
for i ∈ [0 : t] do

X[i]← Fall(i; x[0:t]);
r[i]← R(x[i]);

end
ŵ∗← Optimize Equation (15);
for j ∈ [0:h] do

φ̂(t + j)← f (X[t+j]; ŵ∗);
r̂[t+j]← R(φ̂(t + j));

end
Output: Forecast of π̂[t:t+h]

Note that the r̂[t:t+h] estimated by Algorithm 1 is insuffi-
cient for an estimation of the tracking error, which is normally
adopted by competing methods and related works on multi-
step ahead time-series forecasting. To fill in this gap between
the orthogonal evaluation metrics, we further develop a LL
technique in Section IV that is able to obtain x̂[t+1:t+h] and
integrate the LL module into an overlaying dynamic fore-
casting scheme that operates iteratively between learning and
inference to lower the tracking error while optimizing the
discriminative objective in Equation (15).

IV. DYNAMIC MULTI-STEP FORECASTING
To improve the quality of the multi-step ahead forecast,
we apply LL techniques during the approximate inference of
x̂[t+1:t+h]. In Algorithm 1, the output of the algorithm is the
relative ordering of objects, which reveals only the relative
relationship between future observations and the observa-
tion at time t . We devise a local learning(LL) procedure to

improve the inference of x̂[t+1:t+h], which can be used in turn
to improve the quality of features by letting

x̃[t+j] = x̂[t+j] (17)

where j ∈ [1 : h] and x̃[t] represents the ex-ante expected
value of the time series at time t .

Figure 2 illustrates the proposed LL scheme. In this study,
we define the privileged information available for local learn-
ing from the perspective of time dependency [11]. At time
T , the most recent m ≤ T samples are employed for local
learning and we update the point estimate each time when
the local learning procedure is called.

To further boost the forecasting performance based on the
informative ex-ante prediction obtained from local learning,
we devise a dynamic prediction as described in Algorithm 3.

A. LOCAL LEARNING
Local learning is an important technique in machine learning
that allows the model to efficiently incorporate certain depen-
dency structures, such as neighborhood dependency [66],
time dependency [11], and spatial-temporal dependency [42].
Given an output r̂[t:t+h] from Algorithm 1, auxiliary informa-
tion can be added as anchors into the well-trained ranking
model, so that the inference of x̂[t+1:t+h] can be formulated
as a LL procedure as described in Algorithm 2.

Assumingm neighbors are available for the LL, we rewrite
Equation (1) in array form and incorporate the local neighbors
as anchors by

x̂ ′[t+1:t+h] = R̃−1(r̂[t−m:t+h], x[t−m:t]) (18)

The effectiveness of such an ex-ante forecast can be verified
via performance metrics such as the concordance index (CI).
Despite of the orthogonality between CI and tracking error,
this promising result sheds light on a potential improvement
in terms of the ex-ante tracking error; therefore, we propose
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Algorithm 2 Local Learning of x̂[t+1:t+h]
One-Step Input: Backward-looking horizon m
Data: Observed time series x[0:t]
initialization;
r̂[t:t+h]← Algorithm 1;
r̂[t−m:t]← Equation (7);
r̂[t−m:t+h]← Merge r̂[t−m:t], r̂[t:t+h];
for each j ∈ [t + 1 : t + h] do

j+← argmin
p∈[t−m:t]

r̂[p] − r̂[j] for r̂[p] > r̂[j] ;

j−← argmax
p∈[t−m:t]

r̂[p] − r̂[j] for r̂[p] < r̂[j];

x̂[j] = 1
2 (x[j+] + x[j−]) ;

end
Output: Forecast of x̂[t+1:t+h]

an iterative dynamic forecasting scheme to capture this signal
and combine the best of LL framework with the proposed
learning-to-rank framework for time-series forecasting.
In Figure 2, we illustrate a toy example of local learning,
where we indent to forecast five values of interest in the
forward-looking horizon, with two privileged samples in the
training and validation set highlighted in green color. In this
example, the total length of the ranking list is seven, among
which five are identical to the values of interest illustrated
in Figure 1. What makes a difference is that we have par-
tial access to their ground truth; therefore, a performance
improvement in the inference phase can be expected.

