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ABSTRACT This paper studies the prescribed finite time stabilization control problem of multi-input linear
control systems subject to uncertainties and state constraints. Different from finite-time and fixed-time
control methods, a novel switching nonsingular coordinate transformation function based on the block
decomposition technique is developed, resulting in a solution that the control action is continuous and
bounded based on the transformed system. Moreover, the boundedness of closed-loop system states is
ensured with prescribed finite time performance. Furthermore, we incorporate the barrier Lyapunov function
into the stabilization control design to restrain the amplitudes of system states. Numerical examples are
provided to verify the effectiveness of the proposed prescribed finite time control strategy.

INDEX TERMS Linear system, stabilization control, prescribed finite time, barrier Lyapunov function.

I. INTRODUCTION
Stabilization control is of special interest to linear control sys-
tems from the practical and theoretical perspectives. Effective
methods have been proposed such as PID control, sliding
mode control, model predictive control, backstepping, H∞
control [1], [2], etc. In particular, sliding mode control is
popular due to its effectiveness, the high-order sliding mode
control algorithmswith finite-time and fixed-time regulations
have been applied in the fields of mechanical industries and
electronics [3]–[5].

The finite-time and fixed-time stability is widely con-
sidered since the attribute of owing a specified time. The
finite-time stability for second-order and high-order systems
are respectively considered in [6] and [7]. The finite-time
stabilization and optimal feedback control for the nonlin-
ear dynamical system are investigated in [8]. The further
endeavor made by [10] attains the finite-time stabilization
of stochastic high-order nonlinear systems. The literature
[11] proposes a constraint stabilization control law with
higher-order sliding mode finite-time design, leading that the
output of the system remains in some prescribed range. For
the above literature, the settling time of finite-time control
depends on both the initial conditions and the preselected
control parameters. Polyakov [3] studied the nonlinear feed-
back controller for fixed-time stabilization of linear control
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systems. In [13], the fixed-time backstepping control design
for high-order strict-feedback nonlinear systems via termi-
nal sliding mode is investigated. However, although the
fixed-time control method removes the constraint of initial
conditions, it can only converge the states before the given
settling time, and the predescribed converge time cannot be
guaranteed exactly.

Song et al. in [1] and [12] consider the time-varying
feedback stabilization of normal form nonlinear systems in
prescribed finite time by introducing the time-scaling func-
tion. In [15], the prescribed-time observers for linear systems
in observer canonical form are considered. Different from
finite-time and fixed-time control methods, fractional-power
terms are not utilized and system states converge to zero at
the exact time T . However, the effective time only works for
the time t ∈ [t0, t0 + T ) and the design parameters should
be chosen so that the matrix obtained from the characteristic
polynomial is Hurwitz [1]. Moreover, the dynamics consid-
ered above are limited to the norm form or the observer
canonical form. According to the block control principle in
[3], for high-order subsystems transformed by a linear system
with multiple inputs, the above algorithms are not applicable.

To overcome the limited time interval of t ∈ [t0, t0 + T ),
in [2] the prescribed-time consensus and containment con-
trol strategies of single integrator multi-agent systems
not affected by disturbances are considered. In [14] by
introducing a time-varying piecewise function the adap-
tive fault-tolerant prescribed-time control for nonlinear
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teleoperation systems with position error constraints is con-
sidered beyond the limited time interval. Authors in [18]
considers the consensus control for wheeled mobile robots
by designing the specified-time observer with time scale
function under input saturation constraint. However, the con-
tinuity of time-varying scaling functions above is not guaran-
teed. Furthermore, due to the introduction of 1

T−t , the input
boundedness and state constraint issues are necessary to be
investigated.

Motivated by the discussions above, we address the non-
linear feedback design for prescribed finite time stabilization
of multi-input linear control systems with state constraints.
Firstly, in view of the difficulties caused by the distinct
subsystem dimensions of multi-input linear systems, a novel
switching nonsingular coordinate transformation function
based on the block decomposition technique is proposed.
Compared with finite time methods [6]–[11] and the fixed
timemethod [3], due to the proposed high-power time scaling
function, the convergence time T of closed-loop system states
can be explicitly predetermined without the limitation of sys-
tem initial values. Secondly, the operation time of the control
scheme is extended to t ∈ [0,∞) compared with the previous
works [1], [12] and [16], and the continuity of the switching
time-varying scaling function is guaranteed. Moreover, the
input boundedness is proven in spite of the existence of term
1

T−t . Thirdly, the state constraint issue is considered by the
barrier Lyapunov function, and the amplitudes of system
states can be restrained.

