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ABSTRACT The rapid development of the IoT and cloud computing has spawned a new network structure—
sensor-cloud system (SCS) where sensors, sensor networks, and cloud computing are integrated to perform
data sensing, collection, transmission, and decision making. The large-scale deployment of sensors creates
a massive amount of data, posing new challenges in data transmission and storage. As an intermediate
platform between IoT and cloud platforms, edge computing provides IoT with data collection, processing,
and scheduling services. This paper proposes a hybrid data compression scheme that incorporates lossy
and lossless compression in SCS based on edge computing to address the increasing challenges. Moreover,
we propose a new reliable lossy compression algorithm DFan, based on the simplified Fan algorithm
with a high compression ratio (CR). By introducing the data tolerable deviation, DFan transforms single-
factor decision-making into multi-factor decision-making, reducing the error of lossy compression. Through
experiments on IntelLab and MIT-BIH datasets, the proposed hybrid data compression scheme achieves an
overall CR of 4.21× and 3.88×, respectively. The lossy CR of DFan is 6.42× and 5.1×, respectively, and
the Percentage RMS Difference (PRD) caused by lossy compression is 0.27% and 0.56%, respectively. The
hybrid compression scheme, high compression ratio, and reliable data restorationmake this scheme attractive
to the data processing of sensors in SCS.

INDEX TERMS Sensor-cloud system (SCS), data compression, edge computing, Internet of Things (IoT).

I. INTRODUCTION
With the rapid development and broad applications of wire-
less sensor networks (WSN) coupled with massive deploy-
ment and wide reception of cloud computing, the integration
of WSNs and cloud computing, aka Sensor-Cloud System
(SCS) has received considerable attention in both academic
and industry communities [1]. The emergence of SCS greatly
extends the computing capacity, storage capacity, scalability,
communication capacity and usability of traditional wireless
sensor networks by leveraging the massive computing power,
scalability, storage flexibility and ubiquitous access in cloud
computing. Within a SCS, the underlying sensor network
only needs to collect data while the data analysis, processing
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and other operations are delegated to the cloud. This not only
reduces the burden of sensor networks but also speeds up the
data processing [2]. The SCS has been widely used, including
everything from intelligent devices to smart home, industrial
IoT, internet of vehicles, and precision agriculture [3]–[6].

However, the SCS also entails obvious constraints such as
limited communication bandwidth between sensor network
and the cloud, high latency due to the long-distance transmis-
sion of data from sensor network to the cloud, and security
and privacy concerns due to the ubiquitous exposure of the
cloud. In addition, data usability in the cloud also becomes
a concern. In a typical SCS, the collected raw data are first
uploaded from the underlying sensor network to the cloud,
then processed and present to the end users. However, end
users may not need all raw data, but certain useful data,
and aggregated data. Therefore, it is desirable to ensure that
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only effective data are received, stored and processed in the
cloud. This can lead to lower storage requirements, faster
data processing and better user experience. As an emerging
technology, mobile edge computing [7] boasts with many
advantages, including higher local processing power, wider
geographical distribution and the support of mobility. It pro-
vides IoT with data collection, processing, and scheduling
services. Within edge computing, each edge node can be used
as a mobile sink. When the data in the sensor network is
transmitted to an edge node, the data is first aggregated and
compressed locally by the edge node, which can reduce the
amount of data to be transmitted to a certain extent.

Data generated by sensor devices in SCS usually displays
the following characteristics: large volume, high data sam-
pling rate and multiple data types. On the other hand, sensor
nodes in SCS generally consist of inexpensive electronic
devices with limited communication bandwidth. With the
rapid and continuous deployment of sensors and IoT devices,
the massive amount of data is generated in the sensor net-
works, which poses significant challenges in data transmis-
sion and storage, and has mandated reliable, accurate and
efficient compression techniques [8].

