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ABSTRACT The electricity demand has grown continuously in recent years, raising the necessity to expand
generation sources, distribution networks, and equipment efficiency. In addition, it is necessary to attend
sustainable development in a conciliated manner. Applications involving the intelligent management of the
distributed networks have increased to achieve a balance between growth and sustainability. In this context,
this article presents the development of an Intelligent Electric Power Management System (IEPMS) for
the economic maximisation of a photovoltaic system applied to a prosumer residential unit without storage
in Brazil. Using historical meteorological data and a heuristic to simulate energy use habits, the IEPMS
forecasts both generation and demand in 24 hours. From the projections, an optimisation problem was built
and solved using the genetic algorithm technique to find the most economical moments for driving loads.
This model aims to reach the lowest daily cost of electricity, considering the return (sale) of unused energy
to the power distribution company. The validation of the IEPMS considered four usage patterns, integrating
26 scenarios, those composed by the (i) flexibility; (ii) type of tariff; and (iii) hit rates provided by the climate
forecasting method proposed for the system. As a result, the IEPMS savings considering the white tariff were
34.72% for one year, assuming full-time external work usage. Additionally, it was possible to identify in all
scenarios that the proposed method’s performance was not less than 97%, measured through the relative
error among distinct hit rates of the evaluated climatic forecast.

INDEX TERMS Smart grid, electric power management, intelligent systems, residential prosumer unit,
energy management systems.

NOMENCLATURE
PARAMETERS
A area of the PV arrangement m2

CI clearness index
CPtemp temperature coefficient for maximum

potency %/◦C
DBT dry bulb temperature ◦C
D+ 1 next day
$Ecomk cost of energy sold in period k R$
Ef inv the average efficiency of a photovoltaic

inverter %
Ef mod the average efficiency of a photovoltaic

module %
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Ehour energy generated per hour kWh
f final
Flex flexibility of temporal allocation of a load
GHR global horizontal radiation kWh/m2

i initial
k discrete sample for the time window
Losses system losses %
OPT operation time min
Pcomk power traded in period k kW
Pgerk potency generated in period k kW
Pi,k instantaneous potency of load i in period k kW
Pinstk total instantaneous potency in period k kW
POF probability of occurrence function
Ppeak photovoltaic power installed under the standard

test conditions W
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PPV installed PV power corrected according to ambi-
ent temperature W

RMSE root mean square error
1t minimum operation time min
∂ load duration, multiple of 1t
γ multiple of 1t over one day
$Day daily energy cost R$
$TE cost of the instant energy fare R$

ABBREVIATIONS
ANEEL National energy agency of Brazil
ANFIS Adaptive neuro-fuzzy inference system
BSS Battery storage system
COPEL Companhia paranaense de energia COPEL-

DIS COPEL Distribuição S.A.
DERs Distributed energy resources
DG Distributed Generation
DSM Demand-side management
ELM Extreme learning machine
EMS Energy management system
IEG Intelligent electric grid
IEPMS Electric power management system
LabEEE Building energy efficiency laboratory
MINLP Mixed-integer nonlinear programming
MLP-NN Multilayer perceptron neural network
MPC Model predictive control
PAPAR Peak-to-average power ration
PMG Prosumer micro-grids
PSO Particle swarm optimisation
PU Prosumer unit
PV Photovoltaic
UFSC Federal University of Santa Catarina
TE Energy tariffs
TUSD Tariffs for the use of the distribution system

I. INTRODUCTION
The demand for electrical energy has increased during the
last years, bringing on the need to find new electrical energy
generation sources or improve the existing electrical energy
sources with smart grids and efficient equipment. Addition-
ally, this growth must respect sustainable development con-
cepts since traditional electrical energy generation sources
use finite resources. Recent studies present that intelligent
distributed smart grids are a potential solution to increase the
electrical energy system’s trustworthiness and quality while
decreasing the risk of blackouts or problems due to electricity
shortages [1]. To emphasise this idea, the research presented
in [2] stated that artificial intelligence can be used to automate
human actions and/or decisions to optimise power consump-
tion and production.

The recent evolution of electrical energy generation tech-
nologies allows the development and integration of solutions
that bring benefits like energy-saving and sustainable use.
According to [3], the present form’s electricity grid is unre-
liable, provides considerable transmission losses, has poor

power quality, and discourages integrating distributed energy
sources. On the other hand, public incentives, prices more
attractive, and rapid installation must speed up the applica-
tion and use of photovoltaic systems around the world [4].
According to ANEEL – National energy agency of Brazil [5],
there are currently around 170,000 distributed photovoltaic
generators in Brazil. Figure 1 presents the projection from
ANEEL, showing the total installed potency in Distributed
Generation (DG) for the following years in Brazil [6]. This
scenery presents a new appeal, identified by a neologism: the
energy prosumer (electricity consumer and producer).

FIGURE 1. Projections for distributed generation in Brazil until 2024.
Adapted from [7].

Unlike traditional grids, where electricity generally flows
from generators to consumers, in a distributed network of
prosumers, the energy flows in a bidirectional way and can
vary in magnitude and direction [7]. Prosumers’ distributed
network will reduce the overload and the necessity to extend
traditional and centralised electric systems. Nevertheless,
there is still a demand to minimise consumption and losses.

Solar radiation is an intermittent energy source, and
weather forecasting methods capable of monitoring vari-
ables related to solar energy conversion could be considered
for energy generation of photovoltaic systems to allocate
the loads properly. Machine learning techniques as Extreme
Learning Machine (ELM) [8] and Random Forest [9] are
being assumed to deal with historical weather data focusing
on generating photovoltaic generation profiles, those known
as Clearness Index (CI) [10], to minimise uncertainties of
photovoltaic generation in an intelligent way.

A recent survey about demand management focusing on
classification and review of existing demand-side manage-
ment (DSM) systems was presented in [11]. The study also
reported the most explored performance metrics related to
energy management in the smart grid, showing that cen-
tralised and decentralised generation, consumer privacy, con-
sumer preference, priority and satisfaction, peak-to-average
power ratio (PAPR), cost minimisation, and the use of dis-
tributed energy resources (DERs) are the relevant topics
in this area. To conclude, directions for future research
are presented, and load profile modelling and consumers’
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participation in the scheduling algorithms, topics treated in
the present research, are emphasised.

In the research in [12], a method to determine the opti-
mal planning associated with a Photovoltaic (PV) unit and
energy storage system is presented. The optimal operation is
determined based on three values of the amount of charge
at midnight on a sunny day, cloudy day, and rainy day to
minimise the household’s annual cost. Experimental data
collected from 2 years were used during the validation of the
proposed method.

