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ABSTRACT Let R = Fp + ulF, + vIF, + uvlF; be a finite non-chain ring, where w2 =u, v = v, uv = vu.
We give the lower and upper bounds on the covering radius of different types of repetition codes for Chinese
Euclidean distance over R. Furthermore, we determine the upper bound on the covering radius of block
repetition codes, simplex codes of types « and 8, MacDonald codes of types & and 8 for Chinese Euclidean

distance over R.

INDEX TERMS Covering radius, repetition codes, simplex codes, MacDonald codes.

I. INTRODUCTION

In 1994, Hammons et al. in [1] discovered that the best known
nonlinear binary codes can be constructed by cyclic codes and
Gray map over Z4. After this work, the coding theory over
finite rings has attracted great attention from coding scholars.
In order to obtain optimal codes over finite fields, many
important research results have been determined by studying
linear codes with special structures over finite rings [2]-[5].
Furthermore, the research on Z,Z,[v]-additive cyclic codes
has also achieved some good results [6], [7].

The covering radius is an important geometric parameter
that characterizes the maximum error-correcting capability
of codes. Particularly, for codes applied in data compres-
sion, the covering radius is a measure of maximum distor-
tion [8]. Therefore, the covering radius of codes has become
a research hotspot in recent years. In 1978, Helleseth et al.
in [9] studied the upper bounds on the covering radius of
binary codes. In 1985, Cohen et al. in [10] and Graham et al.
in [11] further studied the covering radius of binary linear
codes and obtained some new results, respectively. Moreover,
Levitin et al. in [12] discovered that the covering radius
is used to upperbound the weight of zero neighbors in
solving the minimum distance decoding problem. In 1999,
the covering radius of codes over Z4 for Lee distance and
Euclidean distance was studied in [13]. Later, Pandian et al.
in [14] studied the covering radius of codes over Z4 for Chi-
nese Euclidean distance. The covering radius of codes over

The associate editor coordinating the review of this manuscript and

approving it for publication was Byung-Gyu Kim

Zs + uZy with u? = 0 for Lee distance, Euclidean distance
and Chinese Euclidean distance was studied in [15], [16].

Recently, the covering radius of codes over finite non-chain
ring has been studied. In 2015, the covering radius of codes
over Fp + vIF, for Lee distance was studied in [17]. Later,
Gao et al. in [18] studied the covering radius of repetition
codes, simplex codes and MacDonald codes over [y + vIFy
for Chinese Euclidean distance. Furthermore, Li ef al. in [19]
studied the covering radius of repetition codes, simplex codes
and MacDonald codes over F,R for Chinese Euclidean dis-
tance, where R = [, + vIF,.

Moreover, repetition codes are the simplest type of linear
block codes with good error-correcting capability and have
important applications in communication systems. Every
nonzero codeword of the r-dimensional simplex code over
finite field IF; has weight ¢" ~1 and the simplex codes meet the
Griesmer Bound. The MacDonald codes are punctured codes
of the simplex codes and have many wide applications in
authentication codes, association schemes and secret sharing
schemes [20]-[22]. Therefore, it is very significant to study
repetition codes, simplex codes and MacDonald codes. Until
now, the research of different types of linear codes over
R = Fy + ulFy + vy 4+ uvF, has achieved many good
results, where u? = u, v = v, uv = vu. However, few
coding scholars studied the covering radius of linear codes
over R for Lee distance, Euclidean distance and Chinese
Euclidean distance. Motivated by [18] and [19], we first
consider the covering radius of repetition codes, simplex
codes and MacDonald codes over R for Chinese Euclidean
distance.
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The paper is organized as follows. In Section II, some basic
results and the covering radius of codes for Chinese Euclidean
distance over R are given. In Section III, we determine the
lower and upper bounds on the covering radius of different
types of repetition codes over R. In Section IV, we determine
the upper bound on the covering radius of simplex codes of
types « and g8 over R. In Section V, we determine the upper
bound on the covering radius of MacDonald codes of types «
and B over R. Section VI concludes the paper.

Il. PRELIMINARIES
Let R = Fy 4+ ulFy + vIFy + wvlF, be a finite commutative

ring with characteristic 2, where W= u, v = v, uv = vu.

Clearly, R is isomorphic to the quotient ring Fa[u, v]/(u? —

u, v? — v, uv — vu). Moreover, it is easy to observe that R is a
Frobenius ring but not a local ring or a chain ring.

Definition 1: A linear code C of length n over R is an R-
submodule of R”".

For any r € R, there exist a, b, ¢, d € [, such that r can
be expressed as r = a + ub + vc + uvd. Define a Gray map

¢ from R to [F; as follows:
0:R— I,
at+ub+ve+uwdv— (a+b+c+d,a+c,a+b,a).

