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ABSTRACT Lithium-Ion battery packs are an essential component for electric vehicles (EVs). These packs
are configured from hundreds of series and parallel connected cells to provide the necessary power and
energy for the vehicle. An accurate, adaptable battery management system (BMS) is essential to monitor and
control such a large number of cells. Series and parallel connected cells also experience different production
and operational conditions, which makes it challenging for the BMS to ensure the safe operation of each
individual cell. The main functions of the BMS include battery state estimation, cell balancing, thermal
management, and fault diagnosis. Robust estimation of the state of charge (SOC) is crucial for providing
the driver with an accurate indication of the remaining range. This paper presents the state of art of battery
pack SOC estimation methods along with the impact of cell inconsistency on pack performance and SOC
estimation. Cell balancing methods, which are necessary due to cell inconsistencies, are discussed as well.
Four categories of pack SOC estimation methods are presented, including individual cell, lumped cell,
reference cell, and mean cell and difference estimation methods. The SOC estimation methods are compared
in terms of algorithm type, computational load, and engineering effort to help practitioners decide which
method best fits their application.

INDEX TERMS Lithium-ion battery packs, battery management systems, electric vehicles, cell inconsis-
tency, state of charge, cell balancing.

I. INTRODUCTION
Recently lithium-ion battery packs have gained significant
interest, especially for electric vehicle (EV) applications.
Hybrid and electric vehicle battery packs are composed of
series and parallel configurations of lithium-ion cells. The
utilization of series and parallel connections allows for essen-
tially any pack voltage and energy to be achieved; however,
this addsmore complexity for the batterymanagement system
(BMS) which monitors the cells and controls the pack [1].
Vehicles may have a very high number of small cells, such
as one configuration of the Tesla Model S which has 7140
2.9 Ah cylindrical cells arranged in 16 modules, with each
module consisting of 74 parallel cells and six series cells
(74P6S) [2]. They may also have a smaller number of larger
cells, like one configuration of the BMW i3 which utilizes
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50 Ah prismatic cells arranged in eight modules consisting
of 2 parallel and 12 series cells each (2P12S) [3]. The battery
management system (BMS) must be able to monitor the state
of charge and ensure balanced state of charge (SOC) for
each series connected group of parallel cells in the pack.
Fig. 1 shows the main components and key functions of the
BMS.

Battery state of charge is defined as the ratio of coulombs
of charge currently stored in the cell over the cell’s total
charge capacity. The SOC cannot be measured directly using
sensors; hence, a robust SOC estimator must be imple-
mented with the BMS to ensure accurate SOC values are
reported to the driver [4]. Generally, the SOC of a bat-
tery can be estimated using different algorithms, including
measurement-based, adaptive filters and observers, and data-
driven algorithms. For the measurement-based algorithms,
SOC is estimated based on measured physical quantities;
typically integrated current [5], [6], open circuit voltage
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FIGURE 1. Battery management system key functions.

(OCV) [7], [8], or impedance [9], which are directly related
to the cell SOC. Adaptive filters and observers estimate SOC
using a battery model combined with measured physical
quantities. Examples of these algorithms include the fam-
ily of Kalman filters [10]–[14] and the particle filter [15],
[16], least squares filter [17], [18], and adaptive Luenberger
observer [19]. Data-driven algorithms, which are based on
machine learning models, are often referred to as black-box
models because they model LIB input-output relationships
without the need for models representing the underlying
physics or chemistry. Machine learning models are trained
with measured data such as voltage, current, temperature, and
state of charge. Recurrent and non-recurrent networks have
been used to reliably and accurately estimate battery SOC [4],
[20]–[22] and state of health (SOH)[4], [23] of the battery.

Battery cells, even when manufactured in the same batch,
can have parameter variations of 1% or more. One study for
example found resistance to vary by 0.3% and capacity to
vary by 1.3% [24]. When cells are assembled in a pack bus
bar and weld resistance can further exacerbate differences
between cells. These factors contribute to inhomogeneous
current, voltage, temperature, and cell characteristics during
pack operation, and may cause further aging to the battery
pack [10]. For example, in [25] 48 cells from the same
batch were tested under identical conditions. A 10% capacity
variation was found between the cells after 1000 cycles, and
the cause of this variation was determined to be inconsistent
manufacturing of the cells. Hence, some studies have pre-
sented a screening process for selecting homogeneous cells to
group them in a pack [26], [27]. There are many methods for
identifying inconsistencies in a battery pack from measured
data, including signal processing, model, and data fusion-
based methods which will be discussed in Section II.