A methodology to formulate a hybrid renewable energy
system is addressed in [13], where the modelling procedures
of components as PV panels, wind turbines, and lead-acid
batteries are presented. Additional to renewable sources,
the method also considered a diesel generator. Weather fore-
casting was assumed to define the power management strate-
gies from both the demand-side and generation-side to meet
the electricity demand while minimising the overall operating
and environmental costs. Finally, the receding horizon opti-
misation strategy was assumed to solve the problem consid-
ering weather data to deal with PV generation uncertainties.

Recent research involving microgrid generation and load
scheduling to increase the system’s efficiency is presented
chronologically in this work sequence. In [14], consumers’
preferences, priorities, ease of use, grid stability, deviation
minimisation, demand curve flattening, and implantation cost
were assumed in a single management system. Based on
a heuristic optimisation, authors acquired information from
several sources (utility, weather, user preference, user budget
limit, etc.) to augment energy use and budget by avoiding
energy usage during periods of higher prices.

Considering the challenges involving uncertainties caused
by intermittent renewable energy and random loads while
optimizing multiple objectives involving economic and envi-
ronmental aspects associate with microgrid scheduling of
energy supply and demand, the work presented in [15] pre-
sented comparative experiments focusing on industrial cus-
tomers. The study presented the formulation of a minimax
multi-objective optimisation model to seek the minimum
operating costs and emissions under the worst-case realisa-
tion of uncertainties. Additionally, a model transformation
was performed to deal with strong coupling and nonlinearity
in the proposed formulation. Finally, the Multi-Objective
Cross-Entropy algorithm was adopted to solve the problem,
showing that the model can effectively attenuate the distur-
bances of uncertainties and achieve optimal economic and
environmental benefits.

One approach to enhance electrical energy use is through
real-time consumption tracking coupled with the automatic
triggering of schedulable loads [16]. The previously cited
study presented the performance of a modified version
of the Differential Evolution (DE) method, including a
stochastic selection on a large-scale energy resource man-
agement problem with uncertainty associated with both load
scheduling and weather conditions. The microgrid comprises
a 25-bus residential area, including DERs, electric vehicles,

and demand response programs. The problem formulation
was used in the competition of the Congress on Evolutionary
Computation in 2018.

A parallel optimisation approach assuming a problem for-
mulation based on a real case was presented in [17]. The
research assumed a genetic algorithm to improve the demand
response to decrease the grid operation costs. In the sequence,
the demand response was adjusted, assuming linear program-
ming to decrease direct prosumer costs. The impact on the
grid was evaluated, showing better grid management of the
proposed strategy.

Based on the premise that peak power consumption is one
of the most critical issues for power system operation and
sustainability, in [18], a unified DSM model was presented
involving multiple objectives. The minimisation of the elec-
tricity cost, the curtail peak hour’s demand, PAPAR, and dis-
tribution losses were considered in the problem formulation
where an integer linear programming solver was assumed.
The results showed that the model could take care of a consid-
erable number of DSM features, emphasizing the importance
of heterogeneous load, load shedding, human interaction,
peak clipping, valley filling, load sifting, appliances priori-
ties, and consumer preferences.

In the same line of the prediction presented in this research,
in [19], a day-ahead optimisation scheduling was presented.
Assuming the Particle Swarm Optimization (PSO) method,
the proposed optimisation scheduling algorithm showed effi-
ciency in reducing the power supply pressure during peak
load periods and effectively improving the microgrid’s over-
all benefit.Moreover, the study focused on an islandedmicro-
grid, where the proposed model was oriented to frequency
regulation.

Assuming a generalized approach focusing on developing
a joint energy management and energy trading framework,
in [20], the minimisation of the power system’s electricity
cost is proposed considering various factors that influence
the power system stability and sustainability. In this case,
consumer load profile, load shedding, heterogenous load,
peak clipping, valley filling, human interaction, appliances
priority, and consumer preferences to maximize the use
of distributed energy resources. Finally, integer linear pro-
gramming was assumed to solve the proposed optimisation
problem.

A similar approach to the one presented in this study, with-
out physical implementation, was addressed in [21]. By per-
forming day-ahead self-scheduling and weather and load
forecasting, the study proposed an ensemble machine learn-
ing algorithm considering the adaptive neuro-fuzzy inference
system (ANFIS) and the multilayer perceptron neural net-
work (MLP-NN) for the prediction of weather variables. The
proposed energy management system (EMS) considered the
demand response based on forecasting data and the battery
storage system’s degradation cost (BSS) to provide an appro-
priate microgrid system’s operation cost.

In prosumer micro-grids (PMGs), renewable energy
sources’ uncertainties are considerable challenges for the
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optimal day-ahead prediction. A probabilistic method for
optimal scheduling and operation of PMGs was pre-
sented in [22] to solve this problem. Monte Carlo Sim-
ulations (MCS) was assumed for scenarios simplification.
Moreover, k-means, k-medoids, and an evolutionary algo-
rithmwere compared to cluster the scenarios. Results showed
that the k-medoids method performed better under various
conditions.

Assuming a model predictive control (MPC) scheme for
photovoltaic units’ efficient energy management, in [23],
the MPC controller was said to minimise aggregate pro-
sumers’ economic cost into a prediction horizon considering
the generation forecasting. The method was compared with
a heuristic strategy without considering prediction, showing
that the MPC control provided cost savings. Finally, when
a storage system was considered, the study reported that
knowledge about future demand ensures cost saving for the
proposed simplified scenarios.

Therefore, this article presents the development of an Intel-
ligent Electric Power Management System (IEPMS) for eco-
nomic maximisation in an energy prosumer residential unit
in Brazil. Using historical meteorological data and heuristic
on residents’ energy use habits, IEPMS forecasts generation,
and demand for the next 24-hour period (D + 1). From the
projections to produce photovoltaic energy (without storage)
and the residential energy demand in (D+1), an optimisation
model is assembled and solved using genetic algorithm tech-
niques, which finds themost economical moments for driving
loads.

This research contributes to the energy sector creating a
solution to improve a prosumer unit’s efficiency, considering
simultaneously information from the electrical energy gener-
ation and lifestyle consumer to define the most suitable home
activities scheduling. Additionally, according to the Ministry
of Mines and Energy report [24], the number of prosumers
increases for the following years. The technological solutions
help consumer decision-making extract the solar system’s
maximum benefits since PV systems’ efficiency is not sat-
isfactory yet [25]. The solar energy prosumer seeks to extract
the best efficiency of their electric systems, energetically and
economically, without batteries.