The organization of this article is organized as fol-
lows. Section 2 presents some preliminaries and problem
statements. Section 3 elaborates the prescribed time stabil-
ity control design of the linear systems. Section 4 gives
the numerical simulation to verify the theoretical analysis.
Finally, Section 5 concludes the paper.
Notations : Through this article, ‖ x ‖ signifies its standard

Euclidean norm. ‖ x ‖∞= ess supt>p|x| and ‖ x ‖p is
the p norm. Let R be the set of the real number, Rn be the
set of the n-dimensional vector and Rn×n be the set of the
n-dimensional matrix. The superscript T means the transpose
for real matrices and ‘‘+’’ means the pseudo-inverse for
real matrices. rown(W ) is the row number of the matrix W ,
ker(W ) and range(W ) are the null space and the column space
of W , and null(W ) is the matrix with columns defining the
orthonormal basis of ker(W ).

II. PROBLEM FORMULATION
Consider the following class of uncertain multi-input linear
systems

ẋ (t) = Ax (t)+ Bu (t)+ τd (t, x(t)) (1)

where x ∈ Rn is the system state, u ∈ Rm is the control input,
matrices A ∈ Rn×n and B ∈ Rn×m are the system matrix
and control gain matrix. The term τd (t, x(t)) = Bχ (t, x(t))
represents the matched uncertainties.
Assumption 1: The matrix pair (A,B) is controllable.

Assumption 2: The term ‖ χ (t, x(t)) ‖≤ χ0(t, x(t)) for
∀t > 0 and ∀x ∈ Rn, where χ0(t, x(t)) is a known function.
Remark 1: The observer of the uncertainty with an

unknown upper bound has been discussed to improve the sys-
tem transient performance in our previous work [16]. In fact,
the observer design has been discussed warmly, the boundary
of the uncertainty is generally unknown, and the norm value
of its derivative is assumed to have an unknown upper bound.
For instance, in [31] the fixed-time observer is designed to
compensate for such uncertainties.
Before moving on, we give the following lemma which will
be used in the proof of the main results in the paper.
Lemma 1 [3]: If the pair (A,B) is controllable, then based

on the algorithm below,
Initialization: A0 = A, B0 = B, T0 = In, k = 1.
Recursion: While rank (Bk) = rown (Ak) do

Ak+1 = B⊥k Ak
(
B⊥k
)T
, Bk+1 = B⊥k Ak B̂k

Tk+1 =
(
B⊥k
B̂k

)
, k = k + 1

with B⊥k =
(
null

(
BTk
))T , B̂k =

(
null

(
B⊥k
))T

. Then orthogo-
nal matrix G can be given as

G =
(
Tk 0
0 Iwk

)(
Tk−1 0
0 Iwk−1

)
· · ·

(
T2 0
0 Iw2

)
T1 (2)

with wi = n − rown(Ti). According to the coordinate trans-
formation y = Gx, system (1) can be reduced to the block
form

ẏ1 = A1,1y1 + A1,2y2
ẏ2 = A2,1y1 + A2,2y2 + A2,3y3
· · ·

ẏk = Ak,1y1 + · · · + Ak,kyk + Ak,k+1(u+ χ )

(3)

where Ai,j are derived from the matrix GAGT .
Lemma 2 [3]: Consider the dynamics in (1) and (3),

combining with the coordinate transformation s = 8y and
the inverse transformation y = 8−1s below

si = yi + φi, i = 1, . . . , k

φ1 = 0, φi+1 = A+i,i+1(
i∑

j=1

Aijyj+
i∑

r=1

∂φi

∂yr

r+1∑
j=1

Arjyj) (4)

yi = si + ψi, i = 1, . . . , k; ψ1 = 0,

ψi+1 = A+i,i+1(
i∑

k=1

∂ψi

∂sk
Ai,i+1sk+1+

i∑
j=1

Ai,j(sj + ψj)) (5)

