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ABSTRACT The technology of vital signs detection has been proven of great use, whereas it is still limited by
several challenges. One of the major challenges is the random body movements (RBMs), which significantly
degrade the accuracy of the measurement. In this paper, a multi-channel 77GHz linear frequency modulated
continuous-wave (LFMCW) radar system is investigated to perform vital signs monitoring on multiple
targets with the mitigation of RBMs and a novel vital signs detection scheme is provided for the accurate
estimates of the respiration rate (RR) and heart rate (HR). In the proposed scheme, a multi-channel Kalman
smoother is firstly proposed to address the outliers in the extracted phase histories from the echoes in the
multiple receivers, so that enhanced outlier-robust phase histories are acquired for the subsequent estimates
of the RR and HR. Furthermore, a novel regional hiddenMarkovmodel is then proposed to carry out accurate
estimates of RR and HR by exploiting the underlying slowly-varying characteristics of these vital signs for
further mitigation of the effects of RBMs. Experimental results demonstrate that the estimated errors in the
proposed scheme are less than 2 beats per minute (bpm) for both RR and HR under normal scenarios with
young men in the RBMs environment.

INDEX TERMS Non-contact vital signs detection, linear-frequency-modulated continuous-wave (LFMCW)
radar, random body movement (RBM), multi-channel Kalman smoother, hidden Markov model.

I. INTRODUCTION
Non-contact vital signs detection is of great significance to
biomedical treatments, health monitoring and disaster trac-
ing [1]–[4]. Over the last two decades, a huge amount of
efforts have been devoted to non-contact vital signs detec-
tion researches to improve the accuracy [5]–[12]. The most
fundamental is continuous-wave (CW) radar which uses a
single frequency to detect the phase shift caused by chest
displacement. However, it is difficult for CW radar to dis-
tinguish multiple targets on account of its lack of range reso-
lution. To address this issue, the linear frequency-modulated
continuous-wave (LFMCW) radar is considered and applied
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to this field [13], [14], making it possible to detect multiple
targets simultaneously.

Non-contact vital signs detection is based on sensing
tiny physiological movements of several millimeters to sev-
eral centimeters. However, random body movement (RBM),
which has a displacement comparable to or larger than the
chest wall displacement caused by vital signs, is a substan-
tial noise source that can destroy the signals of interest,
and thus drastically decay the estimated accuracy of vital
signs. The basic function of vital sign detection requires the
detection device to extract the low-frequency displacement
information caused by these physiological movements from
a high-frequency phase-modulated carrier signal, whereas the
large-scale RBM relative to the tiny displacement from vital
signs would disrupt the purity of the vital sign information.

49614
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-2114-7672
https://orcid.org/0000-0001-8749-6384
https://orcid.org/0000-0003-1512-3807
https://orcid.org/0000-0003-2263-105X


Q. Wu et al.: Non-Contact Vital Signs Detection in a Multi-Channel 77GHz LFMCW Radar System

This displacement from the large-scale RBM would deviate
from the normal one from the vital signs of interest and can
be regarded as an abnormality.

A number of efforts have been devoted to address the
difficulty of RBM [10], [15]–[21]. Two doppler radar systems
were considered and used to perform the RBM cancellation
based on different body orientations [10], [15]. The self and
mutual injection-locking technique were applied to cancel
RBM with two radar systems [16]. The characteristic of the
frequency spectrum of the vital signs signal under 1-D body
motion was analyzed, motion direction detection and the
respiration rate (RR) measurement under 1-D body motion
were estimated using a CW Doppler radar [17]. Matched
filter (MF) techniques were applied to measure the RR and
heart rate (HR) in the large-scale RBM [18]. A moving
average filter combined with a threshold method was applied
to remove the interference [19], and an auto-correlation based
technique was proposed in [20]. In [21], the vital signs signal
was divided into segments and constructed based on the
correlation concept.

To cope with the RBM challenge, we propose a novel vital
signs detection scheme for the accurate estimates of both RR
and HR. In the paper, a 77GHz LFMCW radar system with
multiple receiver channels is firstly investigated to mitigate
the interferences from multiple targets, and then a multi-
channel Kalman smoother (MCKS) is proposed to acquire
enhanced outlier-robust phase histories for the subsequent
estimates of RR and HR. Furthermore, a novel regional hid-
den Markov model (RHMM) is finally proposed to carry out
accurate estimates of RR and HR by exploiting the under-
lying slowly-varying characteristics of these vital signs for
further mitigation of RBMs. Unlike the traditional hidden
Markov model (HMM) with the tiresome computation bur-
den, the proposed RHMM, which takes full advantage of the
effective frequency ranges of RR and HR, has the capacity
of realizing the fast acquisition of vital signs. Experiments
demonstrate that the proposedMCKSmethod has the obvious
gain increases of local signal to noise ratios (LSNRs) in RR
and HR over those in the state-of-the-art methods, and the
estimated errors of the proposed method are less than 2 beats
per minute (bpm) for both RR andHR under normal scenarios
with two young men in the RBMs environment.

This paper is organized as follows. Section II introduces
the basic theory of LFMCW radar and vital signs sig-
nal. In Section III, the algorithms of the proposed MCKS
and RHMM are presented. Section IV shows simulations
results. Experimental results are provided and compared in
Section V. Discussion is given in Section VI. Finally, a con-
clusion is drawn in Section VII.
Notation: We use lower-case (upper-case) bold characters

to denote vectors (matrices). N (x|a, b) denotes that real-
value random variable x follows a Gaussian distribution with
mean a and variance b, and round(x) rounds each element
of x to the nearest integer. X ∈ RN×M and X ∈ CN×M
denote real-value and complex-value matrixes X with the
dimensions of N × M . (·)∗ denotes the conjugate operation,

and sinc(x) = sin (πx)/(πx). Gamma(·) represents a Gamma
distribution, and diag(x) represents a diagonal matrix that
uses the elements of x as its diagonal elements. 〈x〉 denotes
the expectation operator of the random variable x, and bxc
rounds the elements of x to the nearest integers towards
infinity.

