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ABSTRACT Deep learning has demonstrated high accuracy for 3D object shape error modeling necessary to
estimate dimensional and geometric quality defects in multi-station assembly systems (MAS). Increasingly,
deep learning-driven Root Cause Analysis (RCA) is used for decision-making when planning corrective
action of quality defects. However, given the current absence of scalability enabling models, training deep
learning models for each individual MAS is exceedingly time-consuming as it requires large amounts of
labelled data and multiple computational cycles. Additionally, understanding and interpreting how deep
learning produces final predictions while quantifying various uncertainties also remains a fundamental
challenge. In an effort to address these gaps, a novel closed-loop in-process (CLIP) diagnostic framework
underpinned algorithm portfolio is proposed which simultaneously enhances scalability and interpretability
of the current Bayesian deep learning approach, Object Shape Error Response (OSER), to isolate root
cause(s) of quality defects in MAS. The OSER-MAS leverages a Bayesian 3D U-Net architecture integrated
with Computer-Aided Engineering simulations to estimate root causes. The CLIP diagnostic framework
shortens OSER-MAS model training time by developing: (i) closed-loop training to enable faster con-
vergence for a single MAS by leveraging uncertainty estimates of the Bayesian 3D U-net model; and,
(ii) transfer/continual learning-based scalability model to transmit meta-knowledge from the trainedmodel to
a newMAS resulting in convergence using comparatively less training samples. Additionally, CLIP increases
the transparency for quality-related root cause predictions by developing interpretability model which is
based on 3D Gradient-based Class Activation Maps (3D Grad-CAMs) and entails: (a) linking elements
of MAS model with functional elements of the U-Net architecture; and, (b) relating features extracted by
the architecture with elements of the MAS model and further with the object shape error patterns for root
cause(s) that occur in MAS. Benchmarking studies are conducted using six automotive-MAS with varying
complexities. Results highlight a reduction in training samples of up to 56% with a loss in performance of
up to 2.1%.

INDEX TERMS Bayesian deep learning, continual learning, transfer learning, multi-station assembly,
U-Net, 3D convolutional neural networks (CNN), manufacturing.

I. INTRODUCTION
A. PROBLEM DESCRIPTION
The manufacturing industry is currently undergoing a data
revolution [1], [2] which requires scalable and interpretable
approaches that enable digitalization and integration of
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in-process monitoring data (i.e. 3D scanners), Artifi-
cial Intelligence (AI) algorithms [3], and Computer-Aided
Engineering (CAE) simulations to support current Indus-
try 4.0 strategies such as Zero-Defect-Manufacturing and
Right-First-Time. These strategies collectively drive towards
scenarios where all quality requirements of manufactured
products are satisfied starting from Job 1 (right-first-time
strategy) and continue during the lifecycle of the product

50188 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-2537-3041
https://orcid.org/0000-0001-5458-3836
https://orcid.org/0000-0003-0788-4673
https://orcid.org/0000-0002-1187-1771


S. Sinha et al.: Building a Scalable and Interpretable Bayesian Deep Learning Framework for Quality Control of Free Form Surfaces

(near zero-defect manufacturing strategy). This is a very
challenging task due to increased product variety and smaller
batch sizes with ever-decreasing time-to-market. Currently,
numerous modern manufacturing systems applications use
multiple robotic assembly stations placed in a production line
to improve productivity and product quality. For example,
a typical automotive body assembly (Body-in-White (BIW))
consists of hundreds of stamping parts and components pro-
cessed along 60-85 assembly stations with a production rate
of 30-65 vehicles per hour with 3-5 varieties of vehicles
being produced simultaneously on a single assembly line.
Automatic robotic assembly lines can significantly increase
productivity and the variety of products produced on a single
line. Nonetheless, the embedded complexity of an automatic
production line can lead to failures involving robot, end effec-
tor with joining head, and/or fixtures, resulting in diminished
product quality, scrap, rework, or production downtimes. As a
result, there is an urgent need for diagnostics of modern
automatic assembly lines. The diagnostics approaches should
have the ability to work with current requirements of mod-
ern assembly lines, i.e., have capability for (i) multi-variety
products with non-rigid parts and shape variances which
are rapidly scaled-up from low to high volume production
(this translates to the need for rapid scalability of diagnos-
tics models between products and production volumes); and
(ii) automatic recovery from disruptions at minimum cost
(translating to need for interpretability of the diagnostic
results, which will provide transparency and the causes of
their prediction, as they are often used to plan costly correc-
tive action of quality defects).

Therefore, it is crucial to develop diagnostic approaches
that are scalable and interpretable to ensure that multi-station
assembly systems (MAS) can continue to produce high-
quality products in the presence of uncertainties induced
by non-ideal parts and operational errors [1], [4]. Recently
Object Shape Error Response (OSER) approaches have been
proposed for single-station [5] and multi-station assembly
systems (OSER-MAS) [6] that have integrated Bayesian
deep learning with CAE simulations, hence enabling effec-
tive root cause analysis (RCA). The OSER-MAS leverages
a Bayesian 3D U-Net encoder-decoder based architecture
with multiple output heads. Multiple output heads enable
simultaneous estimation of a heterogeneous set of process
parameters that can be real-valued or categorical while quan-
tifying uncertainties. The decoder is leveraged to estimate
object shape errors for upstream stations. The OSER-MAS
gives superior performance for tasks such as process param-
eter estimation, object shape error estimation and uncer-
tainty quantification but lack capabilities for scalability and
interpretability.

This paper proposes a novel closed-loop in-process (CLIP)
diagnostic framework which simultaneously enhances scala-
bility and interpretability of the current OSER-MAS based
approach by integrating an algorithm portfolio inclusive of
techniques such as closed-loop training, transfer learning [7],
continual learning [8] for scalability and 3D gradient-based

class activation maps (3D Grad-CAMs) [9] for interpretabil-
ity within the OSER framework. The CLIP diagnostic
framework shortens OSER-MAS model training time by
developing: (i) closed-loop training to enable faster conver-
gence for a single MAS by leveraging uncertainty estimates
of the OSER-MASmodel; and, (ii) scalability model to trans-
fer meta-knowledge from the trained model to a new MAS
and thus, each newMAS requires comparatively less training
samples. Additionally, CLIP increases the OSER-MAS trans-
parency for their quality root cause predictions by developing
an interpretability model which entails: (a) linking elements
of MAS model with functional elements of the Bayesian
deep learning architecture; and, (b) relating features extracted
by the Bayesian deep learning architecture with elements
of the MAS model and further with the object shape error
patterns for root causes(s) that occur in MAS. Although the
CLIP framework is developed and validated considering the
previously proposed OSER based approaches, the framework
can be leveraged to simultaneously enhance the scalability
and interpretability of similar approaches in related domains
such as stamping and machining where deep learning and
CAE simulations are leveraged to relate object shape errors
to root causes.

B. RELATED WORK
1) SCALABILITY
Scalability within manufacturing systems has been stated as
a set of capabilities to provide transfer of knowledge and
ideas from other engineering and management areas [10].
Scalability for algorithms to perform RCA of MASs trans-
lates into effectively leveraging the learning for one type
of assembly system and then transferring this learning in
form of features and relationships which can be relevant for
another similar assembly system, and hence can enable learn-
ing for the latter using an exponentially lesser amount of data
and computation capabilities. Applications of using transfer
learning techniques have been done for fault diagnosis [11].
Digital Twins [12] have also been proposed as a way to enable
scalability. Successful applications of transfer learning across
multiple domains [7], [13]–[16] have enabled scalability in a
sustainable manner that does not require exhaustive training
data and computation capabilities. Recent works have also
proposed that scalability should be life-long or continual
and should not come at an expense of forgetting previous
learning when new features or relationships are learnt for
new systems [8], [17]–[20]. Hence, to enable scalability for
MAS frameworks and methodologies that integrate trans-
fer/continual learning with existing deep learning approaches
for RCA, it is essential to ensure that training data and com-
putation times do not become barriers for the application of
such models within industrial setups.