When estimating SOC for a battery pack, the SOC of
each cell must be considered due to inevitable variances
in cell characteristics. Pack estimation algorithms utilize
the discussed SOC estimation algorithms and may include
additional features to minimize computational complexity
or increase accuracy. The simplest class of pack estimation
algorithms lumps all the cells into a single large cell and
estimates SOC for the lumped cell, ignoring differences in

SOC of individual cells. An individual SOC estimator can
also be used for each cell, but the computational complexity
may be too high for the BMS. To address this, a reference cell
may be selected for the pack, and then a higher bandwidth,
more accurate SOC estimation method can be used for this
cell. Lower bandwidth, less accurate SOC algorithms can
then be used for the remainder of the cells, reducing the com-
putational requirements. Pack SOC estimation methods can
also utilize difference models, which estimate the difference
in SOC of each cell from the mean cell SOC. Details of
each of these types of methods, including implementation,
advantages, and disadvantages are discussed in Section III.

Lithium-ion battery packs also require ameans of adjusting
or balancing individual cell SOC due to variations of the cells’
characteristics and operating conditions.

Cell balancing methods can be categorized into two main
methods, namely, dissipative and non-dissipative methods.
Dissipative methods typically discharge a cell by applying a
resistor across it and tend to be slow acting but low cost and
compact. Non-dissipative methods utilize power electronic
circuits to transfer energy between cells. They may act more
quickly and conserve energy but increase the cost and size of
the BMS. Dissipative and non-dissipative balancing methods
are discussed and compared in detail in Section IV.

Overall, this paper presents the state of the art and current
challenges for developing robust SOC estimation algorithms
for lithium-ion battery packs, and considers cell inconsis-
tency and balancing in relation to SOC estimation. The causes
of inconsistent performance among cells in the pack along
with their impact on the pack performance are discussed
and modeled results are presented to depict how variances
of cell capacity and resistance impact cell state of charge
and current and voltage distribution. A detailed discussion
of different battery pack SOC estimation methods is pro-
vided including algorithms used and the theory of operation
of each method. Cell balancing methods are also compared
in terms of the active elements, advantages, and disadvan-
tages of each method. The rest of the paper is organized as
follows; in section II the consistency analysis of lithium-
ion battery packs is discussed and in section III battery
pack SOC estimation algorithms and methods are presented.
In section IV, the range of cell balancing methods are dis-
cussed and finally the conclusions and recommendations are
presented in section V.

II. CONSISTENCY ANALYSIS FOR LITHIUM-ION BATTERY
CELLS AND PACKS
Ideally each battery cell leaving a manufacturing line would
perform identically throughout its life. Many factors cause
cells in a pack to age at different rates though, such as vari-
ances in manufacturing processes and uneven temperature
distribution. These factors tend to cause cells to age unevenly
over time, as described in Fig. 2, make managing a battery
pack over its life difficult. In this section, the causes of
inconsistent performance among cells in a pack are discussed
along with their impact on pack performance.
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FIGURE 2. Lithium-Ion battery packs inconsistency production and operational causes and effects.

Modeling is also used in this section to depict how vari-
ances of cell capacity and resistance impact cell state of
charge and voltage and current distribution.

A. INCONSISTENCY OF CELL MANUFACTURING AND
WELDING PROCESSES
Inconsistent cell characteristics originate at the production
stage. Impurities in active materials and tolerance in human
and automated manufacturing processes contribute to cell
performance variations [24], [28]–[30]. Typically, these fac-
tors result in each cell having slight differences in capac-
ity and resistance. For example, in one very comprehensive
study, quantity 1100 Sony US26650FTC1 3 Ah cylindrical
LiFePO4-graphite cells were tested [24]. For cells produced
in the same batch, the standard distribution of discharge
capacity and dc resistance was found to be around 0.3% and
1.3% respectively. Diagnostic tests, such as thewavelet-based
method proposed in [31], may be used quickly measure cell
parameters so cells can be sorted into similar groups prior
to assembly of packs. While the differences between cells
are typically small, they may have a significant impact on
pack performance over time as will be discussed in the next
subsection.

When cells are assembled into a pack, series and parallel
connections are made with conductive bus bars. The connec-
tion between the cells and the bus bars are most often made
via a welding process. The welding process has a significant
impact on the overall resistance of the pack. Since all welds
are not identical, the welding process also contributes to
differences in resistance between cells. In one study, cylin-
drical cell to bus bar connection methods including press
contact, resistance spot welding, ultrasonic welding, laser
beam welding, and soldering were investigated and found to
have resistances of 0.154, 0.167, 0.169, 0.130, and 0.080 m�

respectively [28]. Depending on the connection type, resis-
tance can vary by as much as 0.02 m�, which would cause
around a 0.1% variance in resistance for a cylindrical cell
with 20 m� nominal resistance [28]. Unequal cell to bus bar
resistance has been found to cause uneven heat generation

in battery packs [29] and to contribute to unequal current
sharing between parallel connected cells, especially at higher
c-rates [30].

B. IMPACT OF INCONSISTENCIES ON
PACK PERFORMANCE
Inconsistencies in initial cell resistance and capacity, as well
as resistance variance introduced by cell to bus bar con-
nections, all contribute to inhomogeneous current, voltage,
temperature, and aging in battery packs. Many studies have
investigated the impact of these inhomogeneities and quanti-
fied their impact.