The Intelligent Electric Power Management System
(IEPMS) proposed in this work presents an opportunity to
improve energy prosumer units’ energy efficiency in residen-
tial, commercial, or industrial applications. This work brings
experimental results of a residential prosumer unit to validate
the proposed method. Additionally, a weather database is
assumed to allocate the loads when the forecasting method’s
hit rate is 100%. For different hit rates of 95%, 90%, and
85%, a pseudo-forecasting method assumes daily historical
weather of the next days to allocate the prosumer unit loads.
This strategy is assumed to deal with the uncertainties asso-
ciated with climate conditions.

Table 1 shows how this research fits when compared
to recent research in the intelligent management of energy
sources. As it can be verified, research works that were

TABLE 1. Schedulable loads and their operating window.

previously reviewed in this section were classified consider-
ing those without energy storage systems, that assume any
strategy for weather variables forecasting; the studies that
propose strategies to deal with climatic variables uncertain-
ties, and finally, the ones that included the physical imple-
mentation of the energy management system or validation
with experimental data. In this way, the scientific contribution
of this work can be stated as:
• The proposed method presents a new simplified strategy
for weather variables forecasting, those associated with
PV generation.

• The weather prediction includes a hit-rate analysis
to deal with uncertainties associated with the energy
source.

• A physical implementation of the energy management
system allowed the presentation of an actual energy
usage pattern.

This article is organised as follows. Section II addresses the
study and concepts related to energy prosumers and energy
management systems. Section III presents the architecture
of the proposed IEPMS. Section IV shows the practical
application of the system and the parameters adopted for the
optimisation process. In Section V, the results are presented
and discussed. Finally, Section VI contains the conclusions
derived from this research.

II. MATERIAL AND METHODS
Among the main topics discussed in this work, we can high-
light the energy prosumer and the relation with the residential
EMS.

A. THE PROSUMER CONCEPT
The integration of renewable energy sources into con-
ventional energy grids challenges operators and planners.
Currently, renewable energy systems have an innovative
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character, particularly the solar photovoltaic system, a clean
energy resource [26].

Unlike traditional energy systems like hydroelectric and
thermoelectric plants, where energy can be dispatched
according to demand, renewable sources (solar and wind
energy) are hard to store and dispatch. Additionally, renew-
able energy source generation has a significant variation in
the function of the climate conditions [27]. While there are
no reasonable and efficacious storage systems available in
Brazil, the best energetic-financial solution is to consume
the energy at the same instant it is produced, in a way
named instantaneous consumption. The electric grid needs
large quantities of conventional backup energy and ample
energy storage [28] to allow a more significant proportion
of renewable energy accommodation. Figure 2 illustrates a
prosumer unit architecture.

FIGURE 2. Power in a prosumer unit, without storage, controlled by the
IEPMS (adapted from [31]).

The Intelligent Electric Grid (IEG) operates under a spe-
cific set of requirements, those presented in [29] and [30],
namely: (i) Autonomous operation without energy depen-
dence on external electric grids; (ii) Operation with equi-
table generation-consumption balance; (iii) Possibility of
energy storage; (iv) Predominant use of renewable energy
sources; (v) Ability to service non-traditional loads; (vi) New
type of grid protection allowing a bidirectional energy flow;
(vii) Active demand management.

B. ENERGY MANAGEMENT SYSTEM
Energy management systems (EMS) are an essential tool for
automating demand management. Currently, financial incen-
tives are the main factor that motivates users to adopt load
control systems [32]. Energy management is a complex task,
as the dynamics of energy systems are not linear, compensa-
tion is naturally decentralised, and the environment and user
demands vary over time and seasonally [33]. Domestic loads,
such as household appliances, can be divided according to
the pattern of use into: (i) Devices operated according to the

user’s lifestyle or behaviour; (ii) Devices whose use is influ-
enced by environmental variables, such as air temperature and
humidity; and (iii) Devices operated depending on the state of
the battery storing the energy produced, whether it exists [29].

A residential EMS plays a central role in meeting auto-
mated demand within a home, as most residential customers
do not have the time or are proactive enough to execute
recommended best practices manually. Such a system must
manage loads with the least impact on the resident’s lifestyle
to be effective [34]. An example of applying an EMS follows:
when residents sleep at night, the washing machine can start
to work because the price of energy is low [35].

Different research address energy management through
different methods and technologies. In [32], for example,
they applied their algorithm to perform load measurement
and forecast, grouping their profiles, measuring duration, and
the probability of occurrence, thus generating the forecast
for the next day. In [36], the authors take an approach based
on a genetic algorithm to manage domestic loads’ consump-
tion. The consumption setpoint is determined according to
the condition of distributed generation, resulting in a gen-
eration and energy tariff forecast. The ideal management
aims to minimise load contingency considering consumer’s
preferences; that is, if consumption is less than the setpoint’s
limit, the system returns to the initial state; if consumption
exceeds this setpoint, an optimisation process is necessary
to determine which loads are to be withdrawn or reduced.
In [33], the authors proposed an energy management solution
that learns and adapts to residential energy use patterns. The
adaptive neuro-fuzzy learning algorithm developed in this
study makes the demand responses based on the follow-
ing factors: peak load forecast, differential electricity prices,
energy usage and budget patterns, social and environmental
factors, and available solar energy.

III. INTELLIGENT ELECTRIC POWER MANAGEMENT
SYSTEM (IEPMS) CONCEPT
The optimisation model aims to maximise a prosumer
unit’s energy savings according to its residents’ consump-
tion habits, influenced by local climatic conditions, for
different pricing types. Figure 3 presents the intelligent
system architecture for electric power management, consid-
ering information about energy generation and consumption
simultaneously.

Figure 3 is structured in 3 main stages:

• Optimisation problem variables (detail (A) of
Figure 3) – This class collects the variables that consti-
tute the optimisation problem. The information includes
the electrical loads of the consumer unit and the electri-
cal equipment of the generating unit’s PV system. These
elements are strongly influenced by the heuristics and
lifestyle of the prosumer unit residents, and the daily
changes influence heuristics in climatic variables.

• Energy demand (detail (B) of Figure 3) – This class
structures the information about consumer demand.
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FIGURE 3. Intelligent Electric Power Management System (IEPMS)
architecture.