II. THEORY
A. PHASE EXTRACTION BASED ON LFMCW RADAR
Periodic linearly-increasing frequency chirps are commonly
used as a transmission signal waveform for the LFMCW
radar. The transmitted pulsed signal can be written as [13],

sTX(t) = σTX exp
(
j2π fct + jπγ t2

)
, (1)

where σTX denotes the amplitude of signal, and fc is the
carrier frequency. t ∈ (0,T ) is the fast time with the sweep
time of T and γ is the chirp rate, and thus the transmitted
bandwidth is B = γT . Assume M targets in the observed
scenario and the distance from the radar to the mth target is
Rm(τ ) with the so-called ’slow time’ τ . The received echo is
given by

sRX(t) =
M∑
m=1

ρmsTX(t −
2Rm(τ )

c
), (2)

where ρm is the scatter coefficient of the mth target and c
is the electromagnetic wave propagation speed. It should be
noted that the distance Rm(τ ) involves the initial range Rm0 of
the mth target and its tiny displacements of the chest wall in
the vital signs detection. The beat signal can be obtained by
mixing the received signal with the transmitted signal, and be
written as

sb(t) = sTX(t)s∗RX(t)

=

M∑
m=1

σTXρm exp
(
j
(
4πγRm(τ )

c
t +

4π
λ
Rm(τ )

))
.

(3)

The residual video phase, which is a quadratic term of τ ,
is found to be negligible and can then be ignored due to
relatively small τ [22].
According to Eq.(3), the beat signal exhibits a constant fre-

quency, which is proportional to the target range. This means
that the distance information is contained in the frequency
domain. We perform a fast Fourier transform (FFT) over the
beat signal, and acquire its associated range profile as,

Sb(f ) =
M∑
m=1

σTXρmT exp (j4πRm(τ )/λ)

×sinc (T (f − 2γRm(τ )/c)) . (4)

Considering the fact that the LFMCW radar system is able to
differentiate the multiple targets in range due to the transmit-
ted bandwidth B, and we have the range resolution as,

1R =
c
2B

(5)
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FIGURE 1. Range profile acquisition in the LFMCW radar system.

Fig.1 shows the range profile acquisition in the LFMCW
radar system, where PRF denotes the pulse repetition fre-
quency and can be given by fPRF = 1/T . The constant
false alarm rate (CFAR) technique is often used for the
target detection [23], and the corresponding range bins can
be acquired. To be specific, the CFAR detection result of
one target is often spread in multiple continuous range bins
instead of a single bin due to the limited bandwidth. The
stripe with the strongest energy is just the range bin where
the target is located. Furthermore, the phase histories in the
detected range bins can be extracted for the subsequent vital
signs detection. It is clear that the vital signs of multiple tar-
gets can be detected simultaneously with the LFMCW radar
system.

For a LFMCWradar intended tomonitor vital signs, a close
look must be given at the exponential factor in Eq.(4). The
desired phase history φm(τ ) of the mth target is related to the
range evolution of target Rm(τ ),

φm(τ ) =
4πRm(τ )

λ
, (6)

where m ∈ {1, . . . ,M}. Multiple phase histories can be
extracted for the estimates of HR and RR in multiple-target
environment.

In the vital signs monitoring, the target’s range evolution
is mainly reflected in the displacements of the chest wall.
These displacements are normally of small scale and the
vital signs are quite weak. According to Eq.(6), it is found
that a smaller wavelength λ will give a better displacement
sensitivity. For example, if a displacement in the range is as
small as 1 mm and λ is 4 mm, the corresponding fluctuation
in phase history is 1φm = π . In our work, a 77GHz radar

system is examined and investigated for this tiny physiologi-
cal movement monitoring.

Note that a tiny displacement could bring a relatively
large fluctuation in the phase term, the phases are seriously
’wrapped’ in practice due to the chest displacement which
can be even up to 12 mm in the normal scenarios. This phe-
nomenonwould get worse in the RBMenvironment with even
up to 10 cm displacement. Normally, in a free-RBM scenario,
the unwrapped phase histories are generally smooth due to
the slowing-varying characteristic of RR and HR. However,
the unwrapped phase histories would have considerable fluc-
tuations which can even be up to dozens of radians in the
RBMs scenario. To cope with this issue, a phase unwrapping
process is often requisite, and then the unwrapped phase his-
tories from multiple channels will be used for the subsequent
processing.

B. VITAL SIGNS SIGNAL MODEL
Vital signs signal is originated from the periodic motion
which is caused by respiration and heartbeat together. The
magnitude and frequency of these two motion signals are reg-
ulated by the nerve center of human brain and are independent
of each other. Generally, these two motion signals often have
harmonic and intermodulation effects during the receiving
process. Each motion signal is often approximated as the
superposition of sinusoidal signals, and vital signs signal can
be expressed as [8]

r(τ ) =
∑
i

Ari(τ ) cos (2π ifr (τ )τ)+ Ah(τ ) cos (2π fh(τ )τ) ,

(7)

where Ari(τ ) is the amplitude of the ith harmonic of respira-
tion and Ah(τ ) is the amplitude of heartbeat signal at time τ .
fr (τ ) and fh(τ ) respectively denote the RR and HR at time τ ,
which slowly change over time in essence. This underlying
characteristic will be used to enhance the accuracies of vital
signs detection in the RBM environment. The effect of har-
monic of heartbeat can often be neglected owing to the its
slight amplitude and relatively large frequency [8], shown in
Eq. (7). In general, the amplitude range of Ari in respiration
is about [0.1, 12] mm, and the corresponding frequency of
fr often lies in [0.1, 0.5] Hz, whereas the amplitude range of
Ah is about [0.01, 0.5] mm, and the frequency fh often lies in
[0.8, 3.0] Hz.
Considering the fact that such tiny displacements r(τ ) are

much smaller than the range resolution (The bandwidth of 2
GHz responses to the resolution of 7.5 cm), the range evolu-
tion contributed from the physiological movement generally
fails to cross the range gate, as shown in Fig. 1. It is clear
that they are located in the same range bins across L0 chirps,
respectively.

Suppose that the initial distance from the mth target to the
radar system is Rm0 and the corresponding vital signs dis-
placement is rm(τ ). Looking close back to Eq.(6), the range
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evolution of this target Rm(τ ) can be written as

Rm(τ ) = Rm0 − rm(τ ). (8)

It is observed that the Rm0 is almost a constant during the
limited observed chirps. It would result in a strong direct-
current (DC) component in the spectrum, and deteriorate the
estimates of RR and HR. A notch filter would be introduced
to address this issue. The negative symbol in Eq. (8) denotes
the displacement of wall chest towards the radar.

C. MULTI-CHANNEL VITAL SIGNS SIGNALS
A radar system with multiple receivers has the capability
of distinguishing multiple targets with diverse bearings and
can be often used for bearing estimation. On the other hand,
multiple receivers are also used to improve the SNR of signals
of interest. In this paper, we take the latter into consideration
for accurate vital signs estimation.

FIGURE 2. The schematic diagram of multiple receivers.