B. DYNAMIC PREDICTION
The previous section showed that multi-step ahead forecast-
ing can be cast in a conventional supervised learning-to-rank
framework by employing certain inference techniques such
as LL. In this section, we extend the proposed framework
in Algorithm 2 and further propose an iterative dynamic
prediction scheme that improves the performance of multi-
step ahead forecasting. The proposed scheme follows the
recursive strategy for multi-step ahead time-series forecast-
ing [11]. Such recursive strategies for time dependency are
widely deployed implicitly or explicitly in structured output
prediction models such as conditional random fields [67] and
recursive neural networks [68].

Overall, the proposed iterative dynamic scheme involves
three steps as described in Algorithm 3. The key compo-
nents are organized in a nested structure. In the first step,
Algorithm 1 is called to give an initial ex-ante forecast of the
relative ordering r̂[t+1:t+h]. Next, the LL procedure depicted
in Algorithm 2 is called to provide an initial ex-ante forecast
of the time series x̂ ′[t+1:t+h]. Because the features are con-
structed by a function of such an ex-ante estimate of the time
series in Equation (6), Algorithm 1 is called again in step 3
to brush up the features by using these ex-ante estimations.
Such an iterative procedure can be terminated either when a
convergence criterion is met or when the maximum number

Algorithm 3 DynaPairwise Ranking -Dynamic Predic-
tion Scheme That Improves Learning to Rank for Time-
Series Forecasting and Local Learning Iteratively
Input: Maximum number of iteration lmax
Data: Observed time series x[0:t]
initialization;
r̂[t:t+h]← Algorithm 1;
while l ≤ lmax do

x̂[t+1:t+h]← Algorithm 2;
r̂[t:t+h]← Algorithm 1;
l ++;

end
Output: Forecast of x̂[t+1:t+h], r̂[t+1:t+h]

of iterations lmax is reached. In practice, we let lmax = 1 and
apply the dynamic prediction procedure on a rolling basis
with a specified interval that equals to the forward-looking
horizon h.

V. EVALUATION METRICS
In line with the previous studies, three evaluation metrics,
i.e., SMAPE [69], RMSE [28], and the CI [70], [71] are used
to evaluate the performance of competing models including
the theta model [72], [73], the regression-based model [74],
the ARIMAmodel [14], the DeepARmodel [26], the random
forest model [17], the LightGBM model [22], the logis-
tic regression model [75], [76], and the ordinal regression
method [77].

Mathematically, the metrics are calculated as follows:

SMAPE =
1
n

n∑
t=1

∣∣x̂[t] − x[t]∣∣∣∣x̂[t]∣∣+ ∣∣x[t]∣∣ × 100% (19)

RMSE =
1
n

√√√√ n∑
t=1

∣∣x̂[t] − x[t]∣∣2 (20)

CI =
2
|E |

∑
(i,j)∈E

1(r̂[i] � r̂[j]) (21)

where E := {(i, j); x[i] ≥ x[j], i < j ∈ [1 : n]} is
the set of event of interest (EOI), which is observed in the
ground truth time series. 1(r̂[t] ≥ r̂[t]) is an indicator function
that outputs 1 when the condition r̂[t] ≥ r̂[t] is satisfied.
At time i, we focus on the concordance between the rela-
tive ordering of the observations and the relative ordering
of the model forecast. The CI is a generalization of the
area under the ROC curve to the regression problem, and
therefore it can be calculated trivially by transforming the
continuous outputs into a ranking list using Equation (1).
In our definition, over a specific time horizon n, the CI is 1
if all the upward movements of the time series along the
timeline are successfully captured by the forecast and 0 if all
the upward movements of the time series are forecasted as
downward movements. Assuming the time series is a random
walk with no expectations regarding its upside and downside,
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FIGURE 3. Categorizing the financial indices into growth indices (in blue)
and mean-reverting indices (in red). Equity and fixed income indices are
categorized as growth indices because of their positive expected return
over the market cycle. Currency indices are categorized as mean-reverting
indices because of their strong volatility with a mean at almost zero.