The application of the composition methods for the
next day’s energy demand (D + 1) defines which loads
will be set as on and will thus enter the load temporal
allocation system. The daily power generation is also
calculated. The loads are randomly allocated in time,
respecting their restrictions according to the users’ flex-
ibility, heuristics, and habits. However, at this point,
without any economic objective.

• Optimisation Process (detail (C) of Figure 3) – this
class is responsible for carrying out the optimisation
technique based on a genetic algorithm. The genetic
algorithm receives the information from the previous
groups and searches for the best Initial Operation Times
(OPTi) for each load, always aiming at the energy bal-
ance’s best economic result. The different energy tariffs
are considered individually. After the optimisation pro-
cess, the costs for one year are evaluated.

A. VARIABLES OF THE OPTIMISATION PROBLEM
The optimisation problem variables are responsible for gath-
ering the necessary information to input in the optimisation
model. These variables were divided into three main sub-
sets: (i) Prosumer Unit Data, (ii) Climate Conditions Data,
and (iii) Pseudo-Climate Forecast Data. These subsets are
detailed below.

1) PROSUMER UNIT DATA
The Prosumer Unit (PU) used as the experimental laboratory
for this research is located in Porto União, Brazil and two
people inhabit it. Consumption habits were observed, and a
heuristic model was created to define the probability of filling
loads. A stochastic model based on the heuristics model is
the one that predicts which loads will be turned on the next
day. The genetic algorithm is responsible to improve the load
over time, always seeking to maximise the economy. The PU
has the power generation unit (PV system) and the power
consumption unit (consumer loads).

2) WEATHER DATA
This project used climate data conditions from the city of
Curitiba, which is very similar to the city of Porto União.
The data was provided by the Building energy efficiency
laboratory (LabEEE) of the Federal University of Santa Cata-
rina (UFSC) [37]. LabEEE has data available from 1969 to
2005, and it contains hourly averages for a set of climatic
variables for each day of the year. The set of climatic variables
available on this public dataset are dry bulb temperature
(DBT ) (◦C), relative humidity (%), wind speed (m/s), and
global horizontal radiation (GHR) (kWh/m2). The option for
this dataset of variables solves the impossibility of collecting
local data in the necessary amount during the period foreseen
for this research.

3) PSEUDO-CLIMATE FORECAST DATA
The model for forecasting climate variables for the next
period (D + 1) is based on historical data. The parameter
forecast hit percentage defines the forecast hit rate. If a hit
rate of 100% is obtained for the solar radiation forecasting,
the algorithm assumes historical data for the generation pro-
file. For any other hit rate value, the model compares histor-
ical data of the day to historical data of the following days,
selecting correct or wrong forecasting based on a comparative
analysis of the solar radiation.

If a forecast is correct, it will be nearby the actual behaviour
to be observed the next day. For a given data, referenced by
the number of the day of the year (0 - 364), the algorithm
initially establishes if the forecast will be correct or not, in the
form of a Boolean variable.

The value of Root Mean Square Error (RMSE) calculated
by the difference between two curves is used as the forecast
quality metric, which one of these curves is the current day
and the other taken from 45 days before and 45 days after the
current date. In this case, for a correct forecast, the similarity
between the forecast curve and the actual curve will be high,
and the RMSE low. Note that the target day curve is known
in advance because it uses the combined average historical
data for several years. RMSE value ranges are used to define
correct or wrong forecasts, to establish a tolerance for the sim-
ilarity that characterises a correct forecast. Figure 4 presents
an example of a correct forecast.
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FIGURE 4. Example of what was considered a correct solar radiation
forecast.

The limiting values of similarity adopted for the difference
between the RMSE of the analysed curves that define the
predictions as correct, for this research, are: (i) for temper-
ature, less than or equal to 4◦C; (ii) for humidity, less than or
equal to 14%; (iii) for wind speed, less than or equal to 3 m/s;
(iv) for solar radiation, less than or equal to 120 Wh/m2.
In this way, all values above those mentioned characterise
wrong forecasts.

The algorithm selects, using one of the ranges according to
the Boolean variable, all the curves with the calculated RMSE
value (on the difference between the curves for each date and
the next day) within the selected range. The average of all
selected curves will be used as a forecast.

Ranges that define the desired level of similarity in the
selection are defined by the user and adjusted for each vari-
able. and directly influence the number of curves selected to
form the average curve to be used as a forecast. One example
of this strategy is when the hit rate is 95%, which means that
at every 100 predictions, 5 will be inaccurate, reflecting in
the forecasting. For comparison purposes, the methods will
be evaluated for distinct hit rates.

This strategy for climate conditions forecasting introduces
a stochastic component into the model due to the variability
and uncertainties of the weather and how it influences the
solar energy generation prediction and energy demand of
the dwelling. Figure 5 presents the pseudo climate forecast
flowchart.

B. ENERGY DEMAND
Routine data (Lifestyle) from the residential consumer unit
inhabitants were collected concerning the habits of using
electrical equipment to gather references to build the energy
demand model. A load of the residential unit was identified
to verify which of those can be managed. The residence
is divided into eleven environments, totalling 68 electrical
devices and total average power of 29.393 kW. Each load’s
individual power adopted as a parameter for the algorithm
is the average value between the minimum and maximum
operating power, respecting the inherent potency variations

FIGURE 5. Pseudo climate forecast flowchart.

FIGURE 6. Operation window and load duration.

of loads having this characteristic, such as washing machine,
flat iron, electric shower, and others.

1) ENERGY DEMAND FORECAST
The demand for the following period (D + 1) is established
in the form of a set of electrical loads. Each one is defined
with the following parameters: (i) power P (W), (ii) electrical
load duration ∂ , (iii) start and end of a discretised period k
(t1 and t2) when the operation can take place. The param-
eter γ in the model can take values between 0 and 287,
as multiples of the 5-minute discretisation period, in 24 hours.
Figure 6 shows a generic load within its operating period,
where OPT i represents the moment that the electrical load
is switched on, and OPT f is the moment that the electrical
load is switched off.
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The operation window is defined according to the resi-
dents’ lifestyle and some parameters of the electrical loads
that need the user’s presence to be switched on, such as the
hairdryer or the electric shower. Electrical loads that do not
depend on the residents’ presence to be switched on, such as
the washing machine or swimming pool filter engine, have a
larger operating window.

Equation (1) presents how the durations of loads operating
are calculated. Equation (2) demonstrates how the load oper-
ating window is calculated. Flexibility equation is described
in (3). Finally, equation (4) defines the duration of a load’s
operation and must always be lesser than or equal to its
operating window.