2) INTERPRETABILITY
Interpretability has been another major concern for the appli-
cation of deep learning-based RCA models within MAS as
they do not provide the required context, trust and confidence
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within root cause estimates. This lack of transparency when
coupled with costly actions driven by them result in such
models not being adopted at scale. Various methodologies
such as Gradient-based class activation maps that can inte-
grate deep learning estimates with the required transparency
have been proposed [21]–[23]. Bayesian deep learning [5]
has been proposed to integrate confidence and uncertainty
measures with root cause estimates but there is a need for
frameworks within MAS that can provide interpretability
while accounting for context and confidence. Such frame-
works enable trust in black-box deep learning models and
provide different levels of interpretability.

3) ROOT CAUSE ANALYSIS OF ASSEMBLY SYSTEMS
Dimensional and geometric variations are some of the biggest
challenges faced by the manufacturing industry. Indeed,
two-thirds of quality issues in the automotive and aerospace
sectors are caused by dimensional variations [24]. Driven
by the development of in-line measurement systems such as
coordinate measuring machines (CMM) and 3D scanners,
models for RCA of assembly systems have seen a lot of
development in both, industrial applications, and academic
research. These models [25] can be grouped into two cat-
egories: (a) knowledge-based models; and (b) estimation-
based data-driven models leveraging statistical and machine
learning techniques [26]. For single station systems,
Apley and Shi [27] established the deviation transfer model
based on process information such as fixture positioning and
used least-squares to diagnose fault sources. Chang et al. [28]
leveraged a linear model between shape error sources and
measurement features followed by parameter estimation and
statistical tests to diagnose shape error sources. Yu et al. [29]
leveraged influence coefficients based on finite element
modeling to establish shape errors between the sources of
variation and measurements of flexible sheet metal parts.
Further least-squares estimation was used to estimate errors
in fixture positioning.

For MASs, Agrawal et al. [30] used regression models
of sensor data. Zou et al. [31] proposed integrating BIC
with LASSO variable selection. Shang et al. [32] proposed
a Binary State Space Model (BSSM) for MASs to perform
binary diagnosis. Jin et al. [33] proposed state-space and
stream-of-variation (SoV) for multi-station shape error prop-
agation of automotive assemblies. Ding et al. [34] extended
the SoV method of assembly shape error of rigid parts using
state space considering different fixture locating scheme.
Using the above approaches as a base, various RCA mod-
els for MASs have been proposed. Ding et al. [35], [36]
compared different variance estimation techniques and
concluded a basis for method selection under different sce-
narios. Ceglarek and Prakash [37] proposed shape error diag-
nosis based on enhanced piecewise least squares (EPLS) to
detect and isolate collinear dimensional faults caused by fix-
ture variation. Ceglarek and Shi [38], [39] employed pattern
matching for diagnosis of fixtures based on principal compo-
nent analysis. Liu and Hu [40] used designated component

analysis for shape error diagnosis of flexible sheet metal
parts. Various enhancements have been proposed using the
knowledge of MASs [41], [42].

Given the ever-increasing complexity of MASs, increased
computation capabilities and developments in machine learn-
ing, recently, RCA approaches [26] using machine learning
have been proposed to overcome limitations of the
above-stated methods such as linear approximations of
the MAS. Du et al. [43] utilized artificial neural networks to
monitor and identify process variability. Beruvides et al. [44]
applied reinforcement learning to perform RCA. Bayesian
Networks [45], [46] are seen as an alternative to solve small
dataset problems and integrate process data and engineering
knowledge. Recently, Sinha et al. developed Object Shape
Error Response (OSER) for single-station [47], [5] and
Object Shape Error Response for Multi-Station Assembly
Systems (OSER-MAS) [6] that aim to integrate Bayesian
deep learning elements such as Bayesian 3D Convolu-
tional Neural Networks and Computer-Aided Engineer-
ing (CAE) simulations thereby, blending (a) engineering
knowledge-techniques with (b) estimation-based data-driven
approaches. This satisfies various model capability require-
ments for RCA of MASs such as (i) high data dimension-
ality [48]; (ii) non-linearity [49]; (iii) collinearities [50];
(iv) high faults multiplicity [51]; (v) uncertainty quan-
tification [52]; (vi) dual data generation capabilities [12];
(vii) high dimensionality and heterogeneity of process
parameters [53]; and, (viii) fault localization [54]. In addi-
tion to the aforementioned model capability requirements,
RCA techniques must be further developed and enhanced to
fulfil two additional key requirements [55] in order to enable
implementation and large-scale adoption across different
manufacturing environments:
(ix) Scalability as automotive multi-station assembly pro-

cesses include hundreds of stamping parts and components,
multiple stations with multiple stages in each station [4]
namely, place-clamp-fasten-release (PCFR) to finish the final
assembly product. The multiple variation sources in the MAS
interact and accumulate in a non-additive manner. The final
product accuracy and performance depend upon the accu-
mulated performance of individual stations in the system.
In MASs, the quality of the components is influenced by
(i) incoming non-ideal and deformable parts; (ii) PCFR-to-
part interactions as parts move through PCFR stages (shape
error induced by fixturing and joining operations); (iii) part-
to-part interactions within each station and further magnified
between stations; and, (iv) station-to-station interactions due
to re-orientation errors between stations (change of fixture
locating layout between stations).

(x) Interpretability as the estimations of root cause(s) will
require insights into why such estimates were made by the
deep learning model. Such interpretability insights are essen-
tial for contextualizing the root cause(s) estimated by the
deep learning model. Additionally, root cause (RC) estimates
drive costly corrective actions hence, model interpretabil-
ity integrated with measures of uncertainty [5] are crucial
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requirements for effective and efficient corrective and control
actions.

The paper will address the aforementioned requirements as
follows:
Requirement (ix) by developing a closed-loop training

framework that leverages the epistemic uncertainty [5]
estimates of the Bayesian 3D U-Net based OSER-MAS
model to intelligently sample from the process parameter
hyperspace for faster convergence and hence, reduce the
computation time bottleneck of the CAE simulations. The
presented CLIP diagnostic framework in this paper will uti-
lize high fidelity CAE simulator of the assembly process
called Variation Response Method (VRM) [56]. Further,
to exponentially enhance the scalability for high dimen-
sional MAS and reduce CAE simulation time, uncertainty
guided continual learning [8] and transfer learning [7] fea-
tures are integrated with the CLIP diagnostic framework
underpinned algorithm portfolio. This enables the transfer
of meta-knowledge from the trained model to a new MAS
and thus, each newMAS requires comparatively less training
samples. Theoretically, given that multi-physics processes of
the assembly system are similar within each station hence,
the features extracted by spatial convolutional operations are
transferable across different assemblies; thus, making trans-
ferability within the model essential for scalability. Given
that models for different MAS would be trained sequen-
tially, leveraging continual approaches reduces catastrophic
forgetting. A model with continual learning capabilities can
also account for the dynamic nature of the assembly system
and hence, achieve life-long learning. This is accomplished
using uncertainty guided continual learning [8] that leverages
the Bayesian neural network parameter uncertainty to assign
importance for each task i.e., a particular assembly case
study thereby, enabling continual learning by updating less
important parameters at a faster rate.
Requirement (x) by developing an interpretability model

which is based on 3D Gradient-weighted Class Activation
Maps (3D Grad-CAMs) and entails: (a) linking elements of
MAS model with functional elements of the 3D Bayesian
U-Net model; and, (b) leveraging 3D Grad-CAMs [9] that
provide insights into the regions within the input that
the model focuses on to estimate process parameters i.e.
root cause(s). These collectively provide the required inter-
pretability for RCA. Additionally, Bayesian Deep Learn-
ing enables uncertainty quantification and segregation into
aleatoric and epistemic uncertainties, thus, providing a mea-
sure of the required confidence while conducting RCA.