Assume the bearing of the mth target is denoted
by ζm, shown in Fig.2, we acquire the difference of
phase histories between the reference (assume the first
receiver channel is referred as the reference one) and the
pth channel as,

1φm,p =
2π (p− 1)d sin ζm

λ
, (9)

where p = 1, . . .P and d denotes the element interval (P is
the total number of elements and P = 4 in our radar system).
It should be pointed out that1φp,m is constant across chirps,
and thus it can be regarded as a DC component. Therefore,
we have the phase history in the pth receivers as,

φm,p(τ ) = 1φm,p + φm(τ ). (10)

Note that φm(τ ) is a common component across channels, and
contains the related vital signs information. However, 1φm,p
is independent on the slow time τ , and is a constant value
given a certain channel. The property above will be taken into
consideration for the improved estimates of vital signs in the
following section.

D. RANDOM BODY MOVEMENTS MODEL
Fig.3 illustrates the RMBs signal model. The target naturally
moves his body and then returns to the original position,

FIGURE 3. The illustration of the RBMs model.

therefore, the corresponding signal of one RBM period is
often modeled as a series of triangular pulses in time domain
with various amplitudes and durations, and can be expressed
as [18],

b(τ )

=



A1 − A1 × 2|τ − T1/2|/T1, 0 ≤ τ < T1,
A2 − A2 × 2|τ − T2/2− T1|/T2, T1≤τ < T1 + T2,
. . . . . .

An − An T1+. . .+Tn−1≤τ
×2|τ−Tn/2− T1−· · · − Tn−1|, < T1 + · · · + Tn,
0, others,

(11)

where A1,A2, . . . ,An are the amplitudes of n different tri-
angular pulses, and T1,T2, . . . ,Tn denote their durations
respectively. The sign of the amplitude is negative if the RBM
direction is toward the radar system, and when the RBM
direction is backward, the sign is positive. It is found that
both this RBMs signal b(τ ) and vital sign signal rm(τ ) will
be involved in the range evolution Rm(τ ) of the m th target,
and they will be considered in the subsequent vital signs
detection.

It is observed that the spectrum of the RBMs signal is
typically wide-band, and its low-frequency component is
dominant. It would lead to coincide with the frequency ranges
of RR and HR. It is a reason why the RBMswould deteriorate
the estimated accuracies of RR and HR.

III. METHODOLOGY
A. MULTI-CHANNEL ROBUST KALMAN SMOOTHER
Considering the fact that the 1φm,p is constant and inde-
pendent of τ , we apply a notch filter to remove these phase
differences across channels and acquire the common term
φm(τ ) associated with the physiological movement. Herein,
a notch filter with the DC suppression is employed on the
unwrapped phase histories of the multiple channels respec-
tively to remove the phase differences and eliminate the
components caused by the channel locations. The transfer
function H (z) of the filter is given by [24]

H (z) =
1+ αz−1 + z−2

1+ αµz−1 + µ2z−2
, (12)
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FIGURE 4. Unwrapped phase history after notch filter in the RBMs case.

where α is related with the notch frequency, and µ is
related with the notch bandwidth. These parameters are
given by [24],

α = −2 cosω0, (13)

µ2
=

1− tan(Bn/2)
1+ tan(Bn/2)

, µ > 0, (14)

where ω0 is the notch frequency, and Bn denotes the notch
bandwidth. Note that notch filter width should be carefully
considered. A wide notch width will degrade the SNR of
RR due to its relatively low-frequency range of [0.1, 0.5]
Hz, whereas too narrow width is not a good choice, because
1φm,p is not absolutely constant across chirps in a real radar
system. With respect to the DC component, the value of ω0
often approaches zero. One common and effective way to
alleviate the noise fluctuations is to average phase histories
after the notch filter [25]. However, it is known to us that
the multi-channel average (MCA) operator is sensitive to the
outliers, which often occur in large-scale RBM environments.
Therefore, the average operator is not an optimal way to
estimate the phase histories in the multiple channels, partic-
ularly in the RBM case. Fig. 4 shows a typical example of
the unwrapped phase data after performing the notch filter in
the RBM condition in the experiment. It is observed that the
parts of the extracted phase history during the RBM period
would deviate from the normal one, and have a few abnormal
values.

To cope with these outliers caused by RBMs, a multi-
channel Kalman smoother (MCKS) will be proposed to
acquire enhanced vital sign waveforms for subsequent accu-
rate estimates of RR and HR in this paper. Inspired by the
outlier-robust Kalman filter technique [26], [27], the MCKS
is proposed to address the abnormality caused by the RBM
and acquire the improved phase histories for further vital
signs estimation.

With respect to the mth target, we stack φ̃m,p(τ ), which
denotes a filtered version of the phase history φm,p (τ ),

into a vector as ym(τ ) =

[
φ̃m,1(τ ), . . . , φ̃m,P(τ )

]T
.

Ideally, {φ̃m,p(τ )}Pp=1 should have an identical vital signs

waveform except individual noise in each channels after
the notch filter. We acquire the phase history vector

ym(l) =
[
φ̃m,1(l), . . . , φ̃m,P(l)

]T
at the lth chirp, and can

denote the vector as,

ym(l) = a× xm(l)+ εm(l), l = 1 . . . ,L0, (15)

where a = 2π fc × [1, . . . , 1]T ∈ RP×1 is a vector, a scalar
xm(l) = 2 Rm(l)/c denotes the true time-delay value from the
mth target at the lth chirp, and ε(l) ∈ RP is the additive noise
in the multiple channels. L0 is the total number of received
chirps. According to Eq.(15), the observed phase histories
in multiple channels can be regarded as a true phase history
waveform plus noises.

To alleviate the effects of outliers and noises in the multiple
channels, we propose a novel Bayesian algorithm that treat
the weights associate with each observation data samples
probabilistically. In particular, we introduce a scalar weight
wm(l) for each observed data sample vector to cope with
outliers, motivated by references [26], [27]. We introduce a
scaler wm(l) to weight the variances of all the elements in
observed data sample vector, and acquire,

p (ym(l)|xm(l),wm(l),6m)∼ N (ym(l)|axm(l),6m/wm(l)) ,

(16)

where 6m = diag(σm), which represents the covariance
matrix for observation noise, is a diagonal matrix with
σm = [σm,1, . . . , σm,P]T , and will be estimated in the model.
In addition, a Gamma prior distribution is imposed on the
weight wl as,

wm(l) ∼ Gamma (wm(l)|a0, b0) , (17)

where a0 and b0 are hyperparameters respectively.
Considering the fact that true time delay should be slowly

changing over chirps, and thus we introduce the random walk
technique [28], and model the state equation as

xm(l + 1) = xm(l)+ εm(l), l = 1, . . . ,L0, (18)

where xm(l + 1) is the time delay at the (l + 1)th chirp for
the mth target, and εm(l) is an additive noise. Without loss of
generality, a Gaussian prior is considered to model this noise,
and thus it can be expressed by,