In [23], the authors described the notion of a Chinese
Euclidean weight. For any x = (xg,x1,--- ,Xx,—1) € IF’;
the Chinese Euclidean weight of x is defined as wcg(x) =
Z;:ol {2 - 2cos(¥)}. Applying the conditions to the ring R
and Gray map ¢, for any » € R, the Chinese Euclidean weight
of r is defined as

weg(r)
0, r=0;
2, r=u,v+uv,ut+uv,l +u-+v-+uv
=14, r=uv,14+u,14+v,u+v,1+u-+v;
6, r=14w,l14+v+uv,l +u+uv,u+v-+uy,

8, r=1.

The Chinese Euclidean weight of (rg, ry, -+ ,r—1) € R"
is defined as Z;:ol wcg(r;). For any two distinct code-
words ¢y, ¢; € C, the Chinese Euclidean distance is
defined as dcg(ci,c3) = wceg(cr — ¢3). The minimum
Chinese Euclidean distance of C is defined as dcg(C) =
min{dcg(c1, ¢2)|lc1 # ¢2,¢1,¢2 € C}. Clearly, for a linear
code C, dcg(C) = min{wcg(¢)|0 # ¢ € C}. If C is a linear
code of length n over R with the number of codewords M and
the minimum Chinese Euclidean distance dcg, then we call
itan (n, M, dcg) code.

Definition 2: Let C be alinear code of length n over R. For
any y € R", the Chinese Euclidean distance between y and C
is defined as

dce(y, C) = min{dce(y, x)|Vx € C}.

The covering radius of C for Chinese Euclidean distance is
defined as

rce(C) = max{dce(y, C)|Vy € R"}.
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TABLE 1. Repetition Codes of Length n over R.

Repetition| Generator Matrix Parameters  of
Codes Repetition Codes
n
C1 (ﬁ) (n,16,2n)
n
Cs (@) (n, 4,2n)
n
Cs ({;‘.’.‘?) (n, 4,2n)
Cu (v D) (n,2,2n)
n
Cs (Fu-110) (n, 4,2n)
n
Cs (m} (n,4,2n)
n
Cr (M) (n,8,2n)
n
Cs (m) (n,8,2n)
Cy (M) (n,2,2n)
n
Cio (M) (n,2,2n)
n
C11 (1+u+11-~~n1+u+v) (n,4,2n)
Ci2 I4+u+tuwv--14u+uv) (n,8,2n)
n
Ci3 (1+v+uv~;l'1+v+uv) (n,8,2n)
C1a (u+v+uv--~u;}—v+uv) (n,8,2n)
C1s l+u+vtuv---1+ut+v+uw) |(n,2,2n)

The following result of Mattson plays an important role in
computing the covering radius of linear codes over R.

Proposition 1: [10] Let Cy and C; be linear codes over
R generated by matrices Gy and Gy, respectively. If C is the
linear code generated by

0 |Gy
Gol A

then rz(C) < rg(Co) 4 r4(C1) and the covering radius of D,
containing of Cp and C1, satisfies r4(D) > ry(Co) + rg(Cy)
for all distance d.

lll. COVERING RADIUS OF REPETITION CODES
In this section, we consider repetition codes of length n over
R. There are two types of repetition codes of length n over
R. One type is the unit repetition code Cj, the other is zero
divisor repetition code C; for 2 < i < 15. We list them in
TABLE 1.

The following result gives the lower and upper bounds on
the covering radius of repetition codes C;(1 < i < 15) of
length n over R.

Theorem 1: 64| 1¢] < rce(C1) < 4n, 2n + 32| 7] <
rce(Cy) < 6n, 2n + 32|_ﬁj < rce(C3) < 5n, 2n +
34[ 7] < rce(Cq) =< 7Tn, 60l1z] < rce(Cs) < on,
60[17] =< rce(Cs) =< 6n, 58171 < rce(C7) <=
5n, 2n + 32| 17] < rce(Cs) < 6n, 2n + 34[{7] <
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rce(Co) < Tn, 2n + 34|17 < rce(Cio) < n, 60|{3] <
ree(Cn) < 6n, 5818 ] < rep(Cr) < 5n. 58L& <
rce(Ciz) < 5n, 2n + 30[yz] < rce(Cia) < 5n,
2n+ 34| {7] < rce(Cis) < Tn.

Proof See the appendix.

In the following, in order to get the upper bound on the
covering radius of simplex codes of types « and S over R,
we give the definition of block repetition codes.