In terms of data usage, the equipment operating status and
sensor monitoring data collected by IoT devices generally
have two purposes in actual application scenarios. The first is
to provide a reference for the operation of other equipment.
This type of data demands extremely high real-time and data
acquisition frequency. Thus, there is no need for additional
data processing. Another purpose is to save the data to the
database to provide data support for upper-level decision-
making [9]. For this type of data, in actual production, there is
no such high requirement. Because the total amount of data
is too large, it will take up a lot of physical storage space
and lead to a significant decline in the efficiency of retrieving
historical data. We can classify this type of data into short-
term storage data and permanent storage data. The short-term
storage data is mainly used to monitor equipment operation
status and environment. The data that fluctuates in a small
range may not be the focus of monitoring. The monitoring
personnel may only pay attention to some sharply changing
inflection point data. In a few cases where all the original data
is required, the original data can be restored by lazy loading.
For data that needs to be stored permanently, considering the
database’s storage pressure, generally, the average value is
stored. Considering the end usage of the data, compression
processing will achieve better practical application effects.

In this paper, taking the actual application scenarios of data
into consideration, we propose a novel hybrid data compres-
sion scheme based on edge computing to address the data
transmission challenges in SCS. This scheme combines both
lossy and lossless compression algorithms, realizing mixed
lossless transmission and transmission rate selection. More-
over, we propose lossy compression algorithm (DFan) to
process numeric data to be transmitted to the cloud. Through
experiments with real data, it can be found that for edge
sensor data, our proposed scheme achieves a good balance

among data fidelity, compression ratio, and processing effi-
ciency.

Our major contributions are as follows:

1) Based on the simplified Fan algorithm, by introducing
the data tolerable deviation, the DFan algorithm main-
tains the calculation accuracy and CR of the original
Fan algorithm and is equivalent to the simplified Fan
algorithm in data processing speed.

2) Using theDFan algorithm combinedwith the LZ4 com-
pression algorithm, a new data hybrid compression
scheme is proposed based on data purpose. Com-
pared with other hybrid compression schemes, it has
good scalability and low PRD. Experiments with
real datasets demonstrate the algorithm’s effectiveness
which offer a new option for massive edge sensing data
processing.

3) Our scheme improves the reliability of edge and cloud
data transmission in SCS and reduces the possibility
of data modification and eavesdropping. The scheme
divides the original data into two parts, optimizes the
complexity of obtaining the original data, and increases
data transmission efficiency.

The rest of this paper is organized as follows. Second II
discusses previous work in the area. Section III combines
the actual application scenarios, from the edge to the cloud,
and introduces our proposed hybrid compression scheme in
detail. Section IV discusses the existing lossy compression
algorithm; and proposes a new lossy compression algorithm
on this basis. In Section V, the proposed scheme is verified by
the IntelLab dataset and MIT-BIH arrhythmia database and
compared with other data compression processing schemes.
Section VI draws the conclusion and discusses the limitations
and future work.

II. RELATED WORK
Data compression has been widely used to reduce the amount
of data to be stored or transmitted. There are two cate-
gories of data compression, namely, lossless compression
and lossy compression [10], [11]. Lossless compression algo-
rithms such as LZW, Snappy, Deflate, LZ4 and LZO have
a relatively low compression ratio (CR), which is about 1-
3 times [12], [13]. Although the data fidelity is guaranteed,
the compression effect is not ideal. On the other hand, lossy
compression can obtain CR several times higher than lossless
compression, but the price is the loss of fidelity. There are
many lossy compression algorithms, such as transform-based
methods including Wavelets Transform, Discreet Cosine
Transform (DCT), Fourier Transforms and Cubic Hermitian,
and neural network-based methods such as ANN-based lossy
compression algorithm [14]–[17]. Besides, in order to neu-
tralize the advantages and disadvantages of lossless compres-
sion and lossy compression, some scholars have proposed
hybrid data compression algorithm. In [18], the original data
is transformed by DCT, then the transformed data threshold is
set to zero, and finally the run-length code (RLC) technology
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FIGURE 1. Data processing flowchart.

is used to encode the obtained data. This algorithm does not
apply to the case where the data itself contains a value of 0,
and the scope of application is limited. In [15], the original
data is processed using wavelet transform and then combined
with the SPIHT algorithm for encoding, which leads to a
higher percentage RMS difference (PRD). In [19], through
error judgment in the lossy compression stage, the former
data is used to replace the latter data to reduce the total
amount of data. In the lossless compression stage, the sample
data is directly scaled down so that it is represented by
fewer bits. However, the program cannot retain the details
of data with small fluctuations. In [10], the AFD algorithm
is mixed with the SS technique to obtain a higher CR at the
expense of higher reconstruction error and implementation
complexity. In [20], a simple recursive implementation is
developed to simplify Fan geometric algorithm, reducing the
need for computing resources. The residual error is processed
in combination with the Huffman algorithm to achieve loss-
less data compression in the compression stage. If applying
this scheme to an environment with more abundant comput-
ing resources, the overall processing efficiency can be further
improved. The work in this paper distinguishes itself by
focusing on data hybrid compression to promote data security
and reliability in SCS.