εm(l)|νm ∼ N (εm(l)|0, νm) , (19)

where νm is the variance of state noise for the mth target.
For the L0 observed sample vectors, we perform the log

evidence of the data samples observed, i.e., log p(ym(1 : L0),
xm(1 : L0),wm(1 : L0)) to estimate the posterior distributions
of the random variables and parameter values.
We can treat this problem as an Expectation Minimization-

like (EM) learning problem [29]. The expectation of the
complete data likelihood should be taken with respect
to the true posterior distribution of all hidden variables
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(xm(1 : L0),wm(1 : L0)). However, since this is an analyti-
cally intractable expression, we make a factorial approxima-
tion of the true posterior as follows,

p (xm(1 : L0),wm(1 : L0))

=

L0∏
l=1

p (wm(l)) p (xm(l + 1)|xm(l)) p
(
xm,1

)
. (20)

This factorization of x(1 : L0) takes the influence of each x(l)
from within its Markov blanket into consideration. Based on
this factor approximation, all resulting posterior distributions
over hidden variables become analytically tractable. We can
provide the EM update equations from the manipulations of
Gaussian and Gamma distributions, and the specific deriva-
tion steps are provided in Appendix.

The parameter of the weight in the lth chirp is given by,〈
ŵm(l)

〉
=

a0 + P/2∑P
p=1

1
2〈σm,p〉

(
ym,p(l)− 2π fcx̂m(l)

)2
+ b0

. (21)

The update equation of weight reveals that if the prediction
error of

∑
p(ym,p(l) − 2π fcx̂m(l))2 in ym(l) is so large that it

dominates the denominator, then the weight
〈
ŵm(l)

〉
of that

data sample vector will be very small. As this prediction error
term in the denominator goes to ∞,

〈
ŵm(l)

〉
approaches 0.

If ym(l) has a very small weight
〈
ŵm(l)

〉
, the influence of the

data sample vector ym(l) will be downweighted by
〈
ŵm(l)

〉
,

when predicting x̂m(l), at the lth chirp. This is the main reason
why the proposed robust Kalman smoother has the capability
of cope with the outliers that may caused by the RBMs.

Once these accurate time delay
〈
x̂m(l)

〉
is estimated at the

lth chirp with respect to the mth target, and we obtain its
desired phase histories as

φ̂m(l) = 2π fc
〈
x̂m(l)

〉
, m = 1, . . . ,M . (22)

The vital signs detection can be acquired based on this
improved phase history.

In conclusion, the proposed MCKS weights the variances
of all the elements in the observation data samples which
are the phase histories extracted from multiple channels, and
then updates the hidden variables through the EM algorithm.
For the samples with outliers, its corresponding weight is
relatively small in the estimation to alleviate the effect of the
sample. The states are updated synchronously according to
these weight values and we can finally achieve an optimal
estimate of the phase histories.

B. VITAL SIGNS DETECTION BASED ON REGIONAL
HIDDEN MARKOV MODEL
Unlike a simple Doppler-FFT on the phase histories for vital
signs detection, a novel RHMM is proposed to acquire accu-
rate estimates of the RR and HR by exploiting the underlying
slowly-varying characteristics of the physiological vital signs
in this section, motivated by frequency tracking techniques.
we introduce the hidden Markov chain to model the slowly-
varying RR and HR.

A collection 0 related to HMM can be firstly repre-
sented as,

0 = (9,�, η0), (23)

where 9 and � denote the state transition matrix and obser-
vation probability matrix respectively, and η0 represents the
initial probability. Once this collection 0 is known, the entire
HMM is also determined. In the HMM-based frequency
tracking, the number of hidden states is often equal to the
length of frequency units K0, and a large amount of com-
putation for the state transition matrix is requisite. However,
since RR and HR are confined to a limited frequency range,
such as fr ∈ [0.1, 0.5] Hz and fh ∈ [0.8, 3.0] Hz, it is almost
impossible that they move out of the ranges. Therefore, it is
not necessary to spend time for the calculation of the prob-
abilities of these impossible state transitions. In this paper,
an RHMM, which takes full advantages of the effective fre-
quency ranges of RR and HR has the capability of achieving
the fast acquisition of vital signs with the smaller number of
hidden states.

A short time Fourier transform (STFT) with the window
length of K0 and sliding window length of W0 is firstly
performed on the one-dimensional phase histories from the
mth target, and then a time-frequency diagram in one data
block Pms ∈ CK0×N0 with N0 = b(L0 −W0)/(K0 −W0)c can
be obtained. The Doppler frequency interval is thus expressed
as fPRF/K0. In accordance with the ranges of RR and HR,
the numbers of hidden states can be easily calculated by

K1 =

⌊
0.4K0

fPRF

⌋
, K2 =

⌊
2.2K0

fPRF

⌋
, (24)

with K1,K2 � K0.
Owing to slowly-varying RR and HR, it is reasonable that

the adjacent states would have high transition probabilities.
Therefore, a Gaussian function with zero mean and variance
of σ 2

x which can be represented as N
(
x|0, σ 2

x
)
is introduced

to model the state transitions. The transition probability from
the ith hidden state to the jth state can be given by

gij =
1

√
2πσx

∫ fj+1

fj
e
−

(f−f̃i)
2

2σ2x df i, j > 0, (25)

wheref̃i = (fi+fi+1)/2, i, j ≤ K1 in the RR case, and i, j ≤ K2
in the HR case.