The key contribution of the paper is the development of the
CLIP diagnostic framework underpinned algorithm portfolio
that includes the following models:
(1) A closed-loop training model to enable faster

convergence for a single MAS by leveraging uncer-
tainty estimates of the Bayesian 3D U-net OSER-MAS
model.

(2) Uncertainty guided transfer/continual learning-based
scalability model to transfer meta-knowledge from the

trained model to a new MAS and thus, each new MAS
requires comparatively less training samples.

(3) A 3D Grad-CAMs based interpretability model which
links functional elements and features extracted by
the 3D U-Net architecture with elements of the
MAS model and further with the shape error patterns
for root causes(s) that occur in MAS.

(4) Verify and validate the scalability and interpretability
capabilities of the CLIP diagnostic framework under-
pinned algorithm portfolio using six different industrial
automotive assemblies of varying complexities.

The rest of the paper is organized as follows; Section II for-
mulates the object shape error estimation and RCA problem
for MASs, Sections III and IV discuss the methods for scal-
ability and interpretability, respectively, Section V presents
the industrial case studies and finally, conclusions and future
work are summarized in Section VI.

II. PROBLEM FORMULATION
A. MULTI-STATION ASSEMBLY SYSTEMS
As illustrated in Fig. 1 [6], MAS can be represented as
a process tree where different nodes correspond to stages
within a single assembly station (Fig. 1a) or as stations
within the assembly system (Fig. 1b). A station consists of
multiple stages namely, positioning, clamping, fastening and
release (PCFR). The input to each station is a set of incoming
parts (objects) that need to be assembled. Within the process,
object shape errors can be induced in any station by one or
multiple variations of the process parameter(s). These errors
are further propagated and accumulate in a non-additive man-
ner [34]. Any variation in the process parameter(s) is a source
of shape error and thus must be first quantified and then
estimated as a root cause(s) of the shape errors. In MAS,
these process parameters are classified into three categories:
(a) Real-valued parameters of incoming parts (objects) vari-
ation as caused by upstream fabrication processes such as
stamping, extrusions, etc.; (b) Real-valued process parame-
ters related to PCFR stages of each assembly station. They
represent any deviation from nominal in fixturing/tooling
or joining operations; and, (c) Binary joining-based process
parameters in the fastening stage that indicate the success of
the joint. The value is {1} when joint is successfully com-
pleted or {0} for an unsuccessful joint due to the excessive
gap between objects to be joined or current failure in the tool.
In this paper, Self-Piercing Riveting (SPR) is the considered
fastening /joining process.

Stations in the MAS are represented by s: s = 1, . . . ,Ns,
where Ns represents the total number of stations within the
system and ś :ś = 1, 2, 3, 4 represents the four stages within
each station. Any object o:o = 1, . . . ,n at its design nominal
shape is characterized by a set of nominal points Po =

{
pok
}
,

k = 1, . . . ,no, where pok is a vector consisting of the x,
y and z coordinates of the kth input point and no represents
the total number of points on object o. do = {dok} denotes
the deviation of each point k after the nominal object o has
gone through different stages of the process, dok is a vector
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FIGURE 1. Multi-station assembly system with PCFR assembly stages. (a) PCFR stages of an assembly station (b) Multi-station
assembly system with Ns stations

comprised of deviations of each point in x, y and z axes on
object o. As the object o goes through multiple stations and
stages within the stations, the set of points are represented as
Ps,śo while ds,śo represents the deviations. Object shape error
for object o after station s and stage ś can be represented as:

xs,śo =
(
Ps,śo , d

s,ś
o

)
(1)

where x0,0o =

(
P0,0
o , d0,0o

)
represents the incom-

ing non-ideal part inclusive of the part variations and
(xs,ś1 , . . . ,x

s,ś
0 ) represents a set of objects (sub-assembly) after

stage ś of station s.
On the other hand, the aforementioned process parameters

which can be real-valued or binary are represented by ys,ś

for station s stage ś. The process parameters for station s,
inclusive of all stages, is represented by ys while y repre-
sents the total set h of process parameters across the entire
assembly system. The process parameter vector y consists
of c binary parameters and r real-valued parameters denoted
by yc and yr, respectively.
The aim of the proposed 3D U-Net CNN model training

is to learn a function f (·) that takes as input the combined
object shape error at the end of the system xNs,4, i.e., after the
final stage of the last station (Ns), and estimates the process
parameters across the entire system and the object shape error
for all objects at the end of the previous stations:[

yr, yc, x1,4, . . . ,xNs−1,4
]
= f

(
xNs,4

)
(2)

B. ROOT CAUSE ANALYSIS
For comprehensive RCA for MASs, the paper proposes three
key steps namely: (i) fault identification; (ii) fault localiza-
tion; and, (iii) fault isolation. Using the estimates obtained
within (2), RCA can be done using the following steps to
isolate single or multiple faults that occur in a MASs.

1) FAULT IDENTIFICATION
Fault identification involves identifying which process
parameters are potentially at fault. Faults can be identified
by comparing the values of process parameters with given
standards. For all binary process parameters yc that are {0}
are identified as faults as they represent a failure in the joining
process. Real-valued process parameters can be identified
as potential faults based on the fault identification strategy.

If a threshold approach is leveraged, each ys,ś that is greater
than the threshold is identified as a fault on the other hand
if six-sigma fault identification strategies are used a sample
of products sp are observed and mean µs,śp and standard
deviation σ s,ś,p of each process parameter is calculated. Based
on the significance level used, a mean shift or a change
in variance (heteroskedasticity) in process parameters can
be identified as a fault. The subset of process parameters
identified as fault via a threshold or a six-sigma approach can
be denoted as:

yF ⊆ y (3)

2) FAULT LOCALIZATION
Fault localization involves identifying particular sta-
tions within which the object(s) (sub-assemblies) shape
error becomes significant. The shape error estimates
[x1,4o , . . . ,xNs−1,4

o ] for all objects o : o = 1, . . . , n, are
compared with the design nominal. If the shape error is
beyond the threshold (assembly tolerances) at the end of a
station and within the threshold, for the previous station the
fault is localized to that particular station for the correspond-
ing object. This is done for each object and thus, multiple
faults for different objects can also be localized. The subset
of stations localized is denoted as:

sF ⊆ s, oF ⊆ o (4)

3) FAULT ISOLATION
Fault isolation involves integrating the information from fault
identification and fault localization to isolate which process
parameters within the potentially identified faults yF and
localization stations sF are ‘malignant’ and have a significant
impact on the shape error of the final object (product). For all
potentially identified process parameters, the process param-
eters that lie within the localized stations sF (and correspond-
ing objects oF) are isolated as faults and estimated as RCs.
Given that manufacturing systems are stochastic, all process
parameters always have an inherent level of variation, hence,
using such a three-step approach enables differentiating faults
that are benign (have no significant impact on the product
shape error) from faults that are malignant (cause product
shape error to go beyond assembly thresholds). The RCs can
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FIGURE 2. U-Net Based Encoder Decoder Architecture, left: down-sampling kernel, right: up-sampling kernel.

be denoted as:

RC ⊆ yF ∀yF ⊆ SF (5)