CI = 0.5 indicates that the performance is as good as a
random predictor. However, given some domain knowledge
of the time series, the outlook for certain directional move
of the time series might shift from neutral to up or down
in expectation. In such cases, the outputs of the models are
calibrated toward the predefined expectation by

x̂ ′[t0](t) = x̂[t0]e
µ(t−t0) (22)

where µ is a positive scalar when the outlook for the time-
series observation from time t0 is more on the upside and is
negative when the outlook is more on the downside.

Note that for discriminative models, including logistic
regression, ordinal regression, and the proposed pairwise
ranking models, only r̂[t:t+h] is forecasted. Therefore, only
the CI is calculated and reported in the comparison with the
competing methods. An exception is the proposed dynamic
prediction scheme assembled with LL, where the output
of the discriminative model can be interpreted as scalar
values x̂[t:t+h] given sufficient privileged information. For
non-discriminative models, including the theta model and
the regression-based models, both r̂[t:t+h] and x̂[t:t+h] are
forecasted. All three evaluation metrics are calculated and
reported in Section VI.

VI. EXPERIMENT
In this section, we describe the characteristics of the dataset
and the benchmark procedure that is executed for all com-
peting and proposed methods. Throughout the experimental
results, particularly in Table 3 and Table 4, we refer to Pair-
wise Ranking and DynaPairwise Ranking as the proposed
Algorithm 1 and the proposed Algorithm 3, respectively.

A. DESCRIPTION OF DATASETS
We use historical future contract and index data obtained
from the Bloomberg Terminal.1 The dataset is retrieved
on October 31, 2020, and consists of major liquid asset
classes including equity indices, fixed income indices, and

1https://www.bloomberg.com/professional/

currency indices.2 An overview of the dataset is provided
in Table 2. For the equity and fixed income indices, the obser-
vations are either price return or total return, which are
tradable in the market via exchange-traded funds or future
contracts at low transaction costs. The time horizon of the
time-series data ranges from December 31, 1999, to Decem-
ber 31, 2019, on a daily basis. For currency indices, the time
horizon is from December 31, 1989, to December 31, 2019,
on a daily basis. In the last column of Table 2, the histor-
ical return statistics are presented to characterize the asset
classes. In the last column of Table 2, we summarize the
average annualized rolling return and the standard deviation
of the annualized rolling return over the entire observation
period. Because the observation period contains at least one
economic and market cycle, the return and standard deviation
statistics reflect the expected growth of an asset class in mid-
long term. Depending on the level of growth expectation,
we categorize the 16 indices into two groups. On the one
hand, equity and fixed income indices are categorized as
growth indices, because they generally record positive asset
pricing results in the historical performance. This is in line
with the economic outlook of these asset classes in the long
run. On the other hand, currency indices are categorized as
mean-reverting indices, because the annualized returns of the
currency indices are not significantly positive in a market
cycle, which signals the strong mean-reversion style of the
asset class.