For example, a 3S3P configured pack with cell resistance
and capacity varying by 5% was found to have an 8% SOC
imbalance and 3◦C variance in temperature across the pack
after a full discharge [32]. After 310 days of cycling, the
variance of capacity and resistance between the cells grew
to 10% and 25% respectively, demonstrating that over time
variance between cells tends to grow. In another study, a 20%
mismatch in resistance and capacity of parallel connected
cells was found to reduce pack lifetime by 40%, showing the
importance of having consistent cell characteristics [33].

Differences in cell resistance also contribute to uneven
current and voltage distribution among parallel and series
connected cells. In [34], low temperatures were found to
exacerbate this issue, with two parallel connected cells with
a 13% difference in resistance having a 50% difference in
current at 5◦C. In [35], the current of parallel connected
cells was found to not be directly proportional to their rel-
ative capacities, leading to imbalanced state of charge during
operation. Differences in cell capacity also cause nonuniform
voltage and temperature distribution, as was observed for an
8S pack with 2.5% variation in capacity between cells which
led to a 0.8% variation in terminal voltage between cells
during a cycle [36].

The cooling system for a battery pack can also drive
uneven temperature distribution. If the cooling media, typi-
cally air or liquid, significantly increases in temperature as it
flows across the pack or does not cool some parts of the pack
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as effectively as others, there will be a temperature distribu-
tion across the cells. In [37] the liquid cooling system caused
a 4◦C temperature variation between cells in a 4S pack and
resulted in a 1% variation in voltage between the cells during
operation. Non-uniform temperature was shown to cause a
25% difference in current for two parallel connected cells
in [38], and to cause 5% additional aging for a temperature
distribution of 5◦C in [39]. Cooling systems should therefore
minimize the temperature variation across the pack, ideally
keeping the hottest and coolest parts of the pack within a few
degrees Celsius of each other.

C. IDENTIFICATION OF PACK INCONSISTENCIES
Inconsistencies in the pack will result in differences in volt-
age, current, and temperature between cells. Cell resistance,
capacity, and other characteristics can be estimated frommea-
sured voltage, current and temperature data. There are many
methods for identifying inconsistencies in a battery pack
from measured data, including signal processing, model, and
data fusion-based methods. For signal processing approaches
time domain voltage and current data, which is typically
collected using lab-based tests, is used to extract pack incon-
sistency features [40], [41]. Model based methods utilize
adaptive filters to fit equivalent circuit models to measured
data and to estimate important features of each cell during
operation, such as resistance and capacity [42], [43]. Data
fusion methods directly quantify the cell inconsistency using
mathematical theories without the need for a cell model, and
include information entropy [44], principal component anal-
ysis [45], and copula theory [46]. All of these methods can
be helpful for managing battery pack performance over time,
and for determining if a battery pack meets manufacturing
consistency and performance specifications.

D. MODELED IMPACT OF RESISTANCE AND CAPACITY
VARIATION ON CELL CURRENT, VOLTAGE AND SOC
To illustrate how resistance and capacity variation between
cells effects the distribution of voltage and current in a battery
pack, several different cases are modeled in this section. The
cells are modeled with a simple equivalent circuit model
(ECM) developed in Simulink, which includes state of charge
dependent open circuit voltage in series with a resistance.
Fig. 3 and Fig. 4 show the impact of the variance of cell
resistance on the performance of battery packs with three
series and three parallel connected cells. The modeled cells
have identical capacity and OCV-SOC characteristics and a
20% resistance variance, as labeled in the figures. Fig. 3
shows that a 20% resistance variance in a 3S battery pack
leads significant differences between terminal voltage even
though SOC is the same at each point in time. Fig. 4 shows
that when the cells are connected in parallel, the resistance
variance leads to imbalanced current and therefore imbal-
anced SOC during the charge. Once the charge stops, the cells
SOC will equalize due to the self-balancing effect [10],
but these circulating currents will cause some extra
loss.

FIGURE 3. Impact of 20% internal resistance mismatch on voltage sharing
of 3 series connected cells during constant current charge.

FIGURE 4. Impact of 20% internal resistance mismatch on SOC and
current sharing of 3 parallel connected cells during constant current
charge.

FIGURE 5. Impact of 10% capacity mismatch on SOC and voltage sharing
of 3 series connected cells during constant current charge.

Fig. 5 and Fig. 6 show the impact of the cell capacity
variance on the performance on a 3S and a 3P battery pack,
respectively. The cells are assumed to have identical internal
resistance and OCV-SOC characteristics and a 10% capac-
ity variance as indicated in each figure. The figures show
cell capacity variance has a significant impact on the SOC
of series connected cells, an imbalance that would have to
be corrected for through cell balancing methods like those
discussed in Section IV.