Then system (1) can be redescripted as the following block
subsystem form

ṡ1 = A1,2s2
ṡ2 = A2,3s3
· · ·

ṡk−1 = Ak−1,ksk
ṡk = Ãk,1s1 + Ãk,2s2 + · · · + Ãk,ksk + Ak,k+1(u+ χ )

(6)
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where the matrices Ai,j and Ãi,j can be derived from the
matrix 8G.
Remark 2: According to the algorithm in Lemma 1, it is

noted that the dimensions of subsystems y1, . . . , yk in (3) and
s1, . . . , sk in (6) may be different. Due to the input matrix
Ak,k+1 with the structure of full row rank, it brings difficulty
to design the stabilization controller of multi-input linear
systems.

Objective: This paper aims to solve the prescribed finite
time stabilization control for multi-input linear systems (1)
with both uncertainties and state constraints. We will employ
prescribed finite time state feedback controller for sys-
tems (1) by a novel switching nonsingular coordinate trans-
formation function based on block decomposition technique.
Remark 3: Comparedwith the finite timemethods [6]–[11]

and the fixed time method [3], the convergence time T can be
conveniently set by introducing the term 1

T−t , which can be
considered as the role of gain term acting on the control input
and adjusting the convergence rate. Besides, different from
[1] and [12], the stabilization system of (1) owns the structure
of multiple inputs, and the controller proposed in this paper
can be obtainedwithout solving certain polynomials like [12].
Moreover, the case of time interval t > T and the control
continuity are not investigated in [1], [12] and [16]. Due to
the existence of the term 1

T−t introduced by the time scale
function, it is necessary to analyze the input boundedness and
state constraint issues.

III. MAIN RESULTS
This section presents the design and analysis of the prescribed
finite time stabilization controller for the multi-input linear
system. First, the novel switching coordinate transformation
and inverse coordinate transformation are proposed. Second,
stabilization control laws are developed and the proof of
boundedness is given. Finally, the stabilization control law
with state constraints is analyzed via the barrier Lyapunov
function.

A. COORDINATE TRANSFORMATION AND INVERSE
COORDINATE TRANSFORMATION
To obtain the prescribed-time controller, the switching scal-
ing function is introduced as followsµ1 (t,T ) :=

1
(T − t + δ)γ

, t ∈ [0,T )

µ1 (t,T ) := 1/δγ , t ∈ [T ,∞]
(7)

where the parameter T is the prescribed finite time satisfying
0 < Tp ≤ T (Tp is the physically possible time interval
which represents the time consuming of signal transmission
and processor computing) and is irrelevant to system initial
conditions. The parameter δ is a positive value satisfying that
0 < δ � 1. It is noted that the function µ1 (t,T ) meets that
µ1 (0,T ) = 1

(T+δ)γ , and when t = T , µ1 (t,T ) = 1/δγ

with an integer γ greater than 1, which guarantees the con-
tinuity of the switching function (7). The function µ1 (t,T )
is a positive non-decreasing function and is continuous

everywhere. Moreover, when δ = 0 it becomes the case
studied in [12].

Following the above function, we propose a coordinate
transformation based on dynamics (6).

Consider the block subsystem (6), design the coordinate
transformation w = Ps as follows,
Case 1: t ∈ [0,T )
wi =

si
(T − t + δ)γ

+ pi, p1 = 0,

pi+1 =
∑i

j=1

ai+1,j
(T − t + δ)i+γ+1−j

sj, 1 ≤ j ≤ i ≤ k
(8)

Case 2: t ∈ [T ,∞)wi =
si
δγ
+ pi, p1 = 0,

pi+1 =
∑i

j=1
ai+1,j
δi+γ+1−j

sj, 1 ≤ j ≤ i ≤ k
(9)

where the coefficients ai,j is a constant designed as

ai,0 = 0, ai,i = 1, ai,q = 0, q > i (10)

ai+1,j = A+i,i+1
(
ai,j (i+ γ − j+ k1)+ ai,j−1Ai−1,j

)
(11)