By performing the normalization on these probabilities,
we have the (i, j)th element ofψij in the state transition matrix
9 as

ψij =
gij∑
j gij

. (26)

The observation probability is obtained by normalizing the
power spectrum pmsn with the nth column in the time-
frequency diagram Pms , which can be expressed as

ωmin = Pr
(
xmn |fi

)
=

pmsn(i)∑
i pmsn(i)

, (27)
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Algorithm 1 The Process for the Estimates of RR and HR
With Viterbi Algorithm
Input: 9,�, ξ
Output: S∗

for q = 1; q = q + 1 (q denotes the currently processed
block number) do

Step 1 : Initialize the maximum local state probabili-
ties parameters δq(n)(i) and corresponding state storage
index θq(n)(i) in the state space (q(n) denotes the nth time
point of the qth data block and n ∈ [1, 2, . . . ,N1]):
if q = 1 then

δq(1)(i) = η0i · ωiq(1), θq(1)(i) = 0 i ∈ [1, 2, . . . ,K1]

else

δq(1)(i) = δq−1(N1)(i), θq(1)(i) = θq−1(N1)(i)

end if
Step 2: Recursive backwards:
for n = 2, 3, . . . ,N1 do

δq(n)(j) = max
1≤i≤K1

[
δq(n−1)(i)ψij

]
ωiq(n)

j ∈ [1, 2, . . . ,K1]

θq(p)(j) = argmax
1≤i≤K1

[
δq(p−1)(i)ψij

]
j ∈ [1, 2, . . . ,K1]

end for
Step 3: Estimate the state iq(N1) at time q(N1) by maxi-
mizing δq(N1)(j):

s∗q(N1) = argmax
1≤j≤K1

[
δq(N1)(j)

]
Step 4: Optimal path backtracking:
for n = N1 − 1, . . . , 1 do

s∗q(n) = θq(n+1)
(
s∗q(n+1)

)
end for
Step 5: Obtain the optimal state sequence S∗ =(
s∗q(1), s

∗

q(2), . . . , s
∗

q(N1)

)
end for

where i = 1, . . .K1 in the RR case, i = 1, . . .K2 in the HR
case, and n = 1, . . . ,N0. xmn is an element in the vector pmsn,
and ωmin represents the probability that the observation result
is xmn with the hidden state of fi. It should be pointed that
the size of the transition matrix is reduced to K1 × K1 in RR
and K2 × K2 in HR due to the confined frequency ranges in
RHMM, compared to the matrix with the size of K0×K1 and
K0 × K2 in the traditional HMM.

Without loss of generality, the initial probability η0 is
assumed to follow uniform distribution. To be detail, in the
RR case, η0 =

[
η01, . . . , η0K1

]
= [1/K1, . . . , 1/K1] ∈

RK1×1 and in the HR case, η0 = [1/K2, . . . , 1/K2] ∈ RK2×2.
Once the collection 0 is given, and the entire RHMM is
determined.

Given an RHMM, the commonly used Viterbi algorithm
is taken into consideration for the fast acquisition of vital
signs [28]. Instead of directly performing the Viterbi algo-
rithm to the RHMMon the entirePms at one time, whichwould
have an amount of computational complexity, We divide
Pms with the size of K1 × N0 into Q blocks with the size
of K1 × N1 and sequentially perform the Viterbi algorithm
on each block, rather than treating them independently. The
detailed process is presented in Algorithm 1 for the estimates
of both RR and HR.

C. SUMMARY OF THE PROPOSED VITAL SIGNS
DETECTION SCHEME
The proposed scheme is summarized in Algorithm 2.

Algorithm 2 Summary of the Proposed Vital Signs Detection
Scheme
Input: The received signal spRX(t) of LFMCW radar, p ∈

[1, 2, . . . ,P]
Step 1 : Obtain the beat signal spb(t) by mixing the received
signal spRX(t) with the transmitted signal sTX(t), then per-
form FFT over the beat signal to acquire the associated
phase histories φm,p(τ ) (m ∈ [1, 2, . . . ,M ]) from the
targets’ range bins.
Step 2: Unwrap the phase histories and perform a notch
filter on them to remove the constant phase differences
across channels and acquire the results φ̃m,p(τ ).
Step 3: Perform MCKS on {φ̃m,p(τ )}Pp=1 and obtain the
improved phase history φ̂m.
Step 4: Perform STFT on φ̂m and obtain the RHMM
based on the time-frequency diagram Pms . Divide P

m
s into

Q blocks and perform Viterbi Algorithm on the RHMM
to acquire the estimates of both RRs and HRs of all the
targets.

Output: Estimate RRs and HRs of multiple targets.

IV. SIMULATION RESULTS
In the simulations, we assume two targets with ranges of
0.9 m and 2.2 m are in front of a 77GHz LFMCW radar
system, and the number of receive channels P is 4 with the
interval of λ/2. RBMs are applied as a series of triangular
pulses used in [18]. The maximum amplitudes of RBMs lie
in [5, 20]cm, and their durations vary in [1, 4]s. In this case,
the range of the body movement speed is [1.25, 20] cm/s.
The data collection time is 240 s, and the ratio of the RBM
duration over the collection time is 20%. For the closer target,
the ranges of slowly-varying RR andHR are [18, 22] bpm and
[75, 85] bpm respectively, while the corresponding farther
target’s ranges are [16, 20] bpm and [65, 75] bpm. The STFT
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TABLE 1. Parameters for the LFMCW Radar system.

FIGURE 5. Range-FFT result of one channel in the simulation.

window length of 12 s with K0 = 240 is used, and the
sliding window of 1.5 s with W0 = 30 which is approxi-
mately half a respiration cycle is considered. Without loss
of generality, additive noise is considered with the SNR of
10 dB. Following the real experiments, the radar parameters
in the simulations are shown in Table 1. The bandwidth of the
transmitted LFMCW waveform is 2 GHz with a duration of
50 µs, which corresponds to the range resolution of 7.5 cm.
The sample rate is 5 MHz, and the number of samples in
each chirp is 128. The pulse repetition frequency (PRF) is
20 Hz, which conforms to the Nyquist sampling theorem for
the perfect reconstruction of the RR and HR waveforms.

A. PERFORMANCE COMPARISONS IN THE
PROPOSED MCKS METHOD
In this simulation, We firstly perform the FFT on the beat sig-
nals, and then acquire the associated range profile, as shown
in Fig.5. Two targets are easily detected and separated due
to the high range resolution of 7.5 cm in this LFMCW radar
system. Thus the four-channel phase histories in the corre-
sponding range bins are extracted for the subsequent vital
signs detection.

The notch filter with the notch width of 0.02 is performed
to remove these DC components caused by the diverse spatial
locations. A bandpass filter with the ranges of [0.1, 0.5] Hz
for RR and [0.8, 3.0] Hz for HR is performed on the phase
histories of all the channels before the MCKS operation. The
initial parameters of the Gamma prior distribution in Eq.(17)
are a0 = 1 and b0 = 1. In the RR case, the variance of
state noise νm in Eq.(19) is 0.1 and the covariance matrix for
observation noise 6m in Eq.(16) is diag([0.1, 0.1, 0.1, 0.1]T )
while νm = 1 and 6m = diag([1, 1, 1, 1]T ) in the HR case.

FIGURE 6. Process results of the closer target. (a) Bandpass-filter results
of one channel. (b) MCKS results.

FIGURE 7. Spectra around the RR and HR of the results obtained by
MCKS, MCA and MF methods. (a) RR results of the closer target.
(b) HR results of the closer target. (c) RR results of the farther target.
(d) HR results of the farther target.