The magnitude and types of cell inconsistency and their
impact on the performance on the battery pack should be
considered when developing battery pack estimation meth-
ods. Pack SOC estimation methods must be able to identify
the SOC of each cell, even for example when the cells’
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FIGURE 6. Impact of 10% capacity mismatch on SOC and current sharing
of 3 parallel connected cells during constant current charge.

FIGURE 7. Number of publications each year for keywords ‘‘state of
charge’’ and ‘‘Lithium-ion batteries’’ searched in the IEEE library.

terminal voltage is different due to resistance variation. Cell
inconsistency may also lead to inhomogeneous degradation
of the cells and accelerated aging of the pack.

III. SOC ESTIMATION OF LITHIUM-ION BATTERY PACKS
Estimating the state of charge for a lithium-ion battery pack
is challenging because each series connection of parallel cells
will have slightly different characteristics, such as capacity,
resistance, or temperature. SOC estimation algorithms, which
have been the subject of increasing interest in the litera-
ture (see Fig. 7), must be able to account for differences in
cell characteristics and report an SOC value for the pack.
Several algorithms of estimating cell SOC are discussed in
Section III-A. These algorithms are then applied within pack
SOC estimation methods like those which are compared and
contrasted in detail in Section III-B.

A. SOC ESTIMATION ALGORITHMS
Generally, SOC can be estimated using different algorithms,
including measurement-based, adaptive filters and observers,
and data-driven algorithms. In the measurement-based algo-
rithms, SOC is estimated based on measuring some physical
quantities which are directly related to the cell SOC namely;
coulomb counting [5], [6], OCV [7], [8], and electrochemi-
cal impedance stereoscopy (EIS) [9]. For coulomb counting,
SOC is estimated by integrating battery current [5], [6]. SOC

can be estimated directly open circuit voltage, but OCV can
only be directly observed after an hour or more of non-use [7],
[8]. Battery impedance measured with EIS, which applies a
sinusoidal voltage or current to the battery and measures the
response, can also be used to estimate the battery SOC [9].

Adaptive filters and observers estimate SOC as a function
of measured terminal voltage, current, and temperature, and
are a more practical solution because they can estimate SOC
during operation and correct for current sensor and other
errors. These algorithms utilize a battery ECM or electro-
chemicalmodel as part of the estimation process. TheKalman
filter [10]–[14], particle filter [15], [16], least squares fil-
ter [17], [18], and adaptive Luenberger observer (ALBO) [19]
are all commonly used to estimate battery SOC. The fam-
ily of Kalman filters includes the extended Kalman filter
(EKF) [10], fuzzy-based EKF [11], adaptive Kalman filter
(AKF) [12], sigma point Kalman filter (SPKF) [13], and
unscented Kalman filter (UKF) [14]. Generally, the Kalman
filter estimates SOC via coulomb counting and an equiv-
alent circuit model which is fit to the measured data. The
filter is tuned to adjust how much it trusts the model and
measurements.

The particle filter or so-called sequential Monte Carlo
(SMC) filter utilizes a Monte Carlo sampling method to
extract particles from the posterior probability distribution,
update their weights, and thus estimate battery SOC [15],
[16]. The least-squares filter is a statistical algorithm in
which regression analysis is used to determine the best-
fit line for a given dataset. Least squares filters have been
used with battery models to estimate battery SOC [17] and
capacity [18]. Adaptive observers such as the ALBO, which
updates observer gain each time step to match the stochastic
nature of SOC estimation [19], can also be used to estimate
SOC.

Another category of SOC estimation algorithms is based
on data-driven algorithms such as neural networks, deep
learning, and support vector machine algorithms. These algo-
rithms treat the battery as a black box, and learn the relation
between measured values and SOC. The models are trained
with data recorded during operation, such as voltage, cur-
rent, temperature, and state of charge which is the objective
function. Recurrent and non-recurrent networks have been
used to estimate SOC. [20]–[22] and state of health (SOH)
as well. [4], [23].

B. BATTERY PACK SOC ESTIMATION METHODS
Battery pack SOC estimation methods must consider all the
inconsistencies which are common in battery packs, while
also not placing too much computational load on the BMS.
Pack SOC estimation methods therefore aim to simplify the
estimation process and improve accuracy by lumping the
cells together as a single large cell, by estimating SOC of
some cells at a lower update rate, or by estimating cell SOC
difference compared to a mean cell. These SOC estimation
methods, along with the simplest method of just estimating
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FIGURE 8. Individual cell SOC estimation method.

FIGURE 9. Lumped cell SOC estimation method.

SOC for each individual cell, are discussed in the following
sections.

1) INDIVIDUAL CELL ESTIMATION
A straightforward method of pack SOC estimation is to
implement a single SOC estimator for each individual cell,
like those described in section III-A. The pack SOC is then
determined as a function of the individual cell SOCs, with for
the simplest case the minimum cell SOC used to represent
pack SOC during discharging and the maximum cell SOC
used during charging, as described in (1) and shown in Fig. 8.
Because each SOC estimation algorithm instance may utilize
significant computation resources, this method is not always
practical. Other pack estimation methods aim to reduce com-
putational load and potentially improve estimation accuracy
as well.