Remark 4: Compared with [1], [12] and [16], the case of
time interval t > T is considered. In terms of equations (8)
and (9), the parameter δ is introduced to guarantee the conti-
nuity of state wi for t ∈ [0,∞).
Theorem 1: For the coordinate transformation (8-11),

the dynamics of wi, 1 ≤ i ≤ k , can be described as

ẇi =
−k1

σ (T − t)+ δ
wi + Ai,i+1wi+1, i = 1, . . . , k − 1

(12)

where

σ (T − t) =

{
T − t 0 ≤ t < T
0 t ≥ T

(13)

and the parameter k1 is a positive value.
Proof: The proofs are divided into two parts associated

with above two cases in (8) and (9).
Step 1: The case of 0 ≤ t < T is firstly considered.

According to equation (12), the desired transformed system
is given below,

ẇi =
−k1

T − t + δ
wi + Ai,i+1wi+1 (14)

Then wi+1 can be obtained as follows,

wi+1 = A+i,i+1

(
ẇi +

k1
(T − t + δ)

wi

)
+(I − A+i,i+1Ai,i+1)

si+1
(T − t + δ)γ

(15)

the second term (I−A+i,i+1Ai,i+1)
si+1

(T−t+δ)γ is chosen carefully
to guarantee the solvability and uniqueness of control input u.
With the switching coordinate transformation (8), the deriva-
tive of wi along (14) is obtained as

ẇi =
γ si

(T − t + δ)γ+1
+

i−1∑
j=1

ai,j(i+ γ − j)

(T − t + δ)i+γ+1−j
sj
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+
Ai,i+1si+1

(T − t + δ)γ
+

i−1∑
j=1

ai,jAj, j+1
(T − t + δ)i+γ−j

sj+1 (16)

Then one has the solution of (15) as

wi+1

= A+i,i+1(
γ si

(T − t + δ)γ+1
+

i−1∑
j=1

ai,j(i+ γ − j)sj
(T − t + δ)i+γ+1−j

+
Ai,i+1si+1

(T − t + δ)γ
+

i−1∑
j=1

ai,jAj, j+1
(T − t + δ)i+γ−j

sj+1

+
k1

T − t + δ
(

si
(T − t + δ)γ

+

i−1∑
j=1

ai,jsj
(T − t + δ)i+γ−j

))

+(I − A+i,i+1Ai,i+1)
si+1

(T − t + δ)γ

Subsequently, we have

wi+1

= A+i,i+1(
γ si + k1si

(T − t + δ)γ+1
+

Ai,i+1si+1
(T − t + δ)γ

+

i−1∑
j=1

ai,j(i+ γ − j)

(T − t + δ)i+γ+1−j
sj +

i−1∑
j=1

ai,jAj, j+1sj+1
(T − t + δ)i+γ−j

+

i−1∑
j=1

k1ai,jsj
(T − t + δ)i+γ+1−j

)+
(I − A+i,i+1Ai,i+1)si+1

(T − t + δ)γ

=
si+1

(T − t + δ)γ
+ A+i,i+1(

i∑
j=1

ai,j(i+ γ − j+ k1)

(T − t + δ)i+γ+1−j
sj

+

i−1∑
j=1

ai,jAj, j+1
(T − t + δ)i+γ−j

sj+1)

With the condition (10), we have
∑i−1

j=1
ai,jAj, j+1
(T−t)i+γ−j

sj+1 =∑i
j=1

ai,j−1Aj−1, j
(T−t)i+γ+1−j

sj. Rewrite the above equation as follows,

wi+1 =
si+1

(T − t + δ)γ
+ A+i,i+1

×(
i∑

j=1

ai,j (i+ γ−j+ k1)+ ai,j−1Aj−1, j
(T − t + δ)i+γ+1−j

sj). (17)

According to the equation (8), one gets the condition (11).
Step 2: The case of t ≥ T is considered. Then wi+1 can be

obtained as follows,

wi+1 = A+i,i+1

(
ẇi +

k1
δ
wi

)
+ (I − A+i,i+1Ai,i+1)

si+1
δγ

(18)

With the dynamics (12), the desired transformed system is

ẇi =
−k1
δ
wi + Ai,i+1wi+1 (19)