B. EXPERIMENTAL SETTING
All results of both competing and proposed methods are
produced based on a common benchmark procedure. For
each of the retrieved time series, we retrained on a rolling
basis, i.e., every Nroll trading days and varied the forecasting
horizon from 50 trading days to 200 trading days accordingly.
By default, the forward-looking forecast horizon h is aligned
with the interval of the rolling retraining by setting h = Nroll.
By varying the horizon from short term h = 50 to mid-
long term h = {100, 200}, we validate the consistency of the
results and report the evaluation metrics together with their
statistical significance, i.e. standard deviation. To summarize,
the benchmark procedure is analogous to Algorithm 1, where
the LL in Algorithm 2 and the iterative dynamic prediction in
Algorithm 3 are not considered.
For each of the individual time series, we take the last 30%

of the retrieved data as the test set and report the performance
based on the forecasted values in that horizon. Given the
benchmark scheme that behaves in a rolling manner, we set
the latest Ntrain = 500 trading days as the input data for
all the models involved and set m = Ntrain for Algorithm 2
by default, so that all observed data are exploited in LL.
In practice, the results delivered by settingm = 100,m = 500
and m = 1, 000 does not show a significant difference;
therefore, we report all results by setting m = Ntrain as the

2Financial indices source data can also be obtained from other data
vendors, e.g. https://tradingeconomics.com/
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TABLE 1. Hyperparameters deployed in the benchmark scheme and the proposed method.

TABLE 2. Overview of financial time series dataset. The dataset has two categories, i.e., growth indices and mean-reverting indices, addressing the
economic properties of the underlying asset classes. In the upper part of the table, equity indices and fixed income indices are categorized as growth
indices. In the lower part of the table, currency exchange indices are categorized as mean-reverting indices.

default configuration. The detailed hyperparameters for the
benchmark procedure and the proposed learning algorithm
are summarized in Table 1.

For the competing benchmarks, we follow the standard de
facto hyperparameter tuning processes and models available
in packages like scikit-learn library [64], sktime [78] and
GluonTS [79].

VII. RESULT AND DISCUSSION
In this section, we discuss the experimental results on real
world financial time series. In the first part, we examine the
use of the proposed methods from an alternative perspec-
tive other than tracking error; specifically, we examine the
impact of our proposed method from the lens of time to
event (TTE), which is critical in certain financial applica-
tions [50], [51]. In the second part, we discuss the practical
issues, such as the performance of the proposed methods on
different types of time series and under different lengths of
the forecast horizon. The details of the results are presented
in Table 3 and Table 4.

A. IMPACTS OF CONCORDANCE INDEX
The CI is a well-established evaluation metric for survival
analysis in medical statistics [80]. The metric addresses the
differences along the timeline between a forecasted event
and a ground truth event, which essentially indicates the
time until the occurrence of an event of interest (EOI), e.g.,
death, onset of a disease, or failure of a machine, depending
on the domain. The adoption of CI as the major evaluation
metrics instead of the tracking errors, happens in a wide
spectrum of applications from clinical research [70], epidemi-
ology, and disease control [81] to predictive maintenance [2],
reliability engineering [82], and insurance [83]. We hereby
discuss its property, usage and potential impacts in financial
applications.

Recalling the definition of the CI in Equation (19), TTE
in Figure 4, and the gap between its ground truth and its
forecast by the ranking model can be written as

TTE(i) =
∑
∀rj>ri
∀j>i

min(j− i) (23)
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TABLE 3. Performance metrics - Symmetric mean absolute percentage error (SMAPE), Root-mean-square error (RMSE) and Concordance index (CI) on
equity indices and fixed income indices.

T̂TE(i) =
∑
∀r̂j>r̂i
∀j>i

min(j− i) (24)

1TTE(i) =
∣∣TTE(i)− T̂TE(i)