Let BRep” be a block repetition code generated by

ni

n n3 ny ns

——— ——
G=|1-1u- v - Dw - wl+tu-1+u

ne ny ng

I+v---l4+vli4+uw---l4+wu+v---u+v

ng nio

u+uv---u+uv+uv---v+uy

nit ni2
l4u+v---14+u+vli+u+u---1+u+uv
n3 ni4
l14+v4+uv---1+v4+uvu+v4+uv---u+v—+uy
nis

l4u+v+u---1+u+v+uv],

where n = leil n;. Then, we have that BRep" = {uGlu €
R}.
Theorem 2: The upper bound on the covering radius of
BRep" is given by
rce(BRep") < 4ny 4 5(n7 4 n13 + ni4) + 6(ns + ng
+ng+ng+ny+np)+7m+n3+ng
+ng9 + nyo + n15),
where n = Z}il n;. Particularly, if ny = np = ---

then rcg(BRep™) < 91n.
Proof Let

= ns,

x = (x1lx2|x3|xqlxs|xslxlxg|xolx10lx11|X12[X13]%14]
X15) € R",

where x| has positions ¢;(0 < i < 15), x has positions
bi(0 < i < 15), x3 has positions d;(0 < i < 15), x4 has
positions ¢;(0 < i < 15), x5 has positions f;(0 < i < 15), x¢
has positions g;(0 < i < 15), x7 has positions /;(0 < i < 15),
xg has positions j;(0 < i < 15), x9 has positions k;(0 <
i < 15), x10 has positions /;(0 < i < 15), x1; has positions
m;i(0 < i < 15), x12 has positions r;(0 < i < 15), x13 has
positions #(0 < i < 15), x14 has positions p;(0 < i < 15),
x15 has positions g;(0 < i < 15), satisfying Z,li a; = ny,
S Pobi = m, Y Podi = n3, Y120 ei = na, Y0 fi = ns,
S P08 = ney Yiohi = m, Ylodi = ns, Yioki =
15 _ 15 — 15 —

ng, > :2oli = nmo, Y Zomi = nu, Y2t = n,
S0t =n13, Y20 pi = nias Yoo Gi = nis.

According to the proof process of Theorem 1, we get the
expressions of Ay, By, Dy, Ey, Fo, Gy, Hy, 1y, Jo, Ky,
Ly, My, Ry, Ty, Py, Q- In the following proof process, for
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convenience we need to use the above expressions, but the
subscript w should be replaced with other letters, for example
Aqg =n1 —aog + 7a1 + 3ar + 3a3 + a4 + 3as + 3ag¢ + Sa7 +
3ag + a9 + ayo + 3ai + Saiz + S5a13 + Saya + ais (replace
o withain A, Zilio a; =ny).

Since BRep" = {co =0-G,ci1 =1-G,co =u-G,c3 =
v-Goea=uw-G,ecs =0+u) -Gcg=0+v)-G,c7 =
14+u)- -Gyeg = w+v)-Gyecg = u+uv)-G,cro =
v4+uw)-G,c11 =1 +u+v)-G,c12 = (14+u+uv)-G, c13 =
(14+v+uv)-G, ci4 = u+v+uv)-G, c1s = (1+u+v+uv)-G},
then we have that

dce(x,c0) = Aa+Ap +Aq +Ac +Ar +Ag +Ap +Aj
+A+A AR+ A+ A A+ A
dcex,c1) = Ba+Dp+Eq+ Fe+ G + Hg + I + Jj
+Ki + L+ My + R +Ti + Py + Q.
dce(x,¢2) = Do+ Dy + Fg + Fe + Ar + Ky + K + K;
+Ki+ A+ Fp+Fr+D, +Dy+A,.
dep(x, ¢3) = Eq+ Fp+ Eq + Fo + L + Ag + Ly + L,
+Ar+Li+Fy,+E +F +E, + A,
degx,ca) =Fg+Fp+Fg+Fe+Ar + Ay +Ap + A
+Ar+A +Fy+Fr+F + Fp + Ay
dcegx,c5) = Go+Ap+ Ly +Ac +Gr + Q0 + G + Lj
YA L+ On+Gr + 0+ Ly + Q.
dce(x,c6) = Hy +Kp +Ag +Ac + Of + Hy + Hy, + K;
+ K+ A+ On+ 0 + H + Ky + Q.
dcex,c7) =1, +Kp +Lg +Ac + Gy +Hg + 1 + J;
+ Kk + Li + Om + Gr + Hi + Jp + Qg
dcex,c8) =Jo+Kp+Lg +Ac+ Ly +Kg +Jp + Jj
+Ki +Li+Ap +A + K +Jp + Ay
dcgp(x,c9) = Ky +Ap +Ag +Ae +Ar + Ko + Kj + K
FKi+A +An+ A+ K + Ky + A,
dcp(x,c10) = Lo +Ap+Ag +Ac + Ly +Ag + Ly + L
+Ar+ L +Ay+ L + A + L, + Ay
dep(x,c11) =My + Fp+Fg+ Fe+ Qf + Qg + On + A
F AL+ AL+ My + M, + M, +Fy + Q.
dcg(x,c12) =Ry +Fp+ Eq +Fe + Gr + Qg + G + L
FA L+ My + R, + M + E, + Q.
dcg(x,c13) =To+Dp+Fg+ Fe + O + Hg + Hp + K;
+ Ki + A+ My + M, + T, + D, + Q.
dce(x,c14) = Pyo+Dp+Eq+ Fe+ L + Ky + Jp, + Jj
+Ki+L+Fu+E +D; + P, + A,
dcex,c15) = Qu+Ap +Ag +Ae + Qr + Qg + On + Aj
+Ac+A+O0n+0r +0r +4,+ 0y