Fig.6(a) shows the bandpass-filter results of phase histories
in the reference channel. It can be observed that there exist
significantly abnormal values similar to triangular pulses on
the phase histories, which are caused by large-scale RBMs
in the data collection. By performing the proposed MCKS
method, we weight the variances of all the elements in the
observed data sample vector, and the weight values corre-
sponding to the triangular pulses are suppressed by a peri-
odic update. Thus the outliers are effectively mitigated, and
the acquired vital signs waveforms are much smoother. The
corresponding amplitude range is confined into 10 mm for
RR and less than 2 mm for HR, shown in Fig.6(b).

We perform STFT on the phase history waveforms so that
a time-frequency diagram can be acquired. Fig.7 shows two
slides from the time-frequency diagram. It is found that the
spectra based on the proposed method have the highest peak
in the true locations in both RR and HR, however, there are
still some large interferences around the RR in the MCA and
state-of-the-art MF methods [18].
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TABLE 2. Local SNRs comparisons around the RR and HR.

To quantify the performance, we introduce a local SNR
(LSNR) as the performance index, which is defined as,

χ =

∫ f0+fw1
f0−fw1

|Y (f )|2 df∫ f0+fw2
f0−fw2

|Y (f )|2 df −
∫ f0+fw1
f0−fw1

|Y (f )|2 df
, (28)

where Y (f ) represents the amplitude of the frequency spec-
trum corresponding to frequency f and f0 denotes the RR
and HR respectively in the two cases. fw1 is 0.06 Hz and
fw2 is 0.20 Hz.

Table 2 shows the performance comparisons of the LSNR.
To verify the advantage of multi-channel collections, we also
perform the MCKS with single-channel data for comparison,
exploiting one of the reception channels. It can be observed
that the MCKS method in one reception generally has higher
LSNRs in the RR and HR waveforms, compared to these in
each channel. It seems that the LSNR improvements in the
RR waveforms are higher than those in the HR waveforms
in the proposed method. It is also observed that the LSNRs
in the MCKS method with a single-channel data still have
nearly 1.0 dB improvement, compared to these in the MCA
and MF methods in the RR waveforms, whereas it is slightly
lower than these in the MCA and MF methods in the HR
waveforms. However, the MCKS method with four reception
channel data has the highest gains in both closer target and
farther target for the reason that the LSNRs in the MCKS
method with four channels have the largest values. In the RR
estimate, the result of MCKS with four channels is even up
to 7.5 dB higher than that of the MCA method, and about
4.0 dB higher than that of the MF method. Compared to
the MCKS with one channel, the LSNR gain is more than
2.5 dB. In the HR estimate, the MCKS with four channels
has a slight increase in LSNRwhich is approximately 0.5 dB.
Besides, it is found that the proposed method has higher
SNR gains in the RR estimate, compared to that in the HR
estimate. The main reason may be the interferences caused
by the large-scale RBMs mainly have the low-frequency
components whose range coincides with RR. The estimated
results are shown in Fig.7.

B. PERFORMANCE COMPARISONS IN THE
PROPOSED RHMM METHOD
In this section, we perform the STFT on the improved robust-
outlier waveforms and acquire its time-frequency diagrams.
The sizes of each block are K1 = 128 and N1 = 5, and the
vital signs detection result will be updated per 5 chirps.
The σx in Eq.(25) is set to 1 by default. The corresponding

FIGURE 8. Estimated RR and HR results of the closer target. (a) RR results.
(b) HR results.

FIGURE 9. Estimated RR and HR results of the farther target.
(a) RR results. (b) HR results.

updated rates of estimate results would be 7.5 s duo to the
sliding window of 1.5 s so that the fast acquisition of vital
sign detection can be achieved. The estimate resolution is
approximately 0.0041Hz and is equivalent to 0.25 bpm due
to the STFT window length K0 = 240.
The estimate results of the closer and farther targets’ RRs

and HRs are shown in Fig. 8 and Fig. 9, respectively. Fig.8
shows the estimated results of RR and HR acquired by the
proposed RHMM for the target with the closer range. It is
observed that the estimates of RR are smoother due to the
exploitation of the slowly-varying characteristics, and are
quite closer to the ground truth, compared to the results
acquired by the simple FFT and the time-window-variation
technique [30], which treat the estimates of RR and HR
independently in time. It is clear that the estimated values of
HR also closely match the true ones. Similar results are also
obtained for the farther target, shown in Fig.9.

To quantify the performances, we introduce the error rate
β as the performance index, and provide the definition by,

β =
|RateEst − RateTruth |

RateTruth
× 100%. (29)
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For the RR estimates, the average error rates β in the simple
FFT method and time-window-variation method are 16.78%
and 10.03% for the target with a closer range, respectively,
and these values slightly increase to 16.82% and 10.25%
for the farther target. However, the average error rates in
the proposed RHMM are respectively reduced to 7.84% and
8.79%, even though 20% RBM duration with the amplitude
up to 10 cm. Besides, the average error rates are respectively
1.58% and 2.08% in the HR estimation, compared to 6.31%
and 6.48% in the simple FFT method, and 4.97% and 5.68%
in the time-window-variation method.

To further analyze the performance of alleviating the
RBMs, we also use the phase history waveforms acquired
from the MCA operator and MFp method to conduct the
estimates of RR and HR. Results are shown in Table 3,
it can be observed that the estimates results acquired after
the MCKS processing are better than those in MCA and MF
cases overall. Besides, the proposed RHMM also has lower
error rates in both MCA and MF cases.

TABLE 3. Performance comparisons in the RR and HR estimation in
simulations.

FIGURE 10. Photograph of the Cal77A2T4R radar system. (a) Overall
appearance. (b) Antenna arrangement.

V. EXPERIMENT RESULTS
Experiments are performed based on the Cal77A2T4R radar
system which has two transmitters (Tx) and four receivers
(Rx) with the carrier frequency of 77 GHz. The specific struc-
ture is shown in Fig.10. The gains of Tx1 and Tx2 antennas
are respectively 19 dBi and 15 dBi, and the gain of received
Rx is 13 dBi. The maximum output power is 13 dBm, and the
noise figure of Rx antenna is 12 dB. We used Tx1 antenna
and all the four Rx antennas in our experiments to collecting

FIGURE 11. Real experiment demonstration. (a) Experimental scenario.
(b) The illustration of the objects’ placement. (c) Range profile of the
reference channel.

raw data. The half-power beamwidth of the Tx1 and Rx
antennas are 45◦ and 70◦ respectively. Radar parameters are
shown in Table 1.