∂ = OPT f − OPT i (1)

γ = t2 − t1 (2)

Flex =
γ

∂
(3)

∂ ≤ γ (4)

In equations (1)-(4), t1 represents the starting time of the
load’s operation window (k), t2 is the end time, ∂ is the dura-
tion of the load’s operation (k), γ is the duration of the load’s
operation window (k), k represents periods of 5 minutes each,
and Flex is the flexibility of temporal allocation of a load.

When the flexibility is greater than 1, the user is more
proactive to the algorithm’s economic measures. A value
close to 1 means that the user is more resistant to changes
in their domestic routines, and consequently, it has less flex-
ibility to allocate electrical loads in time.

For each electrical load, there is a stochastic model of
occurrence according to its probability of occurrence function
(POF), which can have a cumulative characteristic and is
daily evaluated. The incidence (or not) of a load duringD+1
is determined by evaluating its POF , which condenses all the
influences contained in its heuristic. The heuristics capture
all restrictions, preferences, dependencies, and recurrence
defined by the residents. The load incidence, characterised
by its parameters as described above, happens when there is
an evaluation of the POF , along (D+1), with a TRUE result.
The POF is constantly recalculated for the next day

because the heuristic can include dependencies. The shape
of the POFs in (D + 1) results from the application of the
heuristic, and it considers factors such as time since the
last load occurred, climate conditions forecasts (temperature,
humidity, wind speed, and solar radiation), dependent elec-
trical loads, time since the occurrence of other loads, among
other variables considered case by case, according to the
characteristics of each load. For example, the heuristic may
contain rules so that, preferably, clothes are not washed on
rainy days but dry and windy days. On the other hand, the
time elapsed since the last wash, which is associated with a
progressive accumulation of dirty clothes, implies a greater
probability that the function results in TRUE. However, the
specific moment when an electrical load is activated will
depend on the result of the optimisation process.

The resident’s proactivity towards good economic prac-
tices is absorbed in the model by their acquiescence with a
longer period in which the improvement system will be able
to seek the best moment of execution associated with a load
in the D + 1 period. For each load, this optimum moment
will be informed to the resident, and, for this model, it will
be assumed that it will have been observed. Proactivity is a
feature built into the parameters chosen for each load. For
example, a proactive energy-saving resident has a greater
tolerance for accepting an indication of a bath time outside of
the peak hours in the late afternoon; therefore, the operating
window for this load is significantly longer than its duration.
If the user is resistant to the suggested routine changes,
the difference between the extension of the allocation interval
and the operation duration will be slight.

The POF can be represented in Figure 7, an example in
which the washing machine has a low probability of occur-
rence for day 1, gradually increasing each day until it reaches
100%on day 5. This example reflects a heuristic consumption
habit, where the residents tend not to delay washing clothes
for more than 5 days. In addition to the behaviour concerning
time since the last operation, other variables can influence
the POF value. If day 5 is a rainy day, the probability may
drop to 90%, and the machine might not start despite the
accumulation of dirty clothes. After this load, its probability
of occurring on the following day is low again, as the user
needs to accumulate dirty clothes until the subsequent use.

FIGURE 7. Example of the POF of the washing machine.

2) SCHEDULABLE EQUIPMENT
The electrical appliances subject to automated con-
trol (schedulable) were selected. These loads tend to have
a larger operating window since they can be switched on
without the user’s presence. The schedulable loads and their
operating windows are shown in Table 2, and they do not
change in the face of profiles with distinct flexibility.

3) USER OPERATED EQUIPMENT
Appliances with higher consumption and a greater possibility
of use reallocation were selected. These devices have differ-
ent operating windows according to the flexibility of each
user for each load. In the example of Table 3, it is possible
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TABLE 2. Schedulable loads and their operating window.

to observe the loads and their operating windows for the user
profile who works externally for a full shift of 8 hours daily.

4) ELECTRICAL LOAD PARAMETERS
The average operating time of each loadwas obtained through
sampling during everyday use. Table 4 shows the parameters
that will attend each electrical load for each day of the week.
Furthermore, it will be used by the optimisation algorithm.
In this example, the parameters are for the low flexibility
profile, where the user works full time outside the dwelling.

5) ELECTRICAL LOAD HIERARCHY
Some household loads are dependents of other household
activities, for example, habitually the iron will only be used
after the washing. Another example observed is that imme-
diately after using the treadmill, the electric shower will
commonly be used. This load is hierarchically considered
for the energy demand forecast and its activation moments,
being part of the heuristics used in the energy efficiency
optimisation model. Because of this, the hierarchy of load
usage was defined and presented in Table 5.

6) IMPACT OF CLIMATE CONDITIONS
The routine of a home is affected by the local microclimate.
Resident’s habits are influenced by daily weather variations
and will alter demand forecasts. The impacts of weather on
the routine shown in Table 6 are built into the loads’ heuristics
and directly influence their POFs.

7) POWER GENERATION AND FORECAST
The prosumer unit uses climate-dependent power generation
data. The climatic variables that were considered in this
model that influence the energy generation are (i) DBT (◦C)
and (ii) GHR (kWh/m2).
The installed power in photovoltaic modules is 1.53 kWp,

and it must be corrected according to ambient temperature.
This correction is possible using (5). The coefficient of power
variation by temperature is found in the installed PVmodule’s
datasheet, defined as −0.0041 %/◦C.

PPV = Ppeak +
(
Ppeak ∗

(
(DBT − 25) ∗ CPtemp

))
(5)

TABLE 3. User operated equipment and their operating window.

where PPV is the installed PV power corrected according to
ambient temperature (W), Ppeak is the photovoltaic power
installed under the standard test conditions (W), and CPtemp
is the temperature coefficient for maximum potency (%/◦C).

The energy produced per hour is calculated as a function of
installation data and the global horizontal radiation, as shown
in (6) and (7). Efficiency data for both modules and inverter
can be found in their datasheets, and in this case, the effi-
ciencies are 17% and 97%, respectively. Other losses must be
considered as wiring, connectors, partial shading, pollution,
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TABLE 4. Electrical load parameters. TABLE 4. (Continued.) Electrical load parameters.

TABLE 5. Electrical load hierarchy.

and so on, totalising 17%.

Ehour = GHR ∗ A ∗ Ef mod ∗ Ef inv ∗ (1−Losses) (6)

A =
Ppv
165

(7)

where Ehour is the energy generated per hour (kWh), A is
the area of the PV arrangement (m2), Ef mod is the average
efficiency of a photovoltaic module (%), Ef inv is the average
efficiency of a photovoltaic inverter (%), and Losses are the
system losses (connections, wiring, etc.) (%).