VOLUME 9, 2021
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Therefore,

dcg(x, BRep™)
= min{dcg(x, o), dce(x, c1), dce(x, c2),
dce(x, c3), dce(x, c4), dce(x, ¢s), dcg(x, c6), dcg(x, ¢7),
dce(x, cg), dce(x, ¢9), dcg(x, c10), dce(x, c11), dce(x,
c12), dce(x, c13), dce(x, c14), dce(x, c15)} < 4ny + S5(n7
+n13 + n14) + 6(ns + ng + ng + ng +ny1 +np2) + 7(n2
+n3 + ng + ng + nyg + n15).

This means that

rce(BRep") < 4ny + 5(n7 4+ ni3 + nia) + 6(ns + ne + ng
+n9 +n11 +n12) + 7(ny +n3 +ng + ng

+ni0 + nis).
Let BRep™ be a block repetition code generated by
my my ]
o= <T1”71+u+v 1+u+v)

where m = mj + mp 4+ m3. Then, we have that BRep" =
{yGly € R}. Similar to the proof process of Theorem 2,
we can directly obtain the following result.

Theorem 3: The upper bound on the covering radius of
BRep™ is given by

rcg(BRep™) < 4my + Tmy + 6ms3,
where m = m; + mo + ms.

IV. SIMPLEX CODES OF TYPES « AND 8 OVER R

A type a simplex code SY is a linear code over R. The
generator matrix Gy of SY' is constructed inductively. Let G}
be a k x 2* matrix over R. Let

Gf = (A1]A2]45]A4),

Al=0 1 u 14+w, A= w (A+uy 14v),
Ay = (4w 14++wyw u+v u+tw), Ay =
wu+A+uwy 14u+v l4+u+uw 14+u+A4+uyv).
Then Gy is constructed inductively as follows
0 | |--[|[1CucC (1 Cu)v |
G i e S B

where 0,1,1 Cu C (1 C u)v are denotedas 0---0, 1---1,
I+u+A+uv---14+u+ (1+ u)yv. The bold characters
below have the same meaning.

A type B simplex code S, is a linear codes over R con-
structed by omitting some columns from Gy. Let Ax be a

4k 2k .
kx 2 52 matrix over R. Let

)q:(lul—i—uv)

and
Ay = (Bi|B2),

B — 0|1 |ul1Cul|v

' \aletfet] 6t f6f )

B — 1C(1Cu)|luCuv[1CucCy
2= A ‘ A ‘ A ’

where
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Then A is constructed inductively as follows
Ak = (C 1 ‘Cz)

c ( 0| 1| u [1Cu| v )
] b
1 [GEL [GE [ GE [y
c _(IC(ICu)quuVICqu)
* M-t | M-t | Ak ’

where

matrix over R. Let

Let§; beak x 24k§22k
81=(1u 1+u1+u+v)
and

8 = (Di|D2),

O/1|u|l1Cu
Dl:((s] GRS )
_(1CucCv|vy uv(lCu)v)
b= (RGBS

where

Then §y is constructed inductively as follows

O = (EI‘E2),

0| 1| u 1Cu>
E| = ,
] <5k I‘Gk I‘Gk ]‘Gk 1

E _<1Cqu uv(lCu)v)
27 k-1 [8k—1] Sk—1

where

Let Gk be a k x (2 —1)2 generator matrix of Sf . Let
Gf = ( ) and

o — 1[0[v[1CuCy
2 G‘f ‘ 1 ‘51 ‘ A ’
Then G,’f is constructed inductively as follows

Gﬂ_< 1| o0 | 1Cqu>
o Ggfl‘Glffl‘ak_l‘ M1

(@)

Theorem 4: rcp(S%) < 91(2522) 4 96.

Proof By using the computatlonal algebra system
Magma [24], we get that rcg(S]) = 96. Next, we prove this
result by induction on k. Firstly, we have rce(ST) = 96 for
k = 1, which is consistent with our calculation. Secondly,
assume that the result holds for k — 1, ie., rce(Sy_;) <
91(&) + 96. Finally, we prove that the result holds
for k, i.e., rep(S%) < 91(2=2) 4 96.