By the similar steps above, we have

wi+1 =
si+1
δγ
+ A+i,i+1(

i∑
j=1

ai,j(i+ γ − j+ k1)
δi+γ+1−j

sj

+

i∑
j=1

ai,j−1Aj−1, j
δi+γ+1−j

sj) (20)

According to the equation (9), the condition (11) is obtained.
The proof is completed.
Remark 5: Different from [16], this paper designs the

time-based power function (8) and (9). The continuity of the
switching function of (7) is guaranteed and it owns the ability
to adjust the transient response performance.
Lemma 3: For the coordinate transformation (8-11),

the inverse coordinate transformation s = P−1w can be
described as follows,
Case 1: t ∈ [0,T )

si = wi(T − t + δ)γ + li, l1 = 0,
li+1 =

∑i
j=1 bi+1,j (T − t + δ)

γ−i+j−1 wj,

1 ≤ j ≤ i ≤ k

(21)

Case 2: t ∈ [T ,∞){
si = δγwi + li, l1 = 0,
li+1 =

∑i
j=1 bi+1,jδ

γ−i+j−1wj, 1 ≤ j ≤ i ≤ k
(22)

where the coefficient bi,j is a constant designed as

bi,0 = 0, bi,i = 1, bi,q = 0, q > i (23)

bi+1,j = A+i,i+1
(
−bi,j (γ − i+ j+ k1)+ bi,j−1Aj−1,j

)
. (24)

Proof: The proofs are divided into two parts associated
with the above two cases in (21) and (22).
Step 1: The case of 0 ≤ t < T is firstly considered. The

derivative of dynamic (21) with bi,q = 0 and bi,0 = 0 is
given as

Ai,i+1si+1

=

i−1∑
j=1

−bi,j(γ − i+ j) (T − t + δ)γ−i+j−1 wj

+

i−1∑
j=1

bi,j (T − t + δ)γ−i+j (−
k1wj

T − t + δ
+ Aj,j+1wj+1)

− (k1 + γ )wi(T − t + δ)γ−1 + Ai,i+1wi+1(T − t + δ)γ

=

i−1∑
j=1

−bi,j(γ − i+ j+ k1) (T − t + δ)γ−i+j+1 wj

+

i−1∑
j=1

bi,j (T − t + δ)γ−i+j Aj,j+1wj+1

− (k1 + γ )wi(T − t + δ)γ−1 + Ai,i+1wi+1(T − t + δ)γ

then the solution of si+1 gives

si+1 = A+i,i+1

i∑
j=1

(−bi,j (γ − i+ j+ k1))

× (T − t + δ)γ−i+j+1 wj + A
+

i,i+1Ai,i+1wi+1
×(T − t + δ)γ

+

(
I − A+i,i+1Ai,i+1

)
wi+1(T − t + δ)γ
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+

i−1∑
j=1

A+i,i+1bi,j(T − t + δ)
γ−i+jAj,j+1wj+1

= A+i,i+1

i∑
j=1

(−bi,j (γ − i+ j+ k1))

× (T − t + δ)γ−i+j+1 wj

+

i∑
j=1

A+i,i+1bi,j(T − t + δ)
γ−i+jAj,j+1wj+1

= A+i,i+1

i∑
j=1

(
−bi,j (γ − i+ j+ k1)+ bi,j−1Aj−1,j

)
× (T − t + δ)γ−i+j+1 wj + (T − t + δ)γwi+1

where the term
(
I − A+i,i+1Ai,i+1

)
wi+1(T − t+δ)γ is chosen

to eliminate the term A+i,i+1Ai,i+1wi+1(T − t + δ)γ . By the
coordinate transformation (21), it gives

si+1 =
i∑

j=1

bi+1,j (T − t + δ)γ−i+j+1 wj + (T − t + δ)γ wi+1

Then the equation (24) is obtained.
Step 2: The case of t ≥ T is considered. Similar to the

above equations, one gets

si+1 = A+i,i+1

i+1∑
j=1

(
−bi,j (γ − i+ j+ k1)+ bi,j−1Aj−1,j

)
×δγ−i+j+1wj + δγwi+1

By the coordinate transformation (22), the condition (24) is
obtained. The proof is completed.
Remark 6: According to the block decomposition tech-