III. METHODS FOR SCALABILITY
A. BAYESIAN 3D U-NET ARCHITECTURE
For the estimation of f (.) as shown in (2), Sinha et al. [6]
proposed the Object Shape Error Response for
Multi-Station Assembly Systems (OSER-MAS) approach.
The proposed approach leverages a Bayesian 3D U-Net
architecture (Fig. 2) [6] that enables: (i) estimation of a
heterogeneous set of process parameters; (ii) estimation of
upstream object shape errors; and, (iii) quantification and
segregation of uncertainties. The model is trained using a
weighted loss function [6] that accounts for all the afore-
mentioned outputs and uncertainty quantification. The archi-
tecture consists of four levels of the encoder-decoder. The
end of the encoder consists of a regression and classification
head, each contains one hidden Dense Flipout layer with
64 nodes and ReLU activation. The output nodes in each head
are equal to the real-valued and binary process parameters,
respectively. These heads enable estimation of a heteroge-
neous set of process parameters. The end of the decoder
estimates the upstream object shape errors. Given the use of
Bayesian Flipout layers in the encoder and regression and
classification heads, the architecture enables quantification
and segregation of uncertainties. The encoder-decoder model
consists of seven key functional elements namely: (1a) Object
shape error voxelization; (1b) Encoder with down-sampling
kernels; (1c) Decoder with up-sampling kernels; (1d) Multi-
ple output heads; (1e) Attention gate; (1f) Bayesian Flipout
layers; and, (1g) Residual connections. The interpretability
of each element is discussed concerning the requirements
of MASs. Overall the model takes as input the voxelized

shape error after the final station xNs,4 →
{
Vu,v,w,d

}
and

give as output the shape error after previous stations and
the process parameters

[
yr, yc, x1,4, . . . ,xNs−1,4

]
. Uncer-

tainties are estimated for each output value. The uncertainty
estimates are crucial in driving costly corrective actions.
They are segregated into epistemic and aleatoric uncertain-
ties. The aleatoric uncertainty is estimated by considering
the outputs follow a multivariate normal distribution with
a diagonal covariance matrix. The epistemic uncertainty is
estimated by assuming each weight ω in the network fol-
lows a normal distribution with parameters θω=(µω, σω),
and then estimating the posterior parameters of the distri-
butions. The paper proposes to leverage these measures of
uncertainty to build approaches that enable scalable learning.
The overall epistemic uncertainty of the estimated process
parameters σ(y) and the uncertainty of the weights σω can
be further leveraged to build methods that enable scalable
learning by leveraging closed-loop sampling from CAE
simulators and further leverage uncertainty-guided continual
learning [8] for effective learning that aids in transferring
knowledge in between similar MASs hence enabling conver-
gence using exponentially lesser training samples while also
ensuring that there is no catastrophic forgetting of learning
for previous MASs.

B. CLOSED-LOOP SAMPLING AND TRAINING
Closed-loop sampling enables the dynamic and adaptive gen-
eration of training samples based on the uncertainty and error
of the previous training iterations while ensuring that the
sample generation has a degree of randomness to prevent
the repeated generation of similar samples (Table 1). This
enables faster convergence to the optimal weights and biases
distribution parameters of f (.) as shown in (2). Sampling is
done using VRM [56] as the CAE simulator, which takes
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TABLE 1. Closed loop sampling & training framework.

as input a set of process parameters and outputs the object
shape errors after the desired stage/station. Initially, Latin
Hypercube Sampling (LHS) [57] of the process parameters
within the allowable ranges is done for input to the CAE
simulation model to generate the test (E) and validation (V)
set.

E =
(
XE,YE

)
, V =

(
XV ,YV

)
(6)

While each element in X is characterized by the object shape
error xs,ś (1) and each row in Y consists of a vector of
process parameters: y = {yr, yc}. The initial training set T0 is
also generated using LHS. This is used to train the proposed
architecture f (.). After training inference is performed on the
validation set to obtain the predictions and uncertainty on the
validation set (V) [

ŶV , σV
]
= f

(
XV

)
(7)

For each sample the absolute error is calculated and summed
up across all the process parameters:

Ev =
∣∣∣ŶV − YV

∣∣∣ (8)

The error is summed up across all h process parameters
for each sample ev which is a column vector consisting of
combined error for each sample.

ev =
∑
h

Ev (9)

The normalized error (ẽv) and uncertainties (σ̃V ) are
weighted to obtain the sampling importance metric τ for each
sample:

τ = w.ẽv + (1− w) .σ̃V (10)

Samples are sorted based on the sample metric. This is done
considering that the samples having the highest importance,
i.e., having the maximum sum of error and uncertainty would
have a more significant contribution to model convergence
than other samples. Based on sampling metrics and actual
process parameters YV , the parameters of the sampling dis-
tribution are estimated. Gaussian Mixture Model (GMM)

with a pre-specified number of mixtures is considered as the
sampling distribution. The sorted set of sampling metric and
process parameter is represented as (τ̌ v, Y̌

v
). Given the GMM

has K mixtures, the sorted set is subdivided into K blocks
each block ib having samples τib=dim(V )/K where dim(V )
represents the total number of samples within the validation
set. Each block ib is used to estimate distribution parameters
for the ib th mixture. Each mixture is characterized by a mul-
tivariate normal distribution while the component within the
multi-variate normal corresponds to the process parameter.
The distribution parameters for the ibth component consisting
of s samples is estimated as in (11), where Y Vib represents the
subset of samples in the block ib

φib=
∑
s

τ̌
v
, µib=Means

(
YV
ib

)
, 6ib = Covars

(
YV
ib

)
(11)

where φ vector is normalized, to sum up to 1 and hence
represent mixture component weights φib , and where µib ,
6ib represent the mean vector and covariance matrix respec-
tively for the ibth mixture. After estimating the distribution,
T i samples are drawn and evaluated and then added to the
training set to further train the model. This ensures that sam-
ples are drawn considering the error and uncertainty while
accounting for the fact that the model should not over fit
on the validation set. It should be noted that although the
validation set is used for sampling, the model is never trained
on the validation samples, the randomness in the sampling
ensures that samples are drawn from regions where the error
and uncertainty are high. After each training is done the
model is tested on the test set (E) to determine the model
performance. The training and sampling are terminated either
after i) the performance on the test set (E) reaches the required
threshold ε or ii) the maximum number of training iterations
nm is reached. The performance threshold can be decided
based on the case study and application, and the maximum
number of iterations is decided based on the CAE simulation
budget.

C. UNCERTAINTY GUIDED CONTINUAL LEARNING
The closed-loop sampling approach enables faster conver-
gence within one MAS but does not enable the trained f (.)
to be used across different MASs. Leveraging the trained
function f (.) across different MSAs to enable transferring of
relevant knowledge (features) and hence enable convergence
in comparatively lesser samples is crucial in enabling scal-
ability. Continual learning methods (also known as sequen-
tial/lifelong learning) aim to incrementally learn new tasks
without forgetting previous tasks for which they have been
trained. In the context of MASs, the scale-up starts from
tasks or cases as simple as a coupon or Top-hat assembly
to full-scale MASs such as automotive car door or cross
member assemblies and can cumulatively consist of up to
100 assembly stations each consisting of multiple stages.
Each assembly case is treated as a task Ti, and continual
learning is performed for a total of Tn tasks. Continual learn-
ing enables the transfer of the process parameter estimation
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capabilities of previous assembly cases to more complex
assemblies while retaining the essential capabilities required
for process parameter estimation of previous assemblies. The
key to achieving continual learning requires assignment of
importance to each neural network weight ω and further
updating only non-important weights such that the model
learns the new task without forgetting the previous task [8].
The approach leverages uncertainty guided continual learn-
ing because the weight uncertainty σω of the Bayesian 3D
U-Net model serves as an implicit measure of importance.
Additionally, the ease of interpretation, strong mathematical
foundation and good results on various datasets [8] motivate
the use of such a learning algorithm.

Given the use of Bayesian neural networks and a normal
distribution parametrized by θω=(µω, σω) for each weight ω
within the network, the standard deviation of each weight dis-
tribution is leveraged as the metric for importance. To enable
continual learning the learning rate α for each parameter is
updated by the corresponding importance �.