SOCpack =

{
SOCmin cell, during Discharging
SOCmax cell, during Charging

(1)

2) LUMPED CELL ESTIMATION
If the cells in a battery pack have similar characteristics, then
it may be suitable to simply consider the pack to be one
large cell and to estimate SOC as a function of the overall
pack voltage, Vpack , and current, Ipack , as illustrated in Fig. 9.
Many such lumped cell models have been proposed in the
literature, such as in [10] where the parameters for a pack
ECM were determined offline using a genetic algorithm and
SOC was estimated each time step with an EKF. In [19] a
similar approach was taken, and pack ECM parameters were
determined with an hybrid pulse power characterization test
and an ALBOwas used to estimate SOC. Incorporating aging
into SOC estimation is also important, as was done in [11]
using a fuzzy-based EKF for estimating SOC at various stages
of aging.

Since SOC is a direct function of open circuit voltage,
it is also possible to consider algorithms which eliminate the
battery pack current sensor, a costly component. The study
in [47] proposed such a current sensor free solution, where
reasonable SOC estimation accuracy was achieved for a pack.

The main advantages of lumped cell methods are their
simplicity, and they may be a good option for less dynamic
applicationswhere the SOC imbalance of cells is not expected
to be large. However, this method can lead to accelerated

FIGURE 10. Reference cell SOC estimation method.

FIGURE 11. Mean cell and difference SOC estimation method.

ageing of the weakest cell in the pack and of a poor estimation
of pack SOC if cell characteristics vary too much.

3) REFERENCE CELL ESTIMATION
As an alternative to lumping all the cells together a single cell
from the pack, referred to as the reference cell, can be selected
to represent the pack performance. The SOC of the reference
cell is then estimated using a higher bandwidth, more accurate
SOC estimation method. The remaining cells may have a
simpler, lower bandwidth SOC estimation method applied as
is shown in Fig. 10, allowing for a good pack SOC estimate
without the need to have a full performance estimator for
each cell. The reference cell is typically chosen based on
the weakest cell, i.e., the cell with the lowest voltage during
discharge and highest during charging, as is done in [48]–[50]

In [48], the lowest voltage cell is selected as the reference
cell and two proposed modified nonlinear predictive filters
(NPF) are used, one executed at a higher frequency and a sec-
ond at a lower frequency, to provide two different estimates of
reference cell SOC. The proposed NPF is a modified optimal
state estimator implemented for nonlinear systems. However,
the process noise can take any form and is estimated with
optimal state. In [49] the lowest voltage cell was also selected
as the reference cell, and an online variable factor recursive
least squares filter was used to estimate the reference cell
parameters for an EKF SOC estimation method. The work
in [50] expands beyond that in the other studies by proposing
a dual time-scale EKF method which estimates SOC of the
weakest reference cell at a higher frequency and SOC of the
remaining cells at a lower frequency.

4) MEAN CELL AND DIFFERENCE ESTIMATION
The individual, lumped, and reference cell methods all
approach SOC estimation in a similar way, using cell or pack
measurements as inputs and outputting cells or pack SOC.
For mean cell and difference estimation another approach is
taken. Mean cell SOC is estimated based on the mean of all
the cell voltages and temperatures as shown in Fig. 11. For
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TABLE 1. A comparison of SOC estimation methods in lithium-ion battery packs and the corresponding algorithms accuracy.

TABLE 2. Performance comparison of SOC estimation methods.

each individual cell, the difference in SOC,1SOC, compared
to the mean cell is estimated as a function of the difference
between the individual and mean cell voltage, 1Vcell , and
temperature,1Vtemp, using simplified cell difference models.
An accurate, higher bandwidth method is used for estimating
the mean cell SOC, and a simpler, lower bandwidth method
is used to estimate the 1SOC values. As a result, mean
cell and difference estimation methods typically estimate cell
SOC and thus the pack SOC as mentioned in (1) with good
accuracy and low computational complexity compared to
other methods.

The cell difference models, which capture the difference in
SOC between each cell and the mean cell, may also include
the difference in internal resistance, capacity, temperature,
polarization voltage, and OCV. Cell difference models are
often equivalent circuit models with parameters such as delta

open circuit voltage and delta resistance. The model param-
eters are determined by fitting the model to measured cell
voltage difference data.