8) ENERGY PRICING
The system of this research considers an actual urban resi-
dential prosumer unit served at low voltage, and its pricing is
defined following the concessionaire’s commercial policies
for this type of building, which is classified as subgroup
B1 - residential. The energy consumed in the network is
distributed by Companhia Paranaense de Energia (COPEL).
There are two fares considered in this research: conventional
fare and white fare

48722 VOLUME 9, 2021



W. F. Ceccon et al.: IEPMS for Economic Maximization in a Residential PU

TABLE 6. Climate Conditions x Routine.

For the conventional fare, the homologation resolution
No. 2.259, of June 18, 2019, establishes energy tariffs (TE)
and Tariffs for the Use of the Distribution System (TUSD)
referring to COPEL Distribuição S.A. (COPEL-DIS) [38].
The tariffs assumed in this study are 0.517 R$/kWh and
0.798 R$/kWh, including taxes.

From January 2018, energy consumers can adhere to tariff
rules according to the time of use. This modality is called the
white energy tariff. The consumption schedule is classified as
(i) peak hours, when many consumers are using energy at the
same time, overloading the electrical system; (ii) intermediate
hours, representing one hour before and one hour after the
peak hours; (iii) off-peak hours, which does not coincide to
the previously mentioned periods.

When the consumer concentrates his consumption in the
off-peak period, it is possible to reduce the expenses with
electric energy and, at the same time, relieve the energy distri-
bution system, reducing the need for investments to improve
the grid. Paraná state electricity distributor, the COPEL com-
pany, defined its schedule for the white tariff according to
Table 7.

TABLE 7. Definition of COPEL’s consumption schedules.

The white tariff is the best option for consumers who
may have a large part of their consumption concentrated
during off-peak periods. Additionally, on weekends and offi-
cial national holidays, all hours of the day are considered
off-peak. The base amount applied in the billing calculation
is the conventional tariff, this changing depending on the
time of use. Figure 8 summarises the concessionaire’s hourly
charging model.

FIGURE 8. White energy tariff schedules and values (adapted from [39]).

Table 8 shows COPEL’s white tariff costs, which will be
applied in this research [39]. The percentages presented for
each schedule are approximate; the current data should be
consulted directly at the energy company.

TABLE 8. Conventional and white tariff.

C. OPTIMIZATION ALGORITHM
The optimisation algorithm employs the set of enabled elec-
trical loads combined with the generation forecast to predict
the best activation moments throughout the period (D + 1),
that is, maximising energy savings, considering its possible
commercialisation [40].

Given the demand scenario and its flexibility to allocate
loads for the next day, the optimisation algorithm assumes the
vector initial operation times (OPT i) of the electrical loads
set to TRUE, thus defining their activation moments, seeking
the lowest daily energy cost. OPT i It can be within the oper-
ating window for each day, respecting each load’s duration,
dependencies, and other rules. Equation (8) demonstrates this
condition.

t2 − ∂ > OPTii > t1 (8)
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1) OBJECTIVE FUNCTION
The objective function reflects the search for the maximum
economic efficiency of the prosumer unit. The problem’s
objective function can be represented by calculating the daily
cost of energy, which is the sum of the energy balance cost for
each k period analysed during the 24 hours of the day. If the
cost of traded energy is positive, the user is consuming and
paying for the company’s energy. If it is negative, the user is
selling the excess of energy produced to the concessionaire,
generating credits for subsequent consumption. The problem
formulation of this research can be seen in (9).

min$Day =
287∑
k=0

$Ecomk (9)

where $Day is the daily energy cost (R$); $Ecomk is the cost
of energy sold in period k (R$). Equation (10) demonstrates
how $Ecomk is calculated. If the marketed power is positive,
purchase pricing is used. If it is negative, the sale tariff is used.

$Ecomk = Pcomk ∗1t ∗ $TE (10)

where Pcomk is the power traded in period k (kW), and $TE
is the cost of the instant energy fare (R$).

The energy balance of the residence in period k is
considered through the difference between instantaneous and
generated power to calculate the power commercialised.
Equation (11) presents the energy balance. If the marketed
potency is positive, it means that the user is currently con-
suming energy from the concessionaire. If it is negative, the
user is injecting energy into the concessionaire’s grid.

Pcomk = Pinstk − Pgerk (11)

In (11), Pinstk is the total instantaneous potency in period
k (kW), and Pgerk represents the potency generated in the
period k (kW). Finally, the calculation of the total instan-
taneous potency is performed through (12), where all the
individual potencies of each load in period k are added.
The loads used in the equation range from 1 to n, varying
according to the selection of which will be switched on for
period D+ 1.

Pinstk =
n∑
i=1

Pi,k (12)

where Pi,k is the instantaneous potency of load i in period
k (kW).

IV. INTELLIGENT ELECTRIC POWER MANAGEMENT
SYSTEM EXPERIMENTAL APPLICATION
The IEPMS was validated in 26 different scenarios to
compare the optimisation algorithm’s model efficiency and
performance.

A. APPLICATION SCENARIOS
The application scenarios were divided according to 4 groups
of usage patterns (i) ideal theoretical (ii) home office,

(iii) part-time external work, and (iv) full-time external work.
Each group has several individuals that are differentiated by
the following characteristics: (a) flexibility, (b) energy fare,
(c) climate forecast hit rate.

Flexibility indicates how flexible the user is in allocating
loads in time. The ideal theoretical usage pattern is one where
all electrical loads can be allocated at any time interval on
the day (D + 1), that is, in any period k between 0 and 287.
The most restricted usage pattern is when the user has few
allocation windows for the electrical loads. In the proposed
model, it is represented by the full-time external work, where
the user stays less time at home, being less available to
activate electrical loads.

The energy fare is the conventional category, which is the
standard category used for this prosumer unit, and the white
tariff, which has different pricing according to the time of
day. The hit rate of the climate forecast indicates the forecast
percentage for the next day (D + 1) that will be correct.
The ideal theoretical usage pattern uses previously known
climatic data, and consequently, it represents a 100% hit rate.
The scenarios will be tested with other individuals having
hit rates ranging between 95%, 90%, and 85% to compare
performance. Table 9 shows all application scenarios and
their identification (IDs).