αµ← αµ
/
�µ, ασ ← ασ

/
�σ (12)

The importance of the parameters is set to be inversely pro-
portional to the standard deviation, which mathematically
translates that weights with higher standard deviation are less
important and hence can be updated at a higher rate to learn
new tasks, while weights with lower standard deviation are
more important and hence should be updated at a lower rate
to prevent catastrophic forgetting (performance loss) for the
old tasks.

� ∝ 1
/
σω (13)

Based on various empirical studies done by
Ebrahimi et al. [8], the learning rate adaptions were deter-
mined as:

�µ← 1
/
σω, �σ ← 1 (14)

The overall algorithm consisting of closed-loop sampling
and continual learning, to train the model on multiple
tasks Ti, . . . ,Tn (different assembly case studies) is shown
in Table 2. After each task, the learning rates are updated as
shown in (14). The number of output nodes within the model
is kept equal to sum all process parameters across all cases
studies. For each assembly case, the specific process parame-
ters nodes output the values while other nodes corresponding
to process parameters for other assembly cases are set to
output a nominal fixed value (generally set to zero). Overall
continual learning aims to learn process parameter estimation
capabilities of each assembly case study incrementally while
minimizing the forgetting for previous assembly case studies.

D. TRANSFER LEARNING
Transfer learning is an effectivemethod for transferring learn-
ing (process parameter estimation forMASs) from one task to
related tasks (between different assembly case studies) using
exponentially lesser training samples and hence acts as a key

TABLE 2. Continual learning framework.

enabler for scalability. The paper leverages transfer learning
and continual learning as a combined algorithm portfolio
enabling scalability. The choice between them can be made
based on training results and deployment performance.

Transfer learning is mathematically formalized [14], [13]
as a domain D which consists of features X and a distribution
over the feature space P(X). In this case the domain entails
process parameter estimation f (·) on a particular assembly
case Ti with shape error features X and distribution over the
feature space as P(X). Within Domain D task T is performed
that constitutes learning a conditional distribution P(Y |X) to
estimate process parameters Y

D = {X,P (X)} (15)

The paper aims to ‘transfer learn’ from the source
domain (Ds) corresponding to a particular assembly case to
a target domain (DT ), i.e. a similar assembly case to perform
the same task of estimating f (.) (2) while accounting for dif-
ferences between cases such that at least one of the elements
between the domain and target are not the same:

(X s 6= XT ) , (P(X s) 6=P(XT ) , (Y s 6= YT ) ,

P(Y s|X s) 6= P(YT |XT ) (16)

Considering the prior knowledge on the similarity of assem-
bly cases studies it can be estimated that: (i) (X s ≈ XT )–
given that similar features [58] need to extracted from the
object shape error data that include bends, twists, rotations,
translations etc.; (ii)

(
P(X s ) ≈ P(XT)

)
–similarly, the dis-

tribution around the input features is approximately the same;
(iii) Y s 6=YT – the outputs for each study are different given
a different number of process parameters are involved; and,
(iv)

(
P(Y s|X s) 6=P(YT |XT

)
–the conditional distribution is

also significantly changed given the change in the assembly
system and the output. To account for (iii) the final layer of
the network is replaced with nodes corresponding to the new
set of process parameters; to account for (iv) the approach
leverages standard protocols established in transfer learning
to achieve transferability.

Based on past work on successful applications of trans-
fer learning that involved using ImageNet data to aid
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FIGURE 3. Closed-loop in-process (CLIP) diagnostic framework underpinned algorithm portfolio.

Computer-Aided Detection [15], the fine-tuning transfer
learning protocol is leveraged. The network weights are ini-
tialized using the weights of a network trained on the previous
assembly case study. The whole network is then fine-tuned
while keeping the learning rate of the convolutional layers αc
in the first two encoder levels ten times less than the rest of
the network αF . The regression and classification heads are
replaced and reinitialized. The nodes in each of the heads are
determined by the number of process parameters for the case
study. Overall transfer learning (Table 3) aims to learn process
parameter estimation capabilities of each assembly case study
while ‘transferring’ knowledge from previous case studies.
Although while doing this the model can ‘forget’ estimation
capabilities for previous case studies. Fig. 3 summarizes the
overall framework for closed-loop sampling and training inte-
grated with continual and transfer learning approaches.

IV. METHODS FOR INTERPRETABILITY
A. 3D U-NET ARCHITECTURE INTERPRETABILITY
The implementation of deep learning models within indus-
trial environments requires opening the black box and provid-
ing interpretability and causation on why the deep learning
models can give superior performance as compared to tra-
ditional linear or piece-wise linear approaches traditionally
used for RCA of MASs. The paper proposes to do that on
two levels:

Providing a link between MASs requirements and func-
tional elements of the Bayesian 3D U-Net architecture of
the OSER-MAS approach. This also aims to provide a link
between the engineering challenges faced in RCA of MASs
and the developments done within the OSER-MAS model to
overcome these challenges.

Leveraging 3D Grad-CAMs to interpret the features that
are extracted by the architecture and then propagated through
various encoder and decoder layers to be interpreted as root
causes. To integrate high measures of confidence within the

TABLE 3. Transfer learning framework.

deep learning model estimates, it must be established that
the input context xNs,4 (object shape error) on which the
model focuses should be directly related to the estimated
output y (process parameter or root cause), e.g. if the model
estimates ‘part variation’ as a root cause, it should focus on
the ‘part variation’ rather than other possible root causes such
as ‘clamping’ or ‘positioning’. Clearly extracted semantics
in convolutional layers integrates a much-needed measure of
‘trust’ within the root cause estimates.

B. 3D GRADIENT-WEIGHTED CLASS ACTIVATION MAP
3D Gradient-weighted class activation maps (3D Grad-
CAMs) aim to visualize the input features that led to a par-
ticular output. In the context of MASs, this aims to localize
key regions within the input shape error xNs,4 that led to
the estimation of a process parameter y. This is estimated
by taking a discriminative gradient of a particular process
parameter ym output with respect to the feature map of a
selected convolutional layer within the 3D U-Net architec-
ture. The map for a particular output process parameter ym is
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represented asLy
m

grad−CAM and can be calculated as a weighted
sum of the features maps:

Ly
m

grad−CAM = ReLU
∑F

f=1
α
ym

f Af ∈ Ru×v×w (17)

where Af represents f feature maps (f = 1, 2, . . . ,F) for the
selected convolutional layer and a, b, c represent the dimen-
sions of the 3D feature maps. ReLU represents the activation
function which is rectified linear unit. The weights are calcu-
lated by summing the gradients for each element within the
feature map:

α
ym

f =
1
abc

∑a

i=1

∑b

j=1

∑c

k=1

dym

dAfi,j,k
(18)

The Ly
m

grad−CAM is interpolated to match the dimensions of the
input voxelized object shape error. The overlay between the
voxelized object shape error and interpolated 3D Grad-CAM
provides interpretability information on what features/spatial
regions within the shape error did the model focus on to esti-
mate the selected process parameter ym of interest. The inter-
polated 3D Grad-CAM is then transformed to a point-based
shape error and smoothing is done using a median filter
for consistency across the mesh. These can be visualized to
obtain regions within the shape error input that the neural net-
work model is focusing on to estimate the process parameter.

Fig. 3 summarizes the algorithm portfolio including the
integration of closed-loop training with continual/transfer
learning-based scalability model and 3D Grad-CAMs based
interpretabilitymodel. The effective integration of thesemod-
els enhances the diagnostic capabilities of the OSER-MAS
model and enables scalable and interpretable RCA.

V. CASE STUDIES
A. EXPERIMENTAL SETUP
Verification and validation is done using Tn = 6 tasks or
assembly systems (Fig. 4, Table 4) with varying complexities
ranging from a single part coupon level assembly to auto-
motive industrial multi-station assemblies. Each assembly
case is considered as a unique task. Continual or transfer
learning is done sequentially for all case studies as in the order
mentioned below. The case studies include:

(1) Flat Plate (Coupon) Assembly: consists of n = 1 ideal
compliant part with a flat 2D geometry. It involves Ns = 1
station and four stages (PCFR) and is controlled by h = 7
real-valued yr fixturing and joining based process parameters.
(2) Top-Hat Assembly: consists of a n = 2 ideal compliant

parts with a simple 3D geometry. It involves Ns = 1 station
and 4 stages (PCFR) and is controlled by h = 17 real-valued
yr fixturing and joining based process parameters.