According to Eq. (1), Proposmon 1 and Theorem 2,
we have that

24k=D a1y

N —
rce(Sy) < reeSg_) +rce(---1u---u
24k=1) 24k=1)  p4(k—1)

f_ig—ﬁf_/;
T4u---1+uv--Vuv---uv

47671



IEEE Access

F. Ma, J. Gao: Bounds on Covering Radius of Some Codes Over F, + uF; + vF, + uvF,

H4k—1)

A4+wv---Ad+uwyvl+v---14+v
24k—1) 24(k—1)

l4+uwl+A+wyv---1+{+uyv
24k—1)

24k—1)

I+uv---
H4(k—1)

u+v

U+vu—+uv---u-+uv

Q4(k—1)

u+{A4+wy---
24tk—1)

u—+ 1+ uwv

1+u+v---14+u+v
24tk—1)

1+u+uv
24k—1)
Il+u+{T4+uy---14+u+ 14+ uyw)
< 912*K=D 424D 4 2% 496
24k _24
=91(———
( 15

14+u+uv---

) + 96.

Theorem 5: rce(SF) < 5(2552) — 13252 + 106.
Proof By using the computational algebra system
Magma [24], we get that rcg (SéS ) = 106. Next, we prove this
result by induction on k. Firstly, we have rcg(S, 4 ) = 106 for
k = 2, which is consistent with our calculation. Secondly,
assume that the result holds for k£ — 1, i.e., rCE(Sk D=
(24(k ;) 28)— 13( 2 9” 24)—I— 106. Finally, we prove that the
result holds for k, i.e., rce(SY) < 5(352) — 13(E52) +
106.

According to Eq. (2), Proposition 1 and Theorem 2,
we have that

=1y 2D 261
3

—— —_
"CE(SE) < rCE(S]/?_l) Free(@- 1 T
24(1<—I)_22(k—l)
2= _g2%—1)
I4+u+v---14+u+v)),
8 24(k—1) _ 22(k—1)
< rep(Sp_ ) +4- 280D 4 7(f)
24(k—1) _ 22(k—1)
)
25 13
= reeSP_ )+ = .24<k—1> - . 92(k=1)
< Boren oy gy B
=3 3
+22%%) + 106
24k _ 28 22k Y
= 5( ) —13( ) + 106.

9

V. MacDonald CODES OF TYPES « AND 8 OVER R

The MacDonald codes of type « over R can be constructed
from the generator matrix G} of simplex code S;’. For 2 <
u<k—1,1let G%q , be the matrix obtained from Gy by deleting
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columns corresponding to the columns of G%, i.e.,
o oy 0
Gk,u = (Gk\G_‘L’j’ )

where (A\B) denotes the matrix obtained from the matrix A
by deleting the matrix B and 0 is a (k — u) x 2*" zero matrix.
Definition 3: A linear code C}, generated by Gy, is
called a type @ MacDonald code.
The MacDonald codes of type B over R can be constructed
from the generator matrix Gk of simplex code sP k For 2 <

u<k—1,let Gﬂ be the matrix obtained from Gk by deleting

columns correspondlng to the columns of Gf ,1.e.,

6l =(G\g)

where (A\B) denotes the matrix obtained from the matrix A
by deleting the matrix B and 0 is a (k — u) x (2 —1y2
matrix.

Definition 4: A linear code C,gu
called a type § MacDonald code.

Theorem 6. rCE(Ck D =< 9K
u<r<k.

Proof Since 2 < u < r < k, then the minimum
value of k is 3. Next, we prove this result by induction on
k.If k = 3, then k = r and rce(C5,) = rCE(Cé)‘u)
which is consistent with the above result. Assumln%’ thitt the
result holds for k — 1, ie., rex(CE_, ) < 912"
rCE(C - Finally, we prove that the result holds for k, i.e.,
res(Ce) < D) 4 rep(CE,).

Accordmg to Proposmon 1 and Theorem 2, we have that

Z€1r0

generated by Gf’u 1s

241(

) + I’CE(C . for

24k=D a1
N ——
rce(Cy ) < ree(C_y ) +ree(---1u---u
24k=1) k1) Hd(k—1)
—— T — ——
I+u---1+uv---vuy---uv
24(k—1) 24k—1)

I+wuwyvl+v---14v
p4tk=1)

1+ +uwv

14+wv---
24tk—1)

l+uv---14+uwl+{A+uyp---

24(k—1) 24(k—1)

u+v---ut+vut+uv---

24k—1)

u -+ uv

u+ (1 4+uwv---
24(k—1)

u—+ (1 +uy

1+u+v---14+u+v
H4(k—1)

14+ u+uv
Q4k—1)

l+u+uv---

l4+u+A+wy---14+u+ 1+ uw)
+rce(Cr,)
4k _ H4r

=91(———

=)+ ree(CE).
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24k 724r 22k 722!

Theorem 7: rcp(CL,) < 53520 — 13(552E) +
rCE(Cﬁu) foru <r <k.