A. EXPERIMENT DESCRIPTION
The experimental scenario is shown in Fig.11(a)-(b), two
healthy young men with the ages of [20, 30] sat in front of
the radar with different ranges, and the azimuths of these
two objects are approximately 10 degrees on different sides.
The data collection time is 240 seconds. For the performance
comparisons, a Gladstone YK-83C finger-clip contact-type
sensor is used to acquire the reference RRs and HRs. The
received signals in the four antennas are acquired, and one
of the range profiles is shown in Fig.11(c). The distances
between the targets and radar are approximately 0.7 m and
2.2 m respectively. Two targets are easily separated in range
due to the range resolution of 7.5 cm.

TABLE 4. Normal and abnormal vital signs for different ages.

For comparison, we list the normal and abnormal values of
RR and HR at different ages [31], [32], as shown in Table 4.
It is observed that the RR and HR will increase or decrease
in response to a variety of changes, including exercise,
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body temperature, emotional triggers, and body position.
The selected frequency intervals of [0.1,0.5]Hz for RR and
[0.8,3.0] Hz for HR almost cover the entire range according
to the list above.

B. EXPERIMENTS IN FREE-RBM SCENARIO
To show the adaption and advantage of the proposed method
in practice, we first take the experiment in a free-RBM
scenario into consideration. That is, two objects are almost
quasi-stationary during data collection. The phase histories
of the two targets in the corresponding range bins are firstly
extracted respectively, and then the notch filter is performed.
Fig.12 shows the unwrapped phase histories and phase histo-
ries after the notch filter for both closer and farther targets.
It is observed that these waveforms are quite smooth in this
free-RBM scenario. Then the MCKS method is performed
on the phase histories, and the initial hyper-parameters are
followed in Section IV-A.

FIGURE 12. Phase unwrapping and notch-filter results of the reference
channel. (a) Closer target’s results. (b) Farther target’s results.

Fig.13 shows improved vital signs phase history wave-
forms based on the MCKS method. It can be observed that
these peaks in the waveforms can be distinguished clearly,
and the amplitudes of the closer target’s vital signs are larger.
The MCKS results are almost consistent with those of band-
pass filtering in this free-RBM scenario.

FIGURE 13. Estimated results based on the proposed MCKS method.
(a) Closer target’s results. (b) Farther target’s results.

Fig. 14 shows the performance comparisons of error rates
for the two targets. All the methods have satisfactory perfor-
mances, and estimated rates of RR and RR are quite close to
the ground truth. However, it is observed that the proposed
RHMM has the result closest to the reference frequencies
with minimal fluctuations. Similarly, the average errors are
used to evaluate the performance of RR and RR estima-
tion. For the RR estimates, the average error rates β in the

FIGURE 14. Estimated results of RR and HR based on the proposed
RHMM method. (a) Closer target’s RR. (b) Closer target’s HR.(c) Farther
target’s results. (d) Farther target’s HR.

simple FFT method and time-window-variation method are
8.38% and 6.61% for the target with a closer range, respec-
tively, and these values slightly increase to 8.39% and 6.66%
for the farther target. However, the average error rates in
the proposed RHMM are respectively reduced to 1.91% and
2.12%, even less than 1 bpm. Besides, the average error
rates are respectively 1.02% and 1.31% in the HR estimation,
compared to 6.67% and 6.83% in the simple FFTmethod, and
2.83% and 3.30% in the time-window-variation method.

Similarly, we also perform theMCA andMFmethods over
the phase histories of the four channels and then conduct the
detection of the vital signs. The comparisons of results are
listed in Table 5. All these three methods acquire comparable
results, however, the proposed method has slightly better
results than these in the other two methods.

TABLE 5. Performance comparisons in the RR and HR estimation in
free-RBM scenario.

C. EXPERIMENTS IN RBM SCENARIO
In this subsection, two objects perform RBMs with the dura-
tion of 2 s in every fixed time interval (12 s for the closest
target and 10 s for the farther target), respectively. The RBM
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FIGURE 15. Phase unwrapping and notch-filter results of the reference
channel. (a) Closer target’s results. (b) Farther target’s results.

amplitude is approximately 10 cm. The data collection time
is 240 s. It suggests that we will acquire the 20 and 24 times of
the RBMs for closer and farther targets during the entire data
collection period, respectively. Fig.15 shows the phase his-
tories after unwrapping and notch-filter. Compared to Fig.12,
it is observed that phase histories show clear derivations from
the normal values, which can be viewed as outliers and be
possibly caused by the RBMs.

FIGURE 16. Estimated results based on the proposed MCKS method.
(a) Closer target’s results. (b) Farther target’s results.

Fig.16 shows the improved vital signs phase histories after
performing the multi-channel MCKS method. It is observed
that the outliers or abnormities are mitigated and suppressed,
and the improved waveforms become smoother.

The performance comparisons of the three methods are
shown in Fig.17. The RHMM results have the least fluctua-
tions and are closest to the reference values due to the reason
that we exploit the slowly-varying characteristic of RR and
HR to suppress the jumping of the tracking frequencies. For
the closer target, the average error rates from RHMM are
7.18% (less than 2 bpm) for RR and 2.16% (less than 2 bpm)
for HR, whereas the simple FFT has the rates of 18.36%
for RR and 9.91% for HR, and the time-window-variation
technique is 10.06% for RR and 5.55% for HR. For the
farther target, the RHMM error rates are 8.50% and 2.36%
respectively, compared to 21.09% and 10.31% in simple FFT
and 10.50% and 6.97% in time-window-variation method,
as shown in Table 6.

D. EFFECT OF DIFFERENT RBM FEATURES
In this subsection, quantitative analyses are taken based on
the various amplitude, duration, and time intervals of RBM,
respectively. Firstly, the amplitudes of RBM vary from 5 cm

FIGURE 17. Estimated results of RR and HR based on the proposed
RHMM method. (a) Closer target’s RR. (b) Closer target’s HR.(c) Farther
target’s results. (d) Farther target’s HR.

TABLE 6. Performance comparisons in the RR and HR estimation in RBM
scenario.

FIGURE 18. Performance comparisons of different RBM amplitudes.
(a) RR result (b) HR result.

to 15 cm in the experiment, with the duration of 2 s and the
fixed time interval of 12 s. The comparison curves of the
three methods are shown in Fig.18. It can be observed that all
the error rates of the three methods increase slightly with the
improvement of RBM amplitude, and the proposed RHMM
has the lowest error rates in each interval.

Then, we fixed the RBM amplitude to 10 cm and the time
interval to 12 s, and the duration varied from 1 s to 5 s.
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FIGURE 19. Performance comparisons of different RBM lengths.
(a) RR result (b) HR result.