(3) Door Halo Reinforcement Panel Assembly: consists
of n = 1 ideal compliant part with complex 3D geometry.
It involves Ns = 1 station and 2 stages (PC) and is controlled
by h = 3 real-valued yr fixturing based process parameters.
(4) Door Inner and Hinge Reinforcement Assembly: con-

sists of n = 2 ideal compliant parts with a complex

TABLE 4. Assembly cases.

3D geometry. It involves Ns = 1 station and four
stages (PCFR) and is controlled by h = 6 real-valued yr

fixturing based process parameters.
(5) and (6) Cross Member Assembly: consists of n = 4

non-ideal compliant parts with complex 3D geometry.
It involves Ns = 3 stations each with four stages (PCFR).
Two sub-cases within this are considered: case (5) consisting
of h = 12 real-valued yr part variation and fixturing based
process parameters; and, case (6) consisting of a heteroge-
neous (real-valued and binary) set of h = 158 process param-
eters including 123 real-valued yr part variation, fixturing
and joining based process parameters and 25 binary process
parameters yc indicating the success of joining (Fig. 5).

For comparison and benchmarking of scalability, all five
cases are analyzed under Ts = 4 training scenarios are
considered:

(i) Random Sampling: Involves randomly sampling
from the CAE simulator within the allowable ranges for
each process-parameter. Each case study is trained on a
re-initialized network with random weights. This also serves
the baseline performance expectations.
(ii) Closed-loop Sampling: Involves training the five case

studies using Algorithm 1 as shown in Table 1.
(iii) Transfer Learning with Closed-loop sampling:

Involves training the five case studies sequentially using
Algorithm 3 as shown in Table 3.
(iv) Continual Learning with Closed-loop Sampling:

Involves training the five case studies sequentially using
Algorithm 2 as shown in Table 2.

Interpretability is verified by considering the cross mem-
ber assembly (5) to provide links between MASs require-
ments and architecture functional elements and to obtain 3D
Grad-CAMs for key process parameter variations. While
obtaining 3D Grad-CAMs the weights and biases of the
network are fixed at the mean values (ω = µω).
Before training all shape errors are pre-processed

and voxelized to (u, v,w, d) = (64, 64, 64, 3) voxel grids
V64,64,64,3. The deviation features d include deviations
in all directions for all points (x̃k , ỹk , z̃k). The shape error
after the final station (xNs,4) is used as input while the
process parameters y and upstream stations shape errors
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FIGURE 4. Assembly cases.

x1,4, . . . ,xNs−1,4 are used as output. The model archi-
tecture hyperparameters were selected as proposed in the
OSER-MAS approach. Training hyperparameters were opti-
mized for all scenarios. Adam optimizer [59] is used for
training in scenarios (i), (ii) and (iii). Initial learning rates
α0 = [0.1, 0.01, 0.001, 0.0001] were compared for scenario
(i) and (ii), α0 = 0.001 gave optimal performance in terms
of error and convergence, α0 = [0.1, 0.01] gave inferior
performance as compared to α0 = [0.001, 0.0001], α0 =
0.001 was finally selected as the learning rate gives faster
convergence between the two values. The same combinations
were tested for scenario (iii) while under the constraint that
αC = αF/10 given the fine-tuning protocol to ensure later
layers learn at a faster rate as compared to initial layers. αC =
0.0001 and αF = 0.001 gave the most optimal performance.

Scenario (iv) tested initial learning rate for stochastic gradient
descent (SGD), α0 = 0.001 gave optimal performance. The
learning rates were multiplied in each case by the weight
uncertainty as described in Table 2. Minibatch sizes of 8,
16 and 32 were tested. Larger batch sizes could not be used
given the high GPU memory requirements of 3D CNNs.
Minibatch size of 32 gave the best performance. Smaller
sizes such as 8 and 16 caused the training process to be
unstable. The model is trained for 300 epochs. Group nor-
malization [60] with four groups is used after each con-
volutional layer. This prevents overfitting and accounts for
small minibatch size due to GPU memory size constraints
and aids in stabilizing the training process. Optimization
for training hyperparameters was done for case (1) (Flat
Plate Assembly) to ensure computation feasibility. Given case
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FIGURE 5. Process parameters for cross member assembly for case (5) and (6).

studies (1) to (4) consist of a single station; the decoder of
the 3D U-Net model is not used as upstream shape error
for previous station stations does not need to be estimated.
Case study (5) leverages the decoder to estimate shape error
after upstream stations. The work has been implemented
using Python 3.7 and TensorFlow - GPU 2.1 [61] and Tensor-
Flow Probability 0.9. A python library named DLMFG [62]
has been developed to validate and replicate the results of the
methodology. For this paper, both, the data generation and
evaluation of the approaches have been done using VRM.
Two Nvidia Tesla V100 32 GB GPUs are used for model
training and deployment.

B. DISCUSSION: SCALABILITY
The results for training assembly cases sequentially in the
aforementioned scenario are summarized in Fig. 6. Training
in all scenarios is done until convergence. Model is consid-
ered converged when the performance metrics on the test
set E =

(
XE ,Y E

)
are better than the threshold. R-Squared

(R2) ≥ 0.90 is considered as the convergence criteria for yr

and Receiving Operating Characteristics – Area Under Curve
(ROC-AUC))≥ 0.90 is considered as a convergence for yc.
The initial training set size T 0 is set to be 500 samples and
T i = 100 samples are added in each closed-loop iteration
based on the estimated GMMparameters. Based on empirical
tests the pre-specified number of mixtures in the GMM is
fixed at K = 5.

The results show that for low complexity cases such as Flat
Plate (1) and Top-Hat (2) the effects of using closed-loop
sampling with continual or transfer learning gives only
minor reductions in training samples for converging. As the
complexity of the assembly cases increases and the effect
of pre-trained weights of continual and transfer learning
become significant reduction up to 50% in the number of
required training samples for case (6) can be seen. This val-
idates the need for scalable approaches required for training

high-dimensional assembly cases while leveraging the pre-
trained models on low-dimensional assembly cases.

The performance measure of using continual learning for
all Tn tasks are done by comparing R2 on the Ti th task when
learning is performed only till Tith task (R2Ti,Ti ) and when
learning is performed till the Tnth task (R2Ti,Tn ). Catastrophic
forgetting for each task (CFTi ) is quantified as the difference
between performance in the aforementioned situations:

CFTi = R2Ti,Tn − R
2
Ti,Ti (19)

Negative value of CFTi means catastrophic forgetting of
previous cases while positive values mean that learning
new tasks has improved the performance of previous tasks.
Table 5 summarizes the results. Average Generalized Per-
formance 1

Tn

∑
Ti
R
2

Ti,Tn

and Average Catastrophic Forgetting

1
Tn

∑
Ti
CFTi are summarized and highlight generalized perfor-

mance (95%) greater than the required threshold while with
average forgetting of only up to 2.1%.

TABLE 5. CLIP framework performance.

The convergence is measured by the number of sam-
ples (STs ) for training for the given training scenario Ts.
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FIGURE 6. Convergence comparison of all assembly cases in all training
scenarios.