Proof It is clear that the minimum value of & is 3. Next,
we prove this result by induction on k. If & = 3, then
k = r and rCE(C;iu) = rCE(Cﬁu), which is consistent
with the above/:3 result. Assun}& Ellgat the result hg)(]lglls) for k —
L ie, ree(Cp_y,) < 5(—=-) — B—=%) +
rCE(Cf «)- Finally, we prove that the result holds for k,
. o 24k _nar 2%k _

1.e., rCE(Ck,u) < 5(

2r
720 — 135520 + rep(Ch).
According to Proposition I and Theorem 2, we have that
pH-t) =D 261
3

—s —
ree(CL,) < ree(Cly ) +rep(-1 V7Y

SAk—1) _p2(k—1)
3

l4+u+4+v---14+u+v)),

A

< rCE(Cf,Lu) + 4. 24k=D)
24(k—1) _ 92(k—1) 24k=1) _ 52(k—1)
+7( )+ 6( )
3 3
25 13

= rCE(C;i]’M) + 3 L pAk=1) _ 5 . 2(k=1)
< §(24(k—1) NI 24r) _ 2(22(](_1) ..
=3 ;

+27) + reg(CP )

PR 2%k _ p2r

=5(—5 ) - 1B(—5—)+ rce(CP).

VI. CONCLUSION

In this paper, we study some upper bounds on the covering
radius of repetition codes, simplex codes and MacDonald
codes for Chinese Euclidean distance over R = I, + ulF, +
vy + wlFy with u? = u, v = v, uv = v Unfortunately,
the lower bound on the covering radius of these codes is not
given. This will be our follow-up research direction. Further-
more, research on the covering radius of repetition codes,
simplex codes and MacDonald codes for different distances
over I, + ulF, + vF, + wlF, will be an open interesting
problem in the future, where p is an odd prime.

APPENDIX
Proof of Theorem I  Let
xu
N s s N
——— —_——— ———— - —
={,...,L,v,....,vuv,...,uv, 1 +u,...,14+u,
N N S

14+v,...;,14+v,14+uv,....,14+uv,u+v,...,u+v,

N \y

ut+uv,...,v+uv,v4+uv,...,v-+uv,

N N
l4+u+v,...;,14+u+v,14u+uv,...,1+u+uv,
N N
l+v4+uv,...,14+v4+uv,u+v+uv,...,u+v+uy,

n—13s

1—|—u+v+uv,...,1+u+v—|—uv)eR”,s=L%J.
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The code C; = {(0,...,0), (u,...,u), wv,...,uv), (u +
uv,...,u+ uv)} generated by (u---u) is an (n, 4, 2n) code.
Then
dcg(xy, 0, ...,0)) = 2n + 32s,
deg(xy, (u, ..., u)) = 6n —24s,
deg(xy, (uv, ..., uv)) = 4n + 4s,
dee(xy, (u+uv, ..., u+uv)) = 4n+ 4s.

Therefore,
dce(xy,, C2) = min{2n + 32s, 6n — 24s, 4n + 4s}.
According to the definition of covering radius, it follows that
rce(Ca) > 2n + 32s.

Lety be any element of R"” with wg coordinates as 0’s, w;
coordinates as 1’s, w, coordinates as u’s, w3 coordinates as
V’s, w4 coordinates as uv’s, ws coordinates as (1 + u)’s, weg
coordinates as (1 4+ v)’s, w7 coordinates as (1 + uv)’s, wg
coordinates as (u + v)’s, wg coordinates as (u + uv)’s, wig
coordinates as (v + uv)’s, w1 coordinates as (1 4+ u + vu)’s,
w1y coordinates as (1 + u + uv)’s, w3 coordinates as (1 +
v + uv)’s, wi4 coordinates as (u + v + uv)’s, w15 coordinates
as (1 + u + v + uv)’s. Then Z}io w; = n. Since Cy =
{0,...,0),(u,...,uw), (v, ..., uv),(u + uv, ..., u + uv)},
then we get that
dce(y, (0, ...,0))

=n—wy+ Tw1 + 3wy + 3w3 + w4
+ 3ws + 3we + Sw7 4 3wg + w9 + w1 + 3wi1 + Swi2
+5w13 + Swi4 + w15,
dce(y, (u, ..., u)
=n+ 3wy + 3w — w2 + 3wz + w4
Tws 4+ 3we + Sw7 + 3ws + w9 + Swio9 + 3w11 + Swi2
+ w13 + w14 + Swis,
dce(y, (uv, ..., uv))
=n+wo+Sw; + w2+ w3 — wy
Sws + Swe + Tw7 + Swg + 3w9 + 3w19 + w11 + 3w12
+ 3wi3 + 3wig + 3wis,
dce(y, u+uv, ..., u+uv))
=n+wy+ Sw; + @y
+ S5w3 + 3w4 + Sws + wg + 3w7 + wg — w9 + 3wig
+S5wi1 + Tw1z + 3w13 + 3wi4 + 3wis.

Therefore,

dce(y, C2)
= min{dce(y, (0, ...,0)),dce@, (u, ..., u)),
dce(y, v, ..., uv)),dcg(y, u+uv, ..., ut+uv))} < 6n.