III. PROPOSED DATA COMPRESSION SCHEME
Our scheme consists of sensors, edge, and cloud, as shown in
Figure 1. Thousands of heterogeneous sensor data are gath-
ered through the edge nodes. The first step of compression
is lossy compression. After lossy compression, part of the

data is lost. Combined with the original data, the lost part
of the data is calculated, followed by lossless compression.
The lossy compression and lossy compression are used as the
output of the edge. After the edge processing is completed,
the data is sent to the cloud for decompression, and the
decompressed data is summarized, calculated and stored.

A. DATA PRE-PROCESSING
According to instructions from the upper node, the terminal
equipment pre-processes and returns the data at the edge
end. Data pre-processing includes data classification and
data filtering. The purpose of data compression is to remove
redundant information in the data. General data compression
algorithms rarely consider the connection between data but
simply compress it from bytes or characters’ perspectives. For
complex and diverse data, research and analysis according to
the data’s characteristics can facilitate the selection or design
of suitable compression algorithms to improve the efficiency
of compression processing. Different data types have dif-
ferent data compression algorithms. The actual investigation
found that numerical data accounts for the vast majority,
so this type of data should be considered in data compression.
When we design the scheme, we also consider the character-
istics of data fluctuation. For other types of data, the amount
of data itself is not large. If making further subdivision, it will
increase the computational complexity, thus it is directly
classified as non-numerical data. The data filtering mainly
considers the high real-time property of certain data. The data
that need to be processed in real time is transmitted directly.
After pre-processing, the data will continue to be compressed
later.

B. DATA COMPRESSION PROCESSING
The data compression process is carried out in batches.
Firstly, the current batch of data is lossy compressed, and
the compressed data is stored in the reserved queue. Lossy
compression leads to partial data loss, and the discarded data
is put into the discard queue. Then, the reserved queue data
is decompressed to obtain the decompressed data, which is
stored in the restore queue. There is still a deviation between
the original data and the data in the restore queue. The devia-
tion can be obtained by calculating the difference between
data generated in the restore queue and the corresponding
data in discard queue. The result is then stored in the deviation
queue. The deviation queue is lossless compressed and used
as the batch’s compression result together with the reserved
queue data. After processing, the data is divided into two
parts. In order to reconstruct the original data, it needs to
obtain the output of two parts simultaneously and the corre-
sponding relationship between the two parts of the data. It is
evident that our scheme improves the reliability of data.

In theory, our scheme can be used with any lossy and
lossless compression/decompression algorithms. However,
the implementation complexity highly depends on the choice
of lossy compression and lossless compression schemes
because the lossy compressed data must be decompressed at
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TABLE 1. Comparison of lossless compression algorithms.

the edge node to calculate the error caused by lossy compres-
sion, so the implementation complexity of lossy compres-
sion and lossless compression schemes should be as low as
possible.

Lossless compression is used uniformly for non-numeric
data. It helps reduce the computational complexity of edge
nodes and reduces the bandwidth pressure of data transmis-
sion. In addition, the deviation queue calculated from the
difference between the original and reconstructed data has
a shallow dynamic range. The use of lossless compression
helps to minimize the bit rate. Commonly used fast loss-
less compression algorithms include LZ4, Snappy, GZIP,
Deflater, LZO [21]–[23]. Traditional lossless compression
algorithms include Huffman [24] and RLC [25]. A bench-
mark test was performed on each lossless compression algo-
rithm, and the results are shown in Table 1. From the perspec-
tive of the compression ratio, GZIP and Deflater have higher
compression ratios. The Huffman algorithm has the lowest
compression ratio, and the compression ratios of several other
algorithms are concentrated around 2.2×. The LZ4 algo-
rithm is the highest in terms of processing efficiency, with
27M data processed per second. From the view of the data’s
characteristics to be compressed and the processing speed
requirements, the LZ4 algorithm is more suitable. Due to the
low implementation complexity of the Huffman algorithm,
it has advantages in the case of limited computing resources.