Many mean cell and difference SOC estimation meth-
ods have been proposed in the literature, including[13],
[14], [42], [51]–[53] which utilize mean cell voltage and
a few which alternatively select the most average cell to
represent the mean cell [27], [54], [55] The work in [51]
presented a dual timescale method using an EKF to esti-
mate mean cell SOC at a higher frequency and a method
using OCV to estimate cell SOC difference at a lower fre-
quency. In [14] and [42], which uses an UKF and the OCV
respectively, the cell difference models also account for cell
resistance deviation, leading to more precise SOC estima-
tion. Cell charge and discharge resistance was considered
in [52], an EKF was used to estimate both mean cell and
cell difference SOCs. Another method in [13] utilized even
more detailed cell difference models which include deviation
in temperature, internal resistance, and capacity, and utilizes
a SPKF to estimate mean cell SOC at a higher frequency
a second SPKF to estimate cell SOC difference at a lower
frequency. An SPKF was also used to estimate mean cell
SOC in [53], and a delta filter was used to estimate cell SOC
difference via a difference model considering cell resistance
and capacity differences.

The aforementioned studies all perform cell SOC differ-
ence estimation online, but this estimation can also be done
using offline methods as in [27], [54], [55]. While Kalman
filters are most commonly used for mean cell and difference
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FIGURE 12. The impact of the SOC imbalance on 4-cell battery pack
during charging and discharging scenarios.

estimation, researchers have investigated other estimation
methods as well. For example in [27] an AEKF filter was
used to estimate mean cell SOC and cell SOC difference.
Machine learning has been utilized as well, including in [54]
and [55] which both use Kalman filters along with neural
network based bias correction methods to determine cell to
cell variations.

5) COMPARISON OF PACK SOC ESTIMATION METHODS
Table 1 presents a comprehensive comparison of the battery
pack SOC estimation methods discussed in this section. The
table lists the algorithm type, the cell variance characteris-
tics considered, datasets used, and the corresponding SOC
estimation root mean square error (RMSE), mean absolute
error (MAE), and/or maximum error (MAXE). The variance
in the cells’ characteristics may resistance (R) and capacity
(C) and their impact on the cells’ temperature (T ) and open
circuit voltage (OCV ). All of the algorithms are demon-
strated to have quite reasonable error, RMSE a few per-
cent or less or MAXE 5% or less. Error may be higher for a
given application though, so it could be beneficial to evaluate
several different algorithms and methods before selecting
one.

The performance of the different pack SOC estimation
methods are also compared qualitatively and quantitatively
in Table 2. The individual cell and reference cell meth-
ods require the most individual SOC estimation algorithms,
and therefore have higher computational load for the BMS.
The lumped cell method only has a single SOC estimation
algorithm, and the mean cell and difference method utilizes
simplified difference models to estimate individual cell SOC,
resulting in both methods having the lowest computational
load for the BMS. The engineering effort to develop the algo-
rithm is a qualitative value, indicating how much time and
resources are needed to implement the algorithm. The indi-
vidual and lumped cell methods require the least engineering
effort to develop, since both only require standard SOC
estimation algorithms while the reference and mean cell and
difference methods require the development of specialized
estimation methods for cells other than the reference or mean
cell.

IV. SOC BALANCING METHODS FOR LITHIUM-ION
BATTERY PACKS
Because the cells in a battery pack have non-uniform proper-
ties, as was discussed in Section II, it is necessary to have a
method of balancing the pack to prevent cell SOC differences

FIGURE 13. A comparison between dissipative and non-dissipative cell
balancing methods.

from growing over time. If the difference in SOC between
cells becomes too large, the usable capacity will be substan-
tially reduced due to the fullest cell limiting the maximum
charge and the emptiest cell limiting the minimum charge,
as illustrated in Fig. 12. Cell balancing is typically a very
slow process, with resistive balancing circuits dissipating a
few hundred milliwatts of power from the most charged cells.
Non-dissipative cell balancing circuits, which transfer energy
from more charged to less charged or lower capacity cells,
can also be used to extend the usable capacity of a bat-
tery pack. Non-dissipative balancing circuits are considerably
more complex and expensive though and must be fairly high
power to offer a meaningful improvement in battery pack
performance. In cases of large SOC imbalance, as shown
in Fig. 13, non-dissipative balancing will prevent the need
to simply convert excess charge to waste heat. Lithium-ion
battery cells have such minimal self-discharge though that
they typically require very little balancing over time, mini-
mizing any efficiency benefits from non-dissipative methods.
Despite this there is still substantial interest in balancing
methods for lithium-ion battery packs, including the dissipa-
tive and non-dissipativemethods highlighted in the remainder
of this section.

A. DISSIPATIVE BALANCING METHODS
Most EV manufacturers use dissipative resistive balancing
circuits in their battery packs due to their reliability and
simplicity. Switched shunt resistors [56] are most commonly
used, but it is also possible to use fixed resistors which are
always connected to the cells [57]. The fixed resistors cause
the pack to naturally balance over time, since the highest
voltage cells will have higher resistor current, but there are
always losses even when the pack is fully balanced making
it a rather undesirable method [58]. In the switched shunt
resistor method [56], each cell is associated with a balancing
resistor and a switch to connect it to the cell, typically a
MOSFET. Most battery cell voltage measurement chips are
able to directly control each balancing switch, and some even
have the switches integrated into the chip and just require an
external resistor. The BMS balances the pack by enabling the
discharge resistors on the most charged cells.