As a consequence,

2+ 32L1n—4j < rep(Cy) < 6n.
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Similar to the proof process of rcg(C>), we can get 2n +
3215 < rce(C3) < 5m,2n + 34| f4] < rep(Cy) < Tn,
60l 17 =< rce(Cs) < 6n, 60l17] < rce(Cs) < 6n,

S8144) < rce(Cr) < 5n, 2n 4 32|45 < rcp(Cs) < 6n,
2n+34| {71 < rce(Co) < Tn,2n+34| {71 < rce(Cro) < 7n,
60[{7] < rce(Cn1) =< 6n, 58|17 =< rce(Cr2) < 5n,
58 13) < rce(Ci3) < 5n, 2n + 30|17] < rce(Cia) < 5n,
2n + 34| {71 < rce(Cis) < 7n, so we omit them.

Let z be any element of R". Then we have that

dce(z, (0,...,0)
=n—wo+ 7o) + 3wy + 3w3 + w4
+3ws + 3w + Sw7 + 3w + w9 + w19 + 3w + Swin
+5w13 + Swi4 + w15 = Ag,
dce(z, (1,...,1))
=n+"Twy — w1 + 3wz + 3w3 + Swa
+3ws + 3w + w7 + 3ws + Swy + Swio + 3011 + w12
+ w13 + w14 + Sw15 = B,
dce(z, (u, ..., u)
=n+3wo+ 3w —wy +3w3 + w4
+Tws + 3we + Sw7 + 3wg + w9 + Sw10 + 3011 + Swi2
+ w13 + w14 + Swi15 = Dy,
dce(z, (v, ..., V)
=n+3wy+ 3w + 3wy — w3 + ws
+3ws + Twe + Sw7 + 3ws + Swg + w10 + 3wi1 + w12
+5w13 + w14 + 5015 = E,,.
dce(z, (v, ..., uv))
=n+wo+Sw1+w+ w3 —ws
+ 5ws5 + Swe + Tw7 + Swg + 3wg + 3wig + w11 + 3w12
+3w13 + 3014 + 3015 = F.
dee@, (1 +u, ..., 1+u)
=n+ 3wy + 3w + Twn
+3w3 + Sw4 — w5 + 3we + @7 + 3wg + Swg + wio
+3wi1 + w12 + Sw13 + Sw14 + 015 = Gy
dee@, (14+v,...,14+v))
=n+3wo + 3w + 3w
+7w3 + S04 + 3ws — we + w7 + 3wg + w9 + Swio
+3w11 + Sw12 + w13 + Swis + w15 = Hy.
dep(z, (1 +uv, ..., 14+ uv))
=n+ 5wy + w1 + Sw
+ 503 4 Tws + 05 + w6 — w7 + wg + 309 + 3wi0
+5wi1 + 3wi2 + 3wi3 + 3wi4 + 3015 = 1,.
dee@, (w+v,...,u+v))
=n+ 3wy + 3w + 3wy
4+ 3w3 + Swq + 3ws + 3w + w7 — wg + w9 + wio
+7w11 + Sw12 + 5Sw13 + w14 + Sw15 = J,,.
dee@, (u+uv, ..., u+uv)
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=n+wo+ Sw; + w2
+ S5w3 + 3w4 + Sws + wg + 3w7 + wg — w9 + 3wig
+5wi1 + 7wz + 3w13 4+ 3wia + 3w15 = K.
dce@@, v+uv, ..., v+ uv))
=n+wo + Swi + Sw;
+ w3 4+ 3wq + ws + Swg + 3wy + wg + 3w9 — wig
+5w11 + 3wi2 + Tw13 + 3wi4 + 3wis = Ly.
degz,(1+u+v,....,1+u+v)
=n+ 3wy + 3w
+ 3wy + 3w3 + wq + 3ws + 3wg + Sw7 + Twg + Swy
+5w10 — w11 + w12 + w13 + Swia + w15 = M,,.
dee@@, (1 +u+uv,....1+u+uv)
=n+ 5wy + w;
+ 5wy + w3 + 3ws + ws + Swe + 3wy + Swg + Twg
+3wi0 + w11 — w12 + 3w13 + 3wia + 3wis = Ry.
dee@, (1 +v4uv, ..., 1 +v+uv))
=n+ 5wy + w;
+ wr + Sw3 + 3wyq + Sws + we + 3wy + Swg + 3wy
+7w10 + @11 + 3012 — 13 + 3wi4 + 315 = T,
deg@, w+v+uv,...,u+v+uv)
=n+Swy + o
+ w2 + w3 + 3ws + Sws + Swe + 3w7 + ws + 3wo
+3wi0 + 5w11 + 3wi2 + 3wz — w14 + Twis = Py,.
depz, (1 +u+v+uv, ..., 1 +u+v+u)
=n+ wo

+5w; + Swr 4+ Sw3 + 3ws + w5 + we + 3w7 + Swg + 3wy

+3w10 + 3w11 + 3wi2 + 3w13 + Tos — 015 = Q.
Therefore,

dce(z, C1)
= min{Aa)7 Bw’ Dwa Ew’ F(,L)’ Ga)’ H(,L)’ Ia)a Ja)a
Ko, Ly, My, Ry, Tey, Poy, O} < 4n.