C. DATA DECOMPRESSION PROCESSING
The reserved queue data, deviation queue data, and non-
numerical queue data are aggregated in the cloud through the
edge node. The edge node involves data compression, so it
needs to be decompressed in the cloud. For non-numerical
data and deviation queue data, lossless compression is
adopted at the edge node, and the data before compression can
be obtained by directly applying the corresponding decom-
pression method in the cloud. The deviation queue data is
used to restore the original numerical data. For the original
data, the reserved queue data can be combined with the
linear interpolation method to obtain the reconstructed data.
There could be an error between the reconstructed data and
the original data. In the process of edge node processing,
the error has been stored in the deviation queue. The original
numerical type data can be obtained by arithmetic opera-
tion between the reconstructed data and the decompressed

deviation queue data. From the perspective of data usage,
the focus is on inflection point data. Small range precision
loss can be tolerated, and reserved queue data can be directly
used. When there is a demand for original numerical data,
the deviation queue can be combined to restore the data. It can
be seen that the scheme we propose has good scalability. The
reconstruction of the original data requires the coordination
of the two parts of the reserved queue and the compressed
deviation queue. This improves the security of the data.

The deviation between the reserved queue and the original
data is not large from the perspective of data storage. From
the experiment in Section V, it can be found that the PRD
is 0.27% - 0.56%. In a specific time interval, the calculated
mean deviation value is smaller, and the calculation can be
simplified by retaining the queue calculation mean value for
permanent storage.

IV. DFan: A LOSSY DATA COMPRESSION ALGORITHM
For lossy compression, the compressed data is required to
have better data fidelity. Several lossy compression tech-
niques are reviewed in [26]. A uniform sub-sampling tech-
nique (such as random extraction) can achieve a higher
compression ratio, but it cannot ensure data fidelity. Com-
pared with uniform sub-sampling methods, non-uniform sub-
sampling techniques, such as Fan compression algorithm, are
particularly prominent in data fidelity. Compared with tech-
niques based on domain transformation, the Fan algorithm is
simpler in complexity, and the data processed is still readable
without being decompressed. The feature meets the needs of
specific application scenarios.

Fan algorithm is an adaptive sub-sampling technique.
Under the premise that the error after reconstruction of the
intermediate sample is less than themaximum specified error,
the largest possible data deviation area is constructed between
the starting sample and the ending sample. The processing
process of the Fan algorithm is shown in Figure 2.

The algorithm is initialized by directly retaining the first
sample I1 and storing it in the sample set as the first origin.
The second sample I2 is used to calculate the two boundaries
of the current sample set (upper bound is I2+ ε, lower bound
is I2− ε, the size of ε impacts the data compression, which is
named CF in this paper). Two slopes (U1 and L1) are drawn
by connecting the origin with the upper bound, the origin, and
the lower bound. This constitutes the data deviation region.
With the arrival of the next sample I3, if I3 falls in the data

49010 VOLUME 9, 2021



S. Lu et al.: Reliable Data Compression Scheme in SCSs Based on Edge Computing

FIGURE 2. Fan algorithm illustration.

deviation area, that is, the sample value of I3 is between U1
and L1, which means that within the allowable error range,
I2 sample has little fluctuation and belongs to redundant
data, so it should be discarded and continue to process the
next data. Continue to calculate the upper and lower error
boundary (I3 + ε) of I3. It can be seen from Figure 2 that
the intersection is the region formed by (L2,U2), and sample
I4 is in this region, so I3 is discarded. Continue to calculate
the upper and lower error boundary (I4 + ε). It can be seen
from Figure 2 that the intersection is the region composed of
(L2,U3), but sample I5 is not in this region. This shows that
the data fluctuates greatly at I4, and I4 should be retained and
stored in the sample set. Replace I4 with the new origin and
repeat the above process.