nique in Lemma 1 and Lemma 2, the original system (1)
is transformed into the system (6), which owns the struc-
ture of different dimensions of subsystems. The coordinate
transformation proposed in (8-11) is utilized to obtain the
transformed system (12) from (6). With the transformed
system (12), if the state wi, i = 1, . . . , k − 1 is bounded,
then the state wi−1 can be bounded in prescribed time T .
With the nonsingular coordinate transformations introduced
in Lemma 1 and 2, the state x of the system (1) will be
bounded in prescribed time T .
Remark 7: As we all know, there are countless solutions

of wi+1 and si+1 due to Ai,,i+1(I −A
†
i,i+1Ai,i+1) = 0, the term

(I − A+i,i+1Ai,i+1)
si+1

(T−t+δ)γ and
(
I − A+i,i+1Ai,i+1

)
wi+1(T −

t + δ)γ are selected specially for coordinate transformation
and controller design in the next subsection.

B. PRESCRIBED-TIME STABILIZATION WITHOUT STATE
CONSTRAINTS
Recalling the above coordinate transformations, we give the
control strategy as below

u = −
k∑

p=1

Ãk,psp + (φ(t))γA+k,k+1

×(−
γ sk

(φ(t))γ+1
−

k−1∑
j=1

ak,j(k + γ − j)
(φ(t))k+γ+1−j

sj

−

k−1∑
j=1

ak,jAj, j+1
(φ(t))k+γ−j

sj+1 −
k1

(φ(t))γ
wk ) (25)

with φ(t) = σ (T − t)+ δ. Then the block subsystems w can
be given as

dotwi = −
k1
φ(t)

wi + Ai,i+iwi+1, i = 1, . . . , k − 1

ẇk = −
k1

(φ(t))γ
wk +

Ak,k+1
(φ(t))γ

χ (t,w)
(26)

Theorem 2: Consider the dynamics (1) with transforma-
tions (3-12) and control law (25), the transformed system
states w and s, the original system state x and control input
u are prescribed finite time bounded.

Proof: Applying the coordinate transformations (8)
and (9), we have

wk =
sk

(σ (T − t)+ δ)γ
+

k−1∑
j=1

ak,j
(σ (T − t)+ δ)k+γ−j

sj (27)

Then the derivative of wk along systems (6) is obtained as

ẇk =
γ sk

(φ(t))γ+1
+
Ak,k+1(

∑k
p=1 Ãk,psp + u+ χ (t,w))

(φ(t))γ

+

k−1∑
j=1

ak,j(k + γ − j)
(φ(t))k+1+γ−j

sj +
k−1∑
j=1

ak,jAj, j+1
(φ(t))k+γ−j

sj+1

By combining the controller (25) with the above equation, the
dynamics (26) is obtained.

Next, the stabilization property of system (26) is ana-

lyzed. Denote the candidate Lyapunov function Vi =
wTi wi
2 ,

i = 1, . . . , k .
Step 1: The case of i = k . The derivative of Vk along (26) is

V̇k = −
k1

(φ(t))γ w
T
k wk +

1
(φ(t))γ w

T
k Ak,k+1χ (t,w). By applying

Young’s inequality with constant parameter 0 < λ < k1,
we have

V̇k ≤ −
2
(
k1 − λ ‖ Ak,k+1 ‖

)
(φ(t))γ

Vk (t)

+
1

4λ(φ(t))γ
χ2 (t,w) (28)

Then

Vk ≤ exp−2(k1−λ‖Ak,k+1‖)
∫ t
0

1
φγ (t) dτ V (0)

+
χ2
0

4λ

∫ t

0
exp−2(k1−λ‖Ak,k+1‖)

∫ t
τ

1
φγ (s) ds

1
φγ (τ )

dτ (29)

When t < T , we have

Vk (t) ≤ exp−2(k1−λ‖Ak,k+1‖)
∫ t
0

1
φγ (τ ) dτV (0)

+
χ2
0

4λ
exp−2(k1−λ‖Ak,k+1‖)