Improvement in convergence 1Ts for a training scenario Ts
is measured as the percentage difference in training samples
required for convergence as compared to the baseline training
scenario which for this case is (i) random sampling

1Ts =
STs − STs=(i)

STs=(i)
(20)

Table 5 also summarizes the improvement in convergence
for the CLIP framework i.e. improvement in convergence
when using training scenario (iv) Continual Learning with
Closed-Loop Sampling 1Ts=(iv). Fig. 7 aims to compare loss
in performance (CFTi ) with improvement in convergence
(1Ts=(iv)). Overall, across the six cases, the proposed CLIP
framework provides 56% improvement scalability as quan-
tified by improvement in convergence with a loss in perfor-
mance of only 2.1% as quantified by Catastrophic forgetting.

C. DISCUSSION: INTERPRETABILITY
The interpretability of the Bayesian 3D U-Net is done on two
levels:
(1) By linking requirements of the MASs with functional

elements of the Bayesian 3D U-Net architecture. These
include:

(1a) Object Shape Error Voxelization: Shape error vox-
elization provides an intermediate 3D data structure link-
ing mesh obtained from CAE simulation and point clouds
obtained from 3D optical scanners. Voxelization ensures that
both these data structures are converted to voxels and are
hence, compatible with 3D convolution operations fulfill-
ing: Requirement (i) high data dimensionality; and, Require-
ment (vi) dual data generation capabilities. The voxels are
multi-channels with each channel corresponding to one com-
ponent of shape error. The resolution of voxels depends on the

FIGURE 7. Loss in performance vs improvement in convergence
comparison for CLIP.

required performance. Fig. 8 shows voxelization for one com-
ponent of shape error at different resolutions. Low-resolution
voxels capture global shape error patterns, as the resolution is
increased, local shape error patterns are effectively captured.
This also increases the discriminative capability required to
differentiate between collinear shape error patterns, although
this comes at a higher computational cost. Empirical studies
have shown that there is no significant increase in perfor-
mance above (64×64×64) for RCA ofMAS. Case (6) Cross
Member Assembly (h = 148) is used for a sensitivity study.
Object Shape Error Reconstruction Error and performance is
compared against voxel granularity. The reconstruction error
is less than 1% given (64×64×64) or more granular voxels.
The model performance does not increase over R2 = 0.96
even with voxels as granular as (96× 96× 96). Additionally,
with increased voxel sizes above (64×64×64) the minibatch
size used during training has to be further reduced to 16 given
GPU memory constraints which result in unstable model
training and hence negatively impacts performance. Table 6
summarises the results of the sensitivity study.

FIGURE 8. Object shape error voxelization.

(1b) Encoder with Down Sampling Kernels: As described
earlier the Bayesian 3D U-Net architecture consists of four
levels of the encoder and decoder models (Fig. 2). Each
level of encoding consists of the down-sampling kernel
(see Down-sampling kernel in Fig. 2). The kernel consists
of 3D Max pooling, which is duplicated to a residual con-
nection and encoding connections. The residual connection
consists of a 3D convolution with a filter size of one and a
stride length of one in all three dimensions. The encoding
connection consists of two 3D convolutions of filter size
three and stride length one with ReLU activation in between.
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TABLE 6. Voxel resolution sensitivity study.

Then, the residual connection and the encoding connection
are merged using element-wise addition. Finally, ReLU is
applied before duplicating the output into the decoder input
and next level encoder input. Overall, the down-sampling
kernels in the encoder with consecutive 3D convolutions and
pooling are essential for spatial correlation filtering, feature
extraction, and non-linear transformations. Consecutive lev-
els of the decoder extract more discriminating features from
the high-resolution voxelized shape error input. The discrim-
inative ability of the features increases at each consecutive
encoder level thus, enabling accurate estimate of process
parameters hence high root cause isolability. Each level of
the encoder is also linked to the corresponding decoder, this
enables transfer of features related to the part geometry and
hence enables accurate estimation of upstream part shape
error at the end of the decoder. Fig. 9 highlights the features
extraction capabilities of different levels of the encoder, while
lower levels focus on the entire part higher levels focus on
the regions that contain the shape error. This enables fulfil-
ment of requirements: (ii) non-linearity; (iii) collinearities;
and, (iv) high faults multiplicity. The 3D Grad-CAMs for
encoder levels provides interpretability by visualizing the
extracted shape error features. The transparency provided in
the extracted shape error features enables interpretability on
why a particular root cause was isolated.

(1c) Decoder with Up-sampling Kernels: Each level of the
decoder consists of the up-sampling kernel (see Up-sampling
kernel in Fig. 2) and provides real-valued segmentation
maps that estimate object shape error, i.e., the three com-
ponents of deviation for each subassembly at the end of
all upstream stations. Each level of the decoder consists of
two input sources; the encoder input from the correspond-
ing level encoder and the decoder input from the previous
decoder level. The following operations are then performed:
(i) up-sampling of the decoder input, which is duplicated and
sent to the attention gate and feature concatenation layer;
(ii) the attention gate [63] distils information from the
encoder and then generates relevant features that are con-
catenated with the up-sampling output from (i); and,
(iii) this concatenated feature set is duplicated to the residual
connection and the decoder connection and similar operations
as in the encoder layer are performed. The number of chan-
nels of the decoder output equal to the number of compo-
nents of shape error multiplied by the number of upstream
stations, while the granularity of the output is the same as
the input voxel size. Various levels of the decoder aggregate

FIGURE 9. 3D Grad-CAMs for various encoder levels.

features from the corresponding encoder and previous
decoder. This integrates part geometry features (as provided
by the encoder) with the shape error features (as provided
by the previous decoder) enabling accurate estimation of
upstream part shape error. Different levels of decoder recon-
struct shape error within different regions of the part. This
enables fulfilment of requirement (viii) Fault Localization.
Fig. 10(a) highlights the up-sampling capabilities of different
levels of the decoder that enable estimation of object shape
error of upstream assemblies. Level 2 reconstructs features of
the pocket reinforcement subassembly while levels 3 and 4
reconstruct features of the cross-member reinforcement
assembly. The 3D Grad-CAMs for decoder levels provides
interpretability into the stations within which the fault is
localized. Fig. 10(b) compares the actual upstream assembly
shape errors as estimated using CAE simulation with those
estimated by the decoder output.

FIGURE 10. (a) 3D Grad-CAMs for various levels of the decoder.
(b) Comparison of actual vs estimated upstream assemblies.

(1d) Multiple Output Heads: The model consists of two
output heads one head estimates real-valued process param-
eters yr as done in a regression setting while the second head
estimates categorical/binary process parameters yc as done in
a multi-label classification setting. This is essential for MASs
as they have a large number of process parameters inclusive of
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FIGURE 11. 3D Grad-CAMs for attention at various levels of the decoder.

(a) real-valued parameters for non-ideal parts and fixturing/
tooling (within Positioning (P) and Clamping (C) stages of
the PCFR assembly cycle); and, (b) binary parameters for
joining operations (within the

Fastening (F) stage of the PCFR assembly cycle). The
number of regression output nodes is equal to the number of
real-valued parameters and the number of classification out-
put nodes is equal to the number of binary process parameters
This enables fulfilment of requirement (vii) High Dimension-
ality and heterogeneity of process parameters.

(1e) Attention Gate: The soft-attention mechanism as pro-
posed by Oktay et al. [63] is used between corresponding
levels of the encoder and decoder. The attention approach
allows the model to be specific to local regions. In the
context of shape error estimation of assemblies, this helps
the model focus on particular parts/subassemblies in each
station. Adding of the attention gate increases in accuracy of
upstream stations shape error estimation as the model learns
where to look within the final assembly to estimate upstream
sub-assemblies [x1,4, . . . ,xNs−1,4

]
. This decoder inclusive of

attention gates improves performance for requirement (viii)
Fault Localization. Fig. 11 shows 3D Grad-CAMs for areas
of focus at different functions within the up-sampling kernel.

Attention 3D Grad-CAMs enables interpretability by pro-
viding insights into the regions focused by the decoder in
estimating upstream shape errors.