In the Fan algorithm, the calculation of intersection is
more complicated. To simplify the calculation of the Fan
algorithm and reduce the demand for computing resources,
paper [20] developed a simple recursive geometry imple-
mentation method. The area determined by the upper and
lower boundaries of the current processed sample is used as
the intersection in the original Fan algorithm to simplify the
calculation and reduce the complexity of the implementation.

The simplified processing method ignores the impact
of discarded samples on the intersection, resulting in the
enlarged intersection. If the trend of multiple adjacent data
changes is linear, the simplified Fan algorithm will discard
many data samples with large fluctuations, which will lead to
large data reconstruction errors.We havemade improvements
in response to this problem.

Figure 3 shows all possible fluctuations in two consecu-
tive samples. If the situation of Figure 3 (a) and (c) occurs,
the impact of this processing on data accuracy will not be too
significant. However, if the data in Figure 3 (b) and (d) shows
a linear trend and if the simplified Fan algorithm continues to
be used, the sample data that is seriously deviated from the
origin (as shown in sample I5 in Figure 4) will be discarded.
This leads to a substantial impact on the accuracy of the data.
For such cases, we introduce the data tolerable deviation from
single-factor judgment to multi-factor judgment to reduce the
impact of intersection on the current sample, thereby reducing
reconstruction errors.

For the sample to be discarded, if its fluctuation is the
same as that of the next sample, then calculate and judge
whether the difference between it and the next sample is

FIGURE 3. The effect diagram of data selection without introducing
tolerance deviation.

FIGURE 4. DFan algorithm illustration.

FIGURE 5. The effect diagram of data selection after introducing data
tolerance deviation.

less than the given deviation, and discard if it is less than
(Figure 5 (b) and (d)), reserve if greater than or equal to (Fig-
ure 5 (a) and (c)). Through the above processing, the problem
of large data reconstruction errors can be solved. To show the
difference, we name the improved algorithmDFan algorithm.
Figure 4 shows the data of samples I3, I4, and I5 continue to

VOLUME 9, 2021 49011



S. Lu et al.: Reliable Data Compression Scheme in SCSs Based on Edge Computing

decrease with a small trend. If we follow the simplified Fan’s
processing strategy, sample I4 will be discarded, causing a
large error to the data’s overall trend.

Besides, to avoid continuous small changes in the data and
severe deviation from the origin for the same collection point,
the new sample will be directly replaced as the origin after
processing a certain number of samples. The specific number
is determined according to the sample collection frequency.

V. SCHEME VALIDATION AND RESULT ANALYSIS
A. EXPERIMENTAL DATA SOURCES
We verify the effectiveness of the data processing scheme
on the IntelLab dataset. The IntelLab dataset was based on
the monitoring of 54 devices deployed in the Intel Berkeley
Laboratory at University of Oxford [27]. The data included
time-stamped information on humidity, temperature, light
and voltage, with a time span of 35 days and a total of 2.3 mil-
lion data items. In the experiment, we split the dataset at
intervals of dates and randomly selected five groups of tem-
perature data on March 1, 6, 13, 17, and 20 as the experimen-
tal data. After removing abnormal data, the total number of
samples in each group was about 80,000.

The sample fluctuations of the IntelLab dataset are rela-
tively gentle. In the comparative experiment, we also used
48 sets of MLII recorded data from the MIT-BIH arrhythmia
database [28]. The samples in this dataset fluctuated violently
to verify the applicability of the proposed scheme. In this
dataset, the total number of data samples per record is 21,600.

B. EVALUATION METRICS
The compression effect of data compression is related to the
size of the compressed data. The commonly used compres-
sion ratio (CR) indicates the degree of data compression:

CR =
No. of uncompressed bits
No. of compressed bits

(1)

There are two leading indicators for evaluating reconstruc-
tion quality: diagnostic index and mathematical index. For
example, the mean score is a diagnostic index, but it is not
widely used because of its high computational complexity
and time complexity [26]. The mathematical index is widely
used to evaluate the energy difference between the original
and reconstructed data because of the small amount of cal-
culation. This paper uses the following popular mathematical
indexes:

1) The Root Mean Square Error (RMSE) defined in the
following formula is used to measure the difference
between the original data x(n) with a total N and the
reconstructed data x ′(n). The smaller the root mean
square error, the better it indicates that the recon-
structed data is close to the original data.