FIGURE 20. Performance comparisons of different RBM time intervals.
(a) RR result (b) HR result.

Fig.19 shows the performance comparisons. The results are
provided in Fig.18. It is found that accuracies of all three
methods becomeworse with the increase of the RBM lengths,
whereas the RHMM still has the lowest average error rates.

Finally, we change the time intervals with the RBM ampli-
tude of 10 cm and the RBM duration of 2 s in the experi-
ment. Estimated results are shown in Fig.20. It seems that
it is difficult to estimate the vital signs with high accuracy
when the RBM is very dense, especially using the simple
FFT method(The average error rate is almost up to 30%).
However, as the interval increases, the error rates show a
downward trend, and the RHMM method has better perfor-
mance. Similar results are also found in the farther target.
In general, it is reasonable that the estimated performances
of RR and HR seem confined to the RBM’s amplitude and
RBM’s duration, whereas they seem to benefit from the time
interval.

VI. DISCUSSION
The theoretical analysis, simulations, and experiments in the
previous sections present a new signal processing scheme
to detect vital signs. By observing the experiments results
in some previous research [30], [33], [34], the accuracies in
Section V can be considered reasonable. However, the study
is based on several assumptions and has some limitations,
which need to be discussed in this section.

Firstly, the vital signs model given in Eq.(7) is simplified as
the superposition of sinusoidal signals based on the assump-
tion that RR and HR are irrelevant. The reason is to simplify
the analysis [9]. The displacements of the chest wall do not
necessarily have sinusoidal waveforms and there is a coupling

relationship between the heart and lung so that the RR and
HR are related [35], [36]. Therefore, further research should
be conducted on the theoretical analysis for rigor.

Secondly, experiments are carried out under the scenarios
where the objects are facing the radar system. In a real vital
signs monitoring scenario, the human body may have more
complex postures, such as lying down. Previous research has
given a positive answer to the question that whether it is
possible for vital signs detection from four sides of a human
body [11]. On the other hand, it is worth mentioning that the
RBMs have more complex forms, such as head-shaking, arm-
moving, or body-turning, rather than just similar to triangle
pulses. Therefore, the potential challenge that whether the
proposed scheme is applicable in more complex environ-
ments needs further consideration.

Thirdly, the extraction of vital signs signal is based on
the assumption that the objects do not cross the range gate.
However, migration through range bins seems unavoidable to
some extent due to the tiny resolution of 7.5 cm in real detec-
tion, especially under the large-scale RBMs environments.
The range alignment preprocess technique is firstly per-
formed before the subsequent MCKS and RHMM methods.

Besides, looking close back to Table 4, the selected fre-
quency intervals fail to reach the highest abnormal values
of the neonates and infants, for the reason that our work is
based on the scenario in which the objects are healthy adults.
To further verify the robustness of the proposed scheme, more
experiments are necessary to be performed on the samples
with different physical conditions at different ages.

Finally, there may be some unexpected emergencies dur-
ing the vital signs monitoring process which make RR and
HR change drastically. In the current development stage,
the detection of these body anomalies requires a certain delay
for the reason that we exploit the underlying slowly-varying
characteristics of the RR and HR. For example, when a vital
sign has a drastic change, the corresponding buffer time is
approximately 15 s. Future solutions for the timeliness of
emergency detection need to be researched out to realize
more promising applications. Due to the above limitations
of the proposed scheme, the suggested application scenario
a relatively stable environment where the targets sit facing
the radar system.

VII. CONCLUSION
This paper presented a novel vital signs detection scheme
in the millimeter-wave radar system with multiple channels
for the accurate estimates of the respiration rate (RR) and
heart rate (HR) in the multiple targets with random body
movements (RBMs) environment. In the proposed scheme,
a 77 GHz radar system with the linear frequency modu-
lated continuous wave was investigated to separate the mul-
tiple targets. The multi-channel Kalman smoother (MCKS)
method was proposed to acquire improved robust-outlier
phase history waveforms by effectively mitigating RBMs.
Furthermore, the regional hidden Markov model was finally
proposed to carry out accurate estimates of RR and HR by
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exploiting the underlying slowly-varying characteristics of
these vital signs for further mitigation of RBMs. Experi-
ments demonstrated that the proposed MCKS method had
the obvious gain increases of local signal-to-noise ratios in
RR and HR over those in the multi-channel average and
the matched filter methods, and the estimated errors in the
proposed method were less than 2 beats per minute for both
RR and HR with young men in the RBMs environment.

APPENDIX
The EM update equations in section III-A are given below.
red E-step:

Forward recursion,

N (xm(l)|ξm(l), vm(l)) ∝ N (ym(l)|axm(l),6m/wm(l))

×N (xm(l)|ξm(l − 1), 〈νm〉 + vm(l − 1)) , (30)

→ξm(l)=vm(l)

 P∑
p=1

〈wm(l)〉〈
σm,p

〉 ym,p(l)+ 2π fcξm(l − 1)
〈νm〉+vm(l − 1)

,
(31)

→ vm(l) =

 P∑
p=1

〈wm(l)〉〈
σm,p

〉 + 1
〈νm〉 + vm(l − 1)

−1 , (32)

→ 〈wm(l)〉 =
a0 + P/2∑P

p=1
1

2〈σm,p〉

(
ym,p(l)− 2π fcξm(l)

)2
+ b0

.

(33)

Backward recursion,

N
(
xm(l)|ξ̂m(l), v̂m(l)

)
∝ N

(
ξ̂m(l + 1)|xm(l), 〈νm〉

)
(34)

×N (xm(l)|ξm(l), vm(l)) ,

→ ξ̂m(l)=ξm(l)+
vm(l)

vm(l)+〈νm〉

(
ξ̂m(l + 1)− ξm(l)

)
, (35)

→ v̂m(l)

= vm(l)+
vm(l)2

(vm(l)+ 〈νm〉)2
[
v̂m(l + 1)− (vm(l)+ 〈νm〉)

]
?

(36)

→
〈
ŵm(l)

〉
=

a0 + P/2∑P
p=1

1
2〈σm,p〉

(
ym,p(l)− 2π fcξ̂m(l)

)2
+ b0

.

(37)

M-step:

〈
σm,p

〉
=

1
l

l∑
i=1

〈wm(i)〉
(
ym,p(i)− 2π fc

〈
ξ̂m(i)

〉)2
, (38)

〈νm〉 =
2π fc
l

l∑
i=1

(〈
ξ̂m(i)

〉
−

〈
ξ̂m(i− 1)

〉)2
. (39)
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