B. NON-DISSIPATIVE BALANCING METHODS
Non-dissipative balancing utilizes capacitors [59], [60],
inductors [61], [62], transformers [63]–[65], and various
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common power electronic converter topologies [66]–[70] to
transfer the energy among the cells within the pack. Energy is
transferred from more charged to less charged cells, prevent-
ing the waste of energy present for dissipative methods. Non-
dissipative balancing can achieve relatively high balancing
speed [71] and high efficiency [72], which are the main
advantages of this method. However, this method involves
many components that add more cost and complexity to the
balancing circuits [73].

1) CAPACITOR-BASED BALANCING
In this method, capacitors are utilized to transfer the energy
between adjacent cells or from the pack to the cell, thus
achieving cell balancing. All implementations are based off
the same concept, a capacitor is charged while connected in
parallel with a higher voltage cell and discharged while con-
nected in parallel with a lower voltage cell. For double-tiered
switched capacitor balancing, there is one capacitor per cell
and two switches, and the capacitors are switched between
adjacent cells at a 50% duty cycle to achieve equal voltage
among cells [59]. For single switched capacitor balancing,
a single capacitor is used with a group of cells along with
five switches plus one switch per cell, allowing the capacitor
to be connected in parallel with any of the cells [60]. The
switches are controlled intelligently to move energy between
cells until balancing is achieved. The double-tiered capacitor
method has a faster balancing time and can more easily be
modularized while the single switched capacitor method has
fewer components [74].

2) INDUCTOR-BASED BALANCING
For inductor-based methods, one or more inductors are
utilized for cell balancing [61], [62]. The single-inductor
balancing system utilizes one inductor to transfer the energy
between the pack to the weakest cells [61]. The control
system selects the weakest cell with the lowest SOC level
to transfer the energy through activating the corresponding
switches. The multi inductor method utilizes n − 1 inductor
for balancing n cells, [62]. The controller senses the voltage
difference of the two neighboring cells, then a control signal
is applied to the switches with the condition that the higher
cell must be switched on first to transfer the energy to the
weakest cell. The inductor-based cell balancingmethods have
a relatively higher balancing speed and efficiency. However,
they have higher switch current stress as compared to the
remaining methods [74].

3) TRANSFORMER-BASED BALANCING
Transformers can be utilized to perform isolated transfer of
power between cells and the pack and individual cells. The
variations of this approach include the use of multiple trans-
formers [63], transformers with multiple secondary wind-
ings [64], and a single transformer switched among cells [65].
The multiple transformers method [63] utilizes several trans-
formers where all the primary windings are connected in
parallel, and each of the secondary windings are connected to

a separate cell via a diode. The primary winding is connected
across the pack voltage via a switch, and power is transferred
from the pack to the cells by switching at 50% duty cycle.
For the multi-secondary windings transformer method [64],
the multiple transformers used for the previous method are
replaced by a single multi secondary winding transformer
and the balancing approach is the same. However, in this
method, the number of cells is limited by the feasible number
of secondary windings [74], [75]. For the single transformer
method the secondary winding is switched between cells to
charge the weakest cells until balancing is achieved [65].
The switched transformer method is more compact, but to
ensure good equalization between cells it requires a more
complex control process than the other transformer based
methods [75].

4) COMMON CONVERTER TOPOLOGY-BASED BALANCING
Common dc-dc converter topologies can also be used for bal-
ancing, such as bidirectional buck-boost [66], bidirectional
Cuk [67], bidirectional flyback [68], full-bridge [69], and
quasi-resonant [70] converters. Typically, one converter per
cell is utilized, and the converters transfer power between
adjacent cells. Rather than simply allowing the voltage of
cells to be matched like many of the prior methods discussed,
the converters can control the flow of power in any way the
BMS commands allowingmore flexibility for managing SOC
of the cells.

The bidirectional buck-boost converter is utilized in [66] to
transfer energy between two adjacent battery cells. Another
bidirectional converter, the Cûk converter, has the same
principle of operation but utilizes capacitors as the energy
transfer elements instead of inductors [67]. The bidirectional
flyback converter, which is derived from the buck-boost con-
verter [68], utilizes a transformer and fewer components to
achieve cell balancing. The bidirectional converters have the
advantage of transferring energy into or out of cells. The
multi-module full-bridge converter is a fully controlled con-
verter that transfers the energy from the cell to the adjacent
cell or from the pack to the weakest cell [69]. This method
has the advantage of it can be scaled for higher power appli-
cations. Zero-current quasi-resonant or zero-voltage quasi-
resonant converters can also be used to achieve cell to cell
balancing [70]. The resonant circuits are tuned to achieve zero
switching current and voltage which reduces the switching
loss. Overall, the converter-based cell balancing methods
achieve high efficiency and good balancing speed; however,
they are more expensive and require a more complex control
system [74], [75].