RMSE =

√∑
n (x(n)− x ′(n))2

N
(2)

2) Quality Score (QS) reflects the relationship between
CR and reconstruction quality. The larger the value,

FIGURE 6. Comparison chart of multi-dimensional effect of DFan, Fan
and simplified Fan.

the better the compression effect [17].

QS = CR/PRD (3)

3) Compared with RMSE, the Percentage RMS Differ-
ence (PRD) defined in the following formula can better
reflect the reconstruction quality [20].

PRD =

√∑
n (x(n)− x ′(n))2∑

n (x(n))2
× 100% (4)

C. PERFORMANCE IMPROVEMENT EVALUATION
In our experiment, the lossless compression algorithm was
LZ4, and the lossy compression algorithm was DFan. The
data tolerable deviation value was similar to CF’s change
trend, and the amplitude was close. Therefore, in our subse-
quent experiments, the data tolerable deviation value and CF
were considered as equivalent values.

Regarding the improvement of DFan, under different CFs,
five metrics of RMSE, PRD, CR, compression time, and
decompression time were selected and compared with the
original Fan algorithm and the simplified Fan algorithm. The
experiments were performed on five test data groups in the
IntelLab dataset, and the mean values under different CF was
calculated. The experimental results are shown in Figure 6.
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FIGURE 7. The relationship between QS and CF.

From the perspective of RMSE, the DFan algorithm is very
close to the original Fan algorithm, and the RMSE is about
0.1. TheRMSEof the simplified Fan algorithm increaseswith
the increase of CF, and the maximum value is close to 2.5.
The reason for this result is that the simplified Fan algorithm
discards many inflection point data. From the perspective of
PRD, the PRD value of the DFan algorithm is very close to
the original Fan, and the value is relatively small. While the
PRD value of simplified Fan algorithm fluctuates wildly, and
the maximum value is close to 7.5%. From the perspective
of CR, the simplified Fan algorithm has a good compression
effect. When the CF value is 0.1, its CR is as high as 29×,
and the price of this result is the loss of data accuracy.
From the point of view of compression time, because the
DFan algorithm is based on the simplified Fan algorithm,
it simplifies the calculation of the intersection of the original
Fan algorithm. The time consumption of the DFan algorithm
is about half of the original Fan algorithm. Compared with
the simplified Fan algorithm, its time consumption is slightly
higher than the simplified Fan algorithm. This is because
the DFan performs additional calculation processing when
processing the discard queue. Since the three algorithms’
decompression processes are similar, they have equivalent
effects in the decompression time. Overall, the DFan main-
tains the calculation accuracy and CR of the original Fan and
is equivalent to the simplified Fan in data processing speed.

D. COMPARISON WITH OTHER HYBRID COMPRESSION
SCHEMES
To find the proposed scheme’s best performance, we ana-
lyzed the overall compression performance for different CFs
(corresponding to 0.1–1% of the maximum dynamic range of
the collected data. The data tolerable deviation is considered
equivalent to the CF). We conducted experiments using five
sets of data in the IntelLab dataset (the data range is [0-40]).
Calculate the average of five groups of results of the same CF.
To comprehensively evaluate the impact of different CFs on

TABLE 2. Average compression performance of the proposed algorithm
with MIT/BIH and IntelLab database.

lossy compression and lossless compression, under the same
CF, the entire scheme’s PRD was used to calculate the QS
of lossy compression and lossless compression. The result is
shown in Figure 7. When the CF is small for lossy compres-
sion, CR grows slowly, and there is a negative correlation.
As the CF increases, the relationship between CR and CF
is positively correlated. This is because more samples were
discarded, making CR grow faster than PRD. For lossless
compression, the lossless compression ratio in the numerical
queue gradually slows down as the CF increases. Because
more and more similar data is discarded, CR decreases, and
PRD continues to increase. The higher the QS value, the bet-
ter the compression effect. To obtain the best performance,
from the figure, the CF and the data tolerable deviation value
should be limited between 0.12-0.24, that is, between 0.3-
0.6% of the maximum fluctuation range of the collected data.
This result is consistent with the results of literature.