1) IDEAL THEORETICAL
In these scenarios, two individuals differ in the tariff plan.
As mentioned earlier, these individuals have maximum flex-
ibility for allocating loads in time. The weather forecast hit
of 100% ensures that the loads are predicted and set as
TRUE with perfect precision for the following day (D + 1).
These characteristics allow the algorithm to seek its maxi-
mum theoretical economy for both the conventional and the
white tariff.

2) HOME OFFICE
For the remote work scenarios or home office, we consider
that the flexibility is higher because the residents working
at home can allocate their electrical equipment in wider
windows.

3) PART-TIME EXTERNAL WORK
Here the residents work part-time outside and part-time at
home. Thus, we can say that they have average flexibility to
allocate loads in time. In this example, when they are away,
some loads that depend on the resident cannot be switched
on, thus reducing their operation.

4) PART-TIME EXTERNAL WORK
Finally, in the part-time external work, the residents work
8 hours outside the home, which reduces the size of the load
operation windows, allowing the operation of some loads in
the morning, before business hours, during lunch breaks, and
after 6 p.m. For this reason, flexibility is low.
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TABLE 9. Application scenarios.

B. COMPOSITION OF DELAY PROBABILITY OF
OCCURRENCE FUNCTION
The rules that make up the daily Probability of Occurrence
Function (POF) for each load are called heuristics. They
were modelled according to the consumption habits of the
residents of the analysed prosumer unit. Table 10 shows how
each load behaves according to its heuristics for day 4 in the
ideal theoretical scenario. The POFs define the probability
of occurrence for the day evaluated. These rules are applied
individually and daily for each load and are responsible for
increasing or decreasing the probability that the load will be
part of the daily energy demand.

The algorithm stochastically chooses a value between
0 and 1 for each load daily. When the value is less than the
value of the POF , the load is set to be switched on for this
day, thus composing the daily demand.

TABLE 10. Loads and their POF s for the evaluated day.

C. ENERGY DEMAND FOR THE PROPOSED SCENARIOS
For each hit rate of the climate forecast, there is an influence
on the POF and a different demand composition. In Table 11,
we can see how different hit rates of climate forecast influ-
ence the number of incidences of each load for 1 year. Some
loads do not influence the use due to climate variation, and
as a result, their incidence does not change with the different
rates of correct predictions.

D. PARAMETERS OF THE GENETIC ALGORITHM
Considering the complexity of the optimisation problem,
optimal operation of photovoltaic units subjected to spe-
cific electrical loads, combined with the generation fore-
cast and the prediction of the best activation moments to
maximise energy savings, can be stated as a mixed-integer
nonlinear programming (MINLP) problem [10]. To avoid
simplifications in the problem formulation, the Genetic Algo-
rithmwas adopted to prevent exploring the entire search space
associated with the decision variables mentioned above.
Moreover, this well-established metaheuristic technique has
shown significant results in recent applications involving the
design [41], [42] and the optimisation strategy [43] of photo-
voltaic systems.

Different configuration parameters of the genetic operators
were tested to obtain a better result. The crossover is done
at only one point, the chromosome, respecting the rule of
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TABLE 11. Incidence of loads for different climatic forecasts.

charges dependence, which does not separate these genes
during the crossover between parents. The definition of other
adopted parameters occurred after applying the algorithm to
a sample of 10% of the days (36 days). The three mutation
rates that achieved the lowest cost from the initial assessment
were selected and tested again for different initial populations
and different numbers of generations for the same sample.
Mutation rates of 0.25, 0.1, and 0.3 were selected and tested
for the initial populations of 5 and 10 individuals, evolving
for 100 and 200 generations. The difference between the
two lowest costs found for the 36 days is only R$ 0.285,
or 0.398%.

Also, the time necessary to improve the 365 days was eval-
uated for the initial populations and numbers of intended gen-
erations at this stage. It is required 15.51 hours to enhance the
365 days of the year, evolving 100 generations, with an initial
population of 5 individuals. Evolving to 200 generations with
an initial population of 10 individuals required 50.25 hours.
Thus, using the fastest method, with less computational cost,
there is a gain of 69% in the optimisation speed and a loss of
only 0.398% in the other parameter’s cost value.

Given the previously mentioned information, the algorithm
was parameterised with an initial population of 5 individuals
and 100 generations, thus achieving agility in the optimisa-
tion process for each scenario during t year, with a relatively

low computational cost. The rate mutation adopted is 0.25,
which during initial sampling presented the best result for
these parameters.

E. RESULTS WITH THE APPLICATION OF IEPMS
The results for the period of one year, referenced to the
year 2019, were computed for each proposed scenario. The
cost without IEPMS represents the sum of the 365 worst
daily results among the algorithm’s initial population before
the optimisation process. The cost with IEPMS represents
the sum of the 365 best daily results among all individuals
generated after the optimisation process. In all scenarios,
the algorithm was able to provide savings for the residential
prosumer unit.

It is important to emphasise that the present study was
applied to an actual prosumer unit, and the energy consump-
tion is based on the occupants’ routine using the available
loads. The idea is to affect occupants’ lifestyle as little as
possible, saving energy wherever the system identifies the
possibility of carrying out this task. The system performance
was measured through different hit rates, those associated
with climate forecasting. Finally, the comparison regarding
energy consumption without and with the proposed method
indicates the benefits of the proposed strategy.

Figure 9 demonstrates how the algorithm sees demand and
generation power before the optimisation process. Figure 10
shows how the algorithm reallocates the same demand
presented above, shifting theOPTi of each load, providing the
best financial result for the day after the optimisation process.

FIGURE 9. Demand before optimisation.

FIGURE 10. Demand after optimisation.
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Table 12 depicts the electricity costs for one year without
and with the use of IEPMS. The annual cost for the ideal
theoretical scenario using the conventional tariff with IEPMS
was R$ 1,114.07. The annual cost for the same scenario, using
the white rate, was R$ 1,151.22.

TABLE 12. Costs obtained for the theoretical scenarios.

Table 13 shows the electricity costs for one year without
and using IEPMS for the home office scenarios.

TABLE 13. Costs obtained for the home office scenarios.

In the sequence, Table 14 shows the electricity costs for
one year without and with the use of IEPMS for the part-time
external work scenarios, and Table 15 presents the electricity
costs for one year without and with the use of IEPMS for the
full-time external work scenarios.

TABLE 14. Costs obtained for the part-time scenarios.

V. DISCUSSION
Different user profiles, distinct energy tariffs, and different
climate forecast accuracy rates were applied in 26 scenarios.