∣∣ (25)

where TTE(i) and T̂TE(i) refer to the length of the vertical
black lines in Figure 4(a) and Figure 4(b) and a permutation
of the neighboring items in the ground truth ranking list
results in the same directional change of 1TTE(i) and CI.
When the CI is maximized to 1, 1TTE(i) is minimized to
0. A higher CI score indicates not only the correctness of
the relative ordering of the multi-step ahead forecast but

also the similarity between the two TTE maps in Figure 4.
In the financial domain where we conducted the experiment,
the similarity of the ground truth TTE map and the forecasted
TTE map is important. The existence of certain financial
derivative instruments enable the monetization of the fore-
casted TTE map by our proposed models. Typical exam-
ples include future contracts, which enable the construction
of a long-short investment portfolio [25], [84], [85]. With
proper position sizing [86] and risk management, the sig-
nals or forecast derived from the model can be transformed
into an investment strategy. Following the intuition that a
future contract has a profit and loss profile that is dependent
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TABLE 4. Performance metrics - Symmetric mean absolute percentage error (SMAPE), Root-mean-square error (RMSE) and Concordance index (CI) on
currency time series.
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FIGURE 4. The time-to-event (TTE) alignment between the ground truth and the forecast by the proposed method. The event of
interest (EOI) is defined as the successful observation of a higher scalar. The horizontal index indicates the starting time epoch of each
event, and the vertical index indicates the time epoch when an EOI is first observed. Therefore, the length of the black bars in the
figure indicates the duration before an EOI occurs. The horizon of multi-step ahead forecasting is set to 50, and by forecasting 100 time
epochs, we obtain a TTE estimate without censoring.

on the price difference at two different time epochs, we define
the EOI as the successful observation of a higher value in
the time series within a specified forward-looking horizon h
from time i. With an accurate forecasting of the TTE map
as depicted in Figure 4(b), investment decisions for hunting
alternative returns from the financial asset class can be made
easily. By using such forecasted TTE map, one can answer
questions such as, should the current position be renewed at
its termination, by how much and eventually convert them
into systematic investment strategies.

The relationship between the CI and the TTE is intuitive.
Figure 4 visualizes the TTE measurement of the ground truth
and that of the forecasted relative ordering. The horizontal
index indicates the starting time epoch of each event, and the
vertical index indicates the time epoch when an EOI is first
observed. The length of the black bars in the figure indicates
the duration before an EOI occurs. The horizon of multi-step
ahead forecasting is set to 50, and by forecasting 100 time
epochs, we obtain a time-to-event estimate without censoring.
In essence, the CI is a generalization of the gap between the
ground truth TTE map in Figure 4(a) and the forecasted TTE
map in Figure 4(b). Given a cross-temporal pair (i, j), TTE
neglects the impact of the forecasted order during t ∈ [i+ 1 :
j − 1], if they are correct with respect to r̂t , the forecasted
order at time j.

Overall, although it is difficult to directly optimize such
a gap denoted by 1TTE(i), we argue that the proposed
learning-to-rank approach which intends to optimize the con-
cordance at a pairwise level is a promising solution for time-
series forecasting, especially when relative ordering within a
specified horizon matters to the domain experts.

B. GROWTH INDEX VS. MEAN-REVERTING INDEX
As shown in Table 3 and Table 4, the performance of the
proposed method varies by the underlying asset class of

the indices. For the growth indices in Table 3, we vary the
forward-looking horizon of the competing models. In terms
of our optimisation objective, i.e. CI, the proposed dynamic
prediction scheme outperforms its competing methods in the
short-term settings, where h = 50 and 100, and underper-
forms its competing methods in the long-term settings, where
h = 200. Among the competingmethods, the ARIMAmodel,
the DeepAR model and the random forest model are the ones
that deliver superior performance in terms of tracking error
and deserve an attention. The DeepAR model outperformed
consistently in fixed income indices, e.g. German 10Y Bund
and UK 10Y Gilt. Given the low volatility of these fixed
income indices recorded in Table 2, we think that this is
because the DeepAR method captures the short-term trends
well by leveraging the recurrent neural networks. However,
the other side of this superior tracking error performance is its
poor performance in terms of relative ordering or CI. Recall-
ing that the growth indices share a common positive expected
upward movement, we adopt Equation (22) to calibrate this
expectation in reference to Table 2. However, such a calibra-
tion is trivial in short-term and does not show a significant
impact in long-term forecasting with h = 200. We argue
that this is partially due to the fact that the calibration is not
integrated into the learning phase. When the length of the
forward-looking horizon increases, the discriminative power
of our model decreases dramatically; nevertheless, similar
deterioration is also observed in the results by the competing
methods.