C. COMPARISON OF BALANCING METHODS
Table 3 presents a comparison between the different cell
balancing methods, including the number of active elements
and advantages and disadvantages of each method [71]–[75].
Overall, dissipative balancing is a reliable, lower cost, and
simpler cell balancing method. However, this approach is
inefficient as the energy is released in resistors in the form
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TABLE 3. A comparison of cell balancing methods in lithium-ion battery packs where n is the number of cells in the pack.

of heat without being transferred to other cells. The non-
dissipative cell balancing methods can be fast and energy
efficient as compared to the dissipative balancing methods.
The comparison between the different non-dissipative bal-
ancing methods shows that there is no single method that is
clearly the best, since each method has a different combina-
tion of cost, balancing speed, control complexity, and overall
simplicity.

Common converter-based cell balancing methods may be
very promising in the future if the power conversion and
control circuits can be optimized to reduce size and cost
sufficiently.

V. DISCUSSION AND RECOMMENDATIONS
A robust SOC estimation algorithm and BMS must handle
the inconsistencies between cells which are inevitably present
in a battery pack. Cells produced in the same batch may
have capacity and resistance variation around 1%, and the
method of connecting bus bars to cells may add a further
1% resistance variation. These inconsistencies may also be
exacerbated due to thermal variations within the pack and
aging processes, resulting in cell capacity and resistance vary-
ing by more than 10% at end of life. Cell sorting, advanced
welding techniques, and improved bus bar and thermal design

methods may be applied to reduce variation between cells
throughout the life of the pack, reducing the challenge for
pack SOC estimation algorithms and the need for higher
power cell balancing.

SOC estimation algorithms, includingmeasurement based,
filters, observers, and machine learning methods, form the
basis for pack SOC estimation methods. The most computa-
tionally efficient pack SOC estimationmethods estimate SOC
at the fastest rate for a single reference or mean cell, and then
estimate SOC or the SOC difference for the other cells with
a simpler, slower updating algorithm. These methods require
more engineering effort to develop than methods which sim-
ply apply a full performance SOC estimation algorithm to
each cell. Importantly any pack SOC estimation method must
handle the differing characteristics of each cell throughout the
life of the pack. Mean cell and difference methods, which fit
a cell difference model to the difference in voltage between
a cell and the mean cell, show particular advantage in iden-
tifying small differences in SOC between cells and therefore
have significant promise for improving the robustness of pack
SOC estimation.

Cell balancing is necessary due to the differences in
cell capacity which are present at the time of manu-
facture and throughout the life of the pack. Pack SOC
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estimation algorithms which estimate the SOC of each cell
are needed so the BMS can command the balancing cir-
cuitry to equalize charge throughout the pack. Resistive
balancing remains the most common method of balancing
SOC, but there are also many different non-dissipative
methods for transferring energy between greater and lesser
charged cells. The non-dissipative methods may utilize
capacitors, inductors, or transformer-based power convert-
ers, and could potentially transfer enough energy to a weak
cell to extend the range of an electrified vehicle. More
research is needed to quantify how non-dissipative methods
could benefit battery pack performance over the life of the
pack.

There aremany opportunities to further improve the robust-
ness of pack SOC estimation algorithms. Machine learning,
for example, has been shown to offer significant potential
for cell SOC estimation, but has not yet been optimized
specifically for pack SOC estimation. Also while studies have
focused on developing pack SOC estimation methods which
are more computationally efficient, these methods have not
been deployed to a BMS and compared in a comprehensive
manner, so it remains uncertain how much benefit refer-
ence cell or mean cell and difference models would have.
Furthermore, it is difficult to fairly compare different pack
SOC estimation algorithms since each study utilizes differ-
ent datasets. A standardized dataset and evaluation method,
which includes a realistic spread in cell parameters and has
data to end of life, would help researchers compare algo-
rithms more systematically.

VI. CONCLUSION
There is significant variation in the capacity and resistance of
cells in a battery pack due to cell manufacturing tolerances,
welding or interconnect methods, and bus bar design in the
battery pack. As the battery pack ages, differences between
cells grow due to non-uniformities in the pack, including
non-uniform temperature distribution. Battery pack SOC esti-
mation algorithms must consider these differences between
cells and report a pack SOC value which considers the most
and least charged cells. A robust algorithm will estimate the
SOC of each cell, typically by either estimating the SOC of
each cell individually or through methods like mean cell and
difference algorithms which estimate the SOC of one cell
and the difference in SOC between the remaining cells. Pack
SOC estimation algorithms should not only estimate SOC
accurately but must also not be too computationally inten-
sive or difficult to design and implement. The differences
between cells also necessitates that some method of bal-
ancing be implemented. Resistive balancing, where energy
of more charged cells is dissipated in a resistor, remains
the most common method. Many different power electron-
ics converter-based methods, which transfer energy between
cells, have been investigated by researchers as well and will
likely see increased adoption if they can be shown to increase
pack life without adding significant size or expense to
the BMS.
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