TABLE 15. Costs obtained for the full-time scenarios.

TABLE 16. Results for the white tariff scenarios.

Tables 16 to 17 show the results of the optimisation algorithm
in all scenarios considered in this study. A discussion regard-
ing the economic efficiency and performance of IEPMS was
carried out and is presented in the sequence.

The efficiency of IEPMS was measured by comparing
the savings provided in the period analysed for the different
scenarios proposed after applying IEPMS, with the same sce-
narios without applying IEPMS. Savings were shown to be
more significant for scenarios that used the white electricity
tariff, where flexibility is more restricted than in the full-time
external work profile. For this standard, the allocation options
in the intervals where the energy is low-cost are less, and the
regular use of electrical equipment is made in the periods
when the energy is more expensive (intermediate and peak
hours), making the daily cost bigger.

The maximum savings for this tariff was 34.72% for
ID-20, going from an annual cost of R$ 1,853.54 to
R$ 1,209.96. The lowest savings provided were for
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TABLE 17. Results obtained for the conventional tariff scenarios.

ID-02 with 26.30%, reducing the annual cost of
R$ 1,562.04 to R$ 1,151.22. Table 16 presents scenarios that
showed the most significant savings when applying the white
tariff in decreasing order.

For conventional tariff scenarios, the annual savings were
lower. In applying this tariff, the algorithm proved to be more
effective for scenarios with greater flexibility for allocating
loads in time, that is, the most significant savings occurred
in the ideal theoretical usage pattern. Moreover, the annual
cost values without and with the IEPMS are similar because
the variation in energy cost is smaller and occurs only in the
concessionaire’s portion. This tariff’s maximum savings was
5.26% for ID-01, reducing an annual cost of R$ 1,175.97 to
R$ 1,114.07. The lowest savings provided was for ID-25 with
4.25%, coming from an annual cost of R$ 1,201.08 to
R$ 1,150.03. Table 17 shows the scenarios that presented
the greatest savings when applying the conventional tariff, in
decreasing order.

Each proposed scenario has its specificity, and therefore,
the initial populations and their descendant generations will
have variations. Theoretically, the lowest cost for both con-
ventional and white tariffs should be in scenarios with the
greatest flexibility in allocating loads in time. What was
demonstrated in the study is that the home office scenarios
achieved a slightly lower annual cost than the ideal theoretical
scenarios. The home office scenarios have high flexibility,
close to the theoretical scenarios, but as the restrictions, in this
case, were positive for the model, they helped the algorithm
to allocate loads at better (more economical) times. The home
office scenario restrictions made it possible for an initial pop-
ulation to be generatedwith higher quality, enabling evolution
and improvement with an even better annual cost. Table 18
lists the scenarios in ascending order of the total cost of

TABLE 18. Scenarios in ascending order regarding the total cost of
electric energy after optimisation.

electric energy achieved after the IEPMS optimisation in the
analysed period.

The model’s performance was measured according to the
absolute and relative errors for each hit rate of climate fore-
cast, related to the annual costs achieved with the use of
IEPMS in the ideal theoretical scenarios, for the comparative
scenarios. As a result of the model’s application, we can
observe that, in all scenarios, the performance was not less
than 97% for hit rates of climate forecast that varied between
95, 90, and 85%. For the study in question, an error value
of up to 15% in the forecast of climatic variables did not
represent significant losses in the financial result.

A wrong forecast does not necessarily mean an increase in
electricity costs but may even cause the opposite effect. If the
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inadequate forecast is a sunny day, it will have a high energy
production and, consequently, a lower energy balance cost.
The energy generating system depends exclusively on the
climate, and the potency generated is significantly affected
by climatic variables. The electric loads depend on climate
conditions. However, they also depend on the heuristics that
compose their POFs, thus suffering less influence under a
wrong climate forecast. The demand for daily consumption
did not change significantly because of different climatic
forecasts.

VI. CONCLUSION AND RECOMMENDATIONS
With the creation of an intelligent system for managing elec-
tricity, it was possible to apply and measure its efficiency in
an energy prosumer unit aiming for maximum economic effi-
ciency. This article explored the concepts of energy prosumer
and how it relates to energy management systems.

The architecture of an intelligent energy management sys-
tem was created, and the authors define how it can provide
energy savings while minimising the impact on the lifestyle
of residents of a prosumer unit. With the system architecture
defined, the computational development and implementation
of an algorithmwere started tomaximise the energy prosumer
unit’s economy, considering the incidence of demand on a
stochastic basis, according to the residents’ habits.

Through the application of the algorithm, it was possible
to evaluate the performance of the system concerning the
ideal theoretical scenario and the proposed scenarios of the
home office, part-time external work and full-time external
work, considering conventional and white tariffs, and dif-
ferent accuracy rates for forecasting climatic variables over
a year. Finally, the results achieved in a prosumer unit’s
economic performance endowed with IEPMSwere discussed
compared to the reference scenario, that is, without IEPMS.

In this research, the IEPMS proved effective for the
energy prosumer unit’s economic maximisation, demonstrat-
ing an intelligent alternative of electricity management on the
demand side in a residential prosumer unit in Brazil. This
research used climatic data from the LabEEE for the city of
Curitiba. These data were used because there was not enough
time to collect reliable data and the amount needed for this
project. The data may be replaced in the future by data from
a local weather station, reflecting updated information from
the local microclimate.

The residence chosen as a laboratory for this research has
several electrical loads that operate for a short time or in
cycles, and others remain on standby for long periods, such as
television, microwave oven, wi-fi router, refrigerator, among
others. The model considered an average value of potency
and operation duration for these cases, calling this demand
base electrical loads. The base loads have slight variations
between them due to the day of the week and time, making
up a baseline demand for the day (D+ 1). Although the base
loads represent a relevant consumption at the end of the day,
they cannot be reallocated by the optimisation algorithm.

For future research, smart energy meters capable of report-
ing more accurately and in real-time can implement baseline
demand variation. The costs of energy pricing adopted in
this work were close to reality, considering that the energy
sold to the concessionaire is worth, on average, 15% less
than the energy purchased. This difference is due to the
collection of taxes on TUSD in the energy injected into the
distribution grid. This portion of the tariff is not covered
by the tax exemption agreement established by the federal
government. The savings related to tariff fare, which are
seasonally included in tariffs due to variations in energy
availability and demand in the national energy matrix and
according to each unit consumption, are not considered in this
model. Another suggestion for future work is the application
of other optimisation methods, comparing efficiency against
the model and methods proposed here.
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