In contrast to this significant deterioration, the perfor-
mance deterioration with respect to the increase in the length
of the forward-looking horizon is not significant for mean-
reverting indices except for the ARIMA model and the
DeepAR model, as observed in Table 4. We attribute this
advantage of our proposed method to the increased volatility
of the mean-reverting time series. The mean-reverting indices
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have on average higher standard deviations in terms of rolling
return; therefore given a fixed length of horizon, both the
features and the observations in the time series are more
informative and discriminative. Since the momentum factor
does not function well for mean-reverting time series, we also
observed that among the competing methods, the random
forest model performs consistently better than the ARIMA
model and the DeepAR model. This is counterfactual to what
we observed on the growth indices in Table 3 where the linear
regression, the random forest model, the ARIMA model and
the DeepAR model ties in terms of tracking error metrics,
e.g., SMAPE and RMSE. We argue that, for the ARIMA
model, this is because the moving average pillar detracts
the performance by explicitly incorporating the momen-
tum or moving average for mean-reverting time series.

Overall, the proposed model outperforms its competing
methods for all mean-reverting indices in almost all settings
of the forward-looking horizon. This implies that the pro-
posed dynamic prediction scheme is a better solution when
the utility of the forecast is dependent on the relative order-
ing rather than on tracking error, and especially when the
forecasting horizon is long and the time series exhibits high
volatility or strong mean-reverting behavior.

Note that although the focus of this work is the rela-
tive ordering of multi-step ahead forecasting, armed with
the LL algorithm described in Section IV, the proposed
dynamic prediction scheme achieves comparable tracking
error performance, e.g., SMAPE and RMSE, while signifi-
cantly excelling its competing methods in terms of the CI.
Interestingly, given a time series in Table 3 and Table 4,
an improvement in the tracking error is not correlated with
the improvement in the relative ordering metrics. We argue
that, from this empirical observation and the discussion on
TTE, the tracking error metrics and the relative ordering
metrics that we advocate in our proposedmethod are orthogo-
nal or even complementary. For example, the DeepARmodel
as one of the state-of-the-art method for time-series fore-
casting, reports a best RMSE score while records a worst
CI score, like for German Bund 10Y and for UK Gilt 10Y.
The two extreme cases of this kind are our proposed method
with which the CI is optimised and the ARIMA method with
which the tracking errors are optimised. It is important to
note that the proposed method in this work is derived from
a series of techniques that are not yet well explored in time-
series forecasting problems.With the promising experimental
results and the discovery as depicted above, we argue that the
differences and connections between the competing methods
and the proposed method worth a thorough investigation as
our future works.

VIII. CONCLUSION
In this paper, we propose a learning-to-rank framework for
multi-step ahead time-series forecasting which aims to opti-
mise the relative ordering of the forecast. A local learning
technique is incorporated in the framework to tackle the
approximate inference of the time-series value given the

forecast of its relative orderings at each time epoch along
the timeline. A dynamic prediction scheme is proposed to
integrate the proposed learning-to-rank model and the local
learning in an iterative manner. Such a combination results
in an improved performance in terms of the CI, which is
the key evaluation metric for the relative ordering of the
forecast. By comparing the proposed framework with a series
of conventional methods on financial time series across dif-
ferent types of asset classes, we empirically verified that
the proposed framework outperforms its competing methods
from the lens of the CI. Finally, we conducted comprehensive
examinations of the proposed method from multiple perspec-
tives and elaborated the impact of the learning-to-rank model
in time-series forecasting, the use of the proposed method,
for different categories of time series and under different
horizons of interest.
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