We apply the DFan algorithm and the LZ4 algorithm to the
proposed scheme and conduct comparative experiments with
other existing similar schemes. In the comparative experi-
ment, the same dataset was used to ensure the experiment’s
fairness, as the other schemes were used; that is, 48 records
in the MIT-BIH arrhythmia database were used for the exper-
iment. Since this dataset only contained numerical data,
1,000 pieces of non-numerical data were manually added
to each set of sample data for simulation experiments to
meet the prerequisites set by the scheme. Combined with
the previous conclusions, the data tolerable deviation and CF
should be limited to 0.3-0.6% of the collected data samples’
maximum fluctuation range. In the comparative experiment,
we chose the CF and the data tolerable deviation value as
0.006 (the dynamic data range in this dataset is [−1,1], and
0.006 is 0.3% of the maximum fluctuation range). After the
experiment, we calculated the average of the 48 sets of data
obtained, and the results are shown in Table 2. Our proposed
scheme achieves an overall compression ratio of 3.88×,
an average lossy compression ratio of 5.12×, an average PRD
of 0.56%, and an average RMSE of 0.09 in the test data. The
average lossless compression ratio for numerical data (devia-
tion queue) is 3.27×, and the average lossless compression
ratio for non-numerical data is 2.51×. The reason for this
difference in lossless compression is that the deviation queue
has a short fluctuation range.

Moreover, we also conducted experiments on the IntelLab
dataset with relatively smooth data fluctuations. Since the
dataset only contained numerical data, 1,000 non-numerical
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TABLE 3. Performance comparison with other techniques.

data were also manually added before the experiment. The
data tolerable deviation of CF is 0.12 (0.3% of the maximum
fluctuation range). Experiments were performed on five data
sets, and the average was calculated. Compared with the
experimental results of the MIT-BIH arrhythmia database,
the effect of lossless compression is similar. According to
the four indexes of lossy compression, overall compression
ratio, PRD, and RMSE, the proposed scheme’s application
effect in the MIT-BIH arrhythmia database with severe data
fluctuations is not ideal.

Table 3 shows the results of the performance indexes
comparison between the existing scheme and our proposed
scheme. Our proposed scheme has low implementation com-
plexity, so we do not intend to compare the compression
performance with the existing lossy/lossless compression
technologies. As shown in Table 3, our algorithm’s PRD is
0.56 when the lossy CR is 5.12×. Also, the lossless CR
of 3.27× can be achieved using the deviation queue data
for complete reconstruction. Existing algorithms that use
transform domain techniques like Wavelets, DCT, Fourier
transforms obtain higher lossy CR at the expense of higher
reconstruction error and implementation complexity. Simi-
larly, the methods based on the neural network can achieve
higher lossy CR but at higher PRD. Using SPIHT and Cubic
Hermitian technique can also lead to higher PRD.

VI. CONCLUSION
Massive data collected in sensor networks makes the data
transmission to the cloud particularly challenging due to
the limited communication bandwidth in sensor devices.
To address this, this paper proposes a reliable sensor data
processing scheme for sensor-cloud systems based on edge
computing. The scheme realizes the lossy and lossless mixed
compression of data to improve the CR and processing effi-
ciency as much as possible while obtaining lossless data.
The concept of the data tolerable deviation has been intro-
duced and used our proposed compression algorithm DFan to
reduce the error of lossy compression. Through experiments
on IntelLab and MIT-BIH datasets, the proposed hybrid data
compression scheme achieves an overall CR of 4.21× and
3.88×, respectively. The lossy CR of DFan is 6.42× and
5.1×, respectively, and the PRD caused by lossy compression
is 0.27% and 0.56%, respectively. This hybrid compression

scheme in conjunction with high compression ratio, and reli-
able data restoration offers an attractive option for the data
processing of sensors in SCS.

It should be noted that the scheme also has limitations.
Experiments conducted on the MIT-BIH arrhythmia database
showed that the highest lossy CR was 10.38×, and the lowest
lossy CR was 2.71×. It showed large fluctuations compared
to the average value of 5.12×. After inspection, it is found
that the dataset numbered 107 corresponding to the lowest
lossy CR fluctuates very sharply. Therefore, it can be con-
cluded that the compression effect of the proposed scheme
is not ideal for the situation of sharply volatile data. We will
try to find a more suitable method to deal with the sharply
volatile data in future.
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