Let

X1

! t t t t

— T e —— ——
=(,...,0,1,... ULV, .V UYL, U,

,Lou, ...
t t t

1+u,....,14u,14v,....,14+v, 1 +uv,..., 1 +uv,

1 t t

u+v,...,u+v,utuv,...,v+uv,v+uv,...,v-+uy,
t t

l4u+v,....,14+u+v,14+u+uv,...,1 +u—+uv,
t t

l1+v4+uv,...,1+v+uw,u+v+uv,...,u+v-+uv,
n—13s

1+u+v4+uv,...,1+u+v+uv) eR", = Lln_éj'
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Then we have that

dee(x1,(0,...,0) = 2n + 32¢,
dce(xy, (1,...,1)) = 6n — 32¢,
dee(x1, (u, ..., u)) = 6n — 32t
dcg(x1, (v, ..., v)) = 6n— 321.
dcg(x1, (uv, ..., uv)) = 4n,
dep(xi, (1 4+u, ..., 1+u) = 2n+ 321,
dep(er, 1 +v,...,1+v) = 2n+ 32t
dee@er, (L+uv, ..., 1 +uv)) = 4n,
dcg@x1,(u+v,...,u+v)) = 6n—32¢,
depGr, u+uv, ..., u+uv)) = 4n,
dep@er, +uv, ..., v+uv) = 4n,
dee(xi, 1 4+u+v,...,1+u+v) =2n+32¢,
deg@i, (1 +u+uv, ..., 1 +u+uw)) = 4n,
deg(xi, (T4+v+uv, ..., 1 +v+u)) = 4n,
dep(xy, W+v+uv, ..., u+v+uy)) = 8n — 64t,
dee@l, (1 +u+v+uv, ..., 1 +u+v+u)) = 64¢.

Therefore,

dcg(x1, C1) = min{2n + 32t, 6n — 32t, 4n, 8n — 64t, 64t}
> 64¢.

This means that 64| {¢ | < rcg(C1) < 4n.

Next, we give the Magma calculation program for rcg (S7).

Similarly, we can get rcg (Sf ).

procedure inc_adic(~v,n, adic)
vin]:=v[n]+1;

for i:=0~to n—2~do

if v[n—i] ne adic then

break ;

end if;

vin—i—1]:=v[n—i —1]+1;

vin—i]:=0;

end for;

end procedure;

F:=GF(2);
P<u,v>:=PolynomialRing (F,2);
R<u,v>:=quo<Plu2—u,v*2—v , uxv—vku>;
function weight(c,n)

wt:=0;

for i:=1~to n do

if c[i] in [u,l+u,v,l1+v,u+v,1+u+v]
then wt+:=4;

elif c[i] in [uxv,(l+u)*v,u+ux*xv,
l1+u+(l+u)*v] then wt+:=2;

elif c[i] in [l4+uxv,1+(1+u)*v,u+(l+u)*xv,
l+u+uxv] then wt+:=6;

elif c[i] eq $1$~then wt+:=8;

end if;

end for;
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return wt;

end function;

function weight(c)

wt:=0;

if ¢ in [u,l+u,v,l1+v,u+v,1+u+v]

then wt:=4;

elif ¢ in [uxv,(l+u)xv,u+u*xv,l+u+(l+u)*xv]
then wt:=2;

elif ¢ in [l+uxv,1+(1+u)*xv,u+(l+u)*v,
l+u+uxv] then wt:=6;

elif ¢ eq $1$~then wt:=8;

end if;

return wt;

end function;

Rset:=[RI0,1 ,u,l+u,v,uxv,(1+u)*v,1+v,
I+usxv,1+(1+u)*xv,u+v,u+u*xv,u+(l+u)*v,
1+u+v,l+u+uxv,l+u+(l+u)*v];

n:=#R;

G:=Rset;

C:=[1];

for r in Rset do
c:=[1;

for i:=1~to n do
cli]:=rxG[i];

end for;

Include (~C,c);

end for;

vec:=[];

for i:=1~to n—1~do
vec[1]:=0;

end for;

vec[n]:=1;

RC:=0;

while vec[1] ne n do
y:=[1;

for i:=1~to n do
y[i]:=Rset[vec[i]+1];
end for;

if y in C then
inc_adic(~vec,n,n);
continue ;

end if;

dyc:=8%n;

for ¢ in C do

d:=0;

for i:=1~to n do
d+:=weight(y[i]—c[i]);
end for;

if d 1t dyc then
dyc:=d;

end if;

end for;

if dyc gt RC then
RC:=dyc;

printf "R(C)=

for i:=1~to n do
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pri
end
pri
end
inc
end

ntf "
for;
ntf "]J\n";
if;
_adic(~vec,n,n);
while ;
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