(1f) Bayesian Flipout Layers: Given the uncertainties in
the system and the availability of only a limited dataset,
a deterministic estimate of function f (.) as shown in (2)
is not feasible. The Flipout [64] layers leveraged in the
encoder enable uncertainty quantification. These estimates of
uncertainty integrate measures of confidence within isolated
RC(s) and hence drive costly corrective actions [6]. This is
realized by using Bayes-by-Backprop [65] which integrates
backpropagation with variational inference [66] to estimate
a posterior distribution qθ (ω) which is parameterized by θ
over the neural network weights based on the pre-specified
prior p (ω). This enables fulfillment of requirement (v) uncer-
tainty quantification. The uncertainties are key elements of
interpretability insights as they integrate a measure of confi-
dence within the root cause estimates.

(1g) Residual Connections: Given the deep architecture
of the model, vanishing gradients can be a major issue,
hence residual [67] or skip connections are added within
each down-sampling and up-sampling kernel that ensure
effective prorogation of gradients by providing a skip route.
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FIGURE 12. 3D Grad-CAMs for residual connection at various levels of the encoder.

FIGURE 13. Part variation root cause.

Fig. 12 highlights the 3D Grad-CAMs for various stages of
the residual connection. As seen (highlighted in red rect-
angle) in level three the layer before the residual connec-
tion has negligible activations due to skipping of the layer
while the gradients become significant after the addition of
the residual. The residual connections improve performance
for requirements: (ii) non-linearity, (iii) collinearities, and
(iv) high faults multiplicity.

(2) Using 3D Grad-CAMs to interpret the working of
the architecture for different process parameter variations or
root cause(s). The above 3D Grad-CAMs provide a global

level of interpretability by linking functions elements of the
architecture with requirements of the MAS. The next local
level of interpretability aims to provide transparency into the
3D Grad-CAMs for various levels of the encoder for key root
cause scenarios. This links the shape error features extracted
by each level of the encoder to estimate that particular root
cause. Fundamentally, to interpret that the architecture is iso-
lating a root cause correctly the features extracted by various
levels of the encoder should correspond to the shape error
patterns caused by that root cause. To validate this the cross
member assembly (case (5)) is considered and the working
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FIGURE 14. Positioning root cause.

FIGURE 15. Clamping root cause.

of the architecture in analyzed for five key root cause(s)
scenarios:

(2a) Part Variation Root Cause: This is caused due to
variation is upstream fabrication processes is estimated as
variation in ym = y1 = 2 mm. Fig. 13 represents the output
of the assembly given the incoming part (cross-member)
n = 3 has part variation. The region marked in red depicts
a bend in the part that is unique to a part variation root
cause [58]. The 3D Grad-CAMs as shown in Fig. 13 high-
lights, that the first encoder focuses around the entire part,
the second encoder level can identify the edges near the bend

and the final encoder levels (three and four) can identify the
region where the bend has occurred and hence accurately
estimate y1 as a part variation root cause.
(2b) Positioning Root Cause: This is caused by tooling

installation and calibration error, or tooling deterioration due
to gradual wearing out of fixture locators and is estimated
as variation in ym = y5 = 1 mm. They affect the part
placement including orientation/reorientation and stability.
The 3D Grad-CAMs as shown in Fig. 14 highlights that the
encoder focuses around the entire part that has an error in
orientation and estimates y5 as the magnitude of the error.
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FIGURE 16. Joining root cause.

FIGURE 17. Part variation and clamping root causes.

(2c) Clamping Root Cause: This is caused by misalign-
ment of the clamp in the y-direction and estimated as ym =
y11= 2 mm. They cause part bending of compliant parts.
The 3D grad-CAMs as shown in Fig. 15 highlights that the
encoder can focus on the local bend pattern at the location
of the clamp and estimate y11 as the magnitude of the clamp
misalignment in the y-direction.

(2d) Joining Root Cause: This is caused by misalignment
of the joining tool (SPR) in the y-direction and estimated as
ym = y12 = 2 mm. They lead to a defective joint between
the two assemblies. The 3D grad-CAMs as shown in Fig. 16
highlights that the first level of the encoder can focus on the
region of defective joint and the later levels focus on the

subassembly affected due to the defective joint and hence
estimates y12 as the magnitude of joining tool misalignment
in the y-direction.

(2e) Part Variation and Clamping Root Causes: This is
caused when there is an upstream part variation (ym = y1 =
2 mm) and misalignment of the clamp in the y-direction
(ym = y11 = 2 mm). These lead to multiple simultaneous
bends across the assembly. The 3D Grad-CAMs as shown
in Fig. 17 highlights that various levels of decoder focus
on all effected regions within the sub-assembly to simul-
taneously estimate multiple root causes. This capability is
crucial in ensuring that deep learning models have high RCA
capabilities even in scenarios when all process parameters
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have variation and potentially are at fault (100% fault mul-
tiplicity). Such cases of high fault multiplicity cause various
shape errors that are collinear (highly similar). The ability of
architecture to simultaneously focus on multiple areas within
the multi-channel voxelized input and localize various bends,
twists and other shape error patterns which are potentially
overlapping (interacting) and then relate them to the process
parameter(s) causing it, makes it the ideal approach to do
RCA of high-dimensional MASs with high fault multiplicity
using granular 3D data structures such as mesh (CAE) or
point clouds from 3D scanners.

VI. CONCLUSION & FUTURE WORK
The paper proposed a novel closed-loop in-process (CLIP)
diagnostic framework underpinned algorithm portfolio to
address the current limitations of scalability and interpretabil-
ity. Scalability is enabled by leveraging closed-loop train-
ing integrated with uncertainty guided continual learning or
transfer learning. The approach enables effective transfer of
knowledge through invariant features betweenMASs thereby,
achieving quicker convergence with 56% lesser training
samples. The overall loss in performance was limited to
only 2.1 % as quantified by average catastrophic forget-
ting (Table 5). Interpretability is enabled by leveraging 3D
Grad-CAMs that provide insights into the functioning of
key elements within the architecture and also relate features
extracted by the architecture to shape error features within
MAS. The visual interpretability explanations and uncer-
tainty estimates integrate confidence hence, enabling trust in
black-box deep learning models.

Scalability and interpretability are key challenges that must
be solved to enable widespread adoption of deep learn-
ing methodologies in industrial environments. Key industrial
application entails RCA of assembly processes of discrete
components made of sheet metal parts used in automotive,
aerospace or consumer products industries. These applica-
tions will leverage directly the CLIP diagnostic framework
with the OSER approaches to enable scalable and inter-
pretable root cause analysis and will be especially benefi-
cial for processes with larger number of parts and/or larger
number of assembly stations. The framework can also be
leveraged for transfer of learning to different type of manu-
facturing processes such as stamping, machining and additive
manufacturing that can be formulated using the proposed
formulation of object shape error estimation for root cause
analysis, this will lead to leveraging transfer and continual
learning to other manufacturing processes that can be linked
to assembly processes. Interpretability has been a major bar-
rier preventing the adoption and deployment of deep learning
models in the industry. The interpretability elements pro-
posed by the work aim to eliminate the barrier and integrate
context and confidence to the estimates hence, enabling wider
adoption. Leveraging such automated and interpretable RCA
models provides a transformative framework by ensuring
early estimation and elimination of process variations before

they become defects thereby, helping to achieve Zero-Defect-
Manufacturing and Right-First-Time.

Future work involves addressing the current limitations of
the approach such as estimating dynamic changes in man-
ufacturing systems and quantifying that as concept drifts or
covariate shifts. Such changes when detected would then
result in the model being fine-tuned such that the model
accounts for the dynamic changes in the manufacturing
system. This would enable lifelong learning for dynamic
manufacturing environments. Further work also involves
quantitative modeling of invariant features between differ-
ent MASs. These invariant features can be linked to first
principle models of the MASs and hence, further enhance
scalability and interpretability.
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