∫ t
0

1
φγ (s) ds

×

∫ t

0
exp2(k1−λ‖Ak,k+1‖)

∫ τ
0

1
φγ (s) dsd

∫ τ

0

1
φγ (s)

ds
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= exp−2(k1−λ‖Ak,k+1‖)
∫ t
0

1
φγ (τ ) dτV (0)

+
χ2
0

4λ
1

2(k1 − λ ‖ Ak,k+1 ‖)

×(1− exp−2(k1−λ‖Ak,k+1‖)
∫ t
0

1
φγ (s) ds)

It is known that the first term above is monotonically decreas-

ing. Define 21 = exp
−2(k1−λ‖Ak,k+1‖)(

1
φγ−1

−
1

(T+δ)γ−1
)

γ−1 , then

Vk (T−) ≤ 21V (0) +
χ2
0

8λ(k1−λ‖Ak,k+1‖)
(1 − 21). Due to the

fact that Vk (t) =
wTk wk
2 , and one has

‖ wk (T−) ‖∞≤
√
2Vk (T−) = εk,1 (30)

As t goes to T , we have lim
t→T

φγ−1 = 1
δγ−1

. The parameter δ

is chosen as 0 < δ � 1, we know that if δ is close to zero,
lim
t→T

φγ−1 = +∞ and lim
t→T

21 = 1. Specially, if χ (t) ≡ 0,

τd ≡ 0 and δ = 0, we have lim
t→T

V (t) = 0. When t ≥ T ,

it gives

Vk (t) ≤ exp−2(k1−λ‖Ak,k+1‖)(t−T )/δ
γ

V (T )

+
χ2
0

8λ(k1 − λ ‖ Ak,k+1 ‖)

×exp−2(k1−λ‖Ak,k+1‖)(t−T )/δ
γ

×(exp2(k1−λ‖Ak,k+1‖)(t−T )/δ
γ

− 1)

= exp−2(k1−λ‖Ak,k+1‖)(t−T )/δ
γ

V (T )

+
χ2
0

4λ
1

2(k1 − λ ‖ Ak,k+1 ‖)

×(1− exp−2(k1−λ‖Ak,k+1‖)(t−T )/δ
γ

) (31)

Subsequently, the state wk is bounded as

‖ wk ‖∞≤

√
χ2
0

4δλ(k1 − λ ‖ Ak,k+1 ‖)
= ε′k,1 (32)

Step 2: The case of i = k − 1. Due to the fact that

ẇk−1 = −
k1

σ (T − t)+ δ
wk−1 + Ak−1,kwk (33)

Then we have

d
(
e
∫ t
0

k1
σ (T−s)+δ dswk−1

)
dt

= e
∫ t
0

k1
σ (T−s)+δ dsAk−1,kwk (34)

When t < T , we have

e
∫ t
0

k1
T−s+δ ds = ek1(− ln(T−s+δ) |t0) =

(
T + δ

T − t + δ

)k1
(35)

Recalling equation (34), we have(
T + δ

T − t + δ

)k1
wk−1

= wk−1 (0)+
∫ t

0

(
T + δ

T + δ − s

)k1
Ak−1,kwkds (36)

then it leads to

wk−1 =
(
T − t + δ
T + δ

)k1
wk−1 (0)

+

∫ t

0

(
T − t + δ
T + δ − s

)k1
Ak−1,kwkds (37)

Then one holds

‖ wk−1(T−) ‖∞

≤ (T + δ − t)(‖ wk−1 (0)
(T + δ − t)k1−1

(T + δ)k1
‖

+
‖ Ak−1,kwk ‖

k1 − 1
(1−

(T − t + δ)k1−1

(T + δ)k1−1
))

= (T + δ − t)ϒk−1 = εk,2 (38)

Since state wk and parameters T , k1 are bounded, ϒk−1 is
bounded. Similarly, we have

‖ wk−2(T−) ‖∞

≤ (T + δ − t)2 (‖ wk−2 (0)
(T + δ − t)k1−2

T k1
‖

+ ‖ Ak−2,k−1 ‖ ϒk−1
1

k1 − 1
(1−

(T + δ − t)k1−1

(T + δ)k1−1
))

= (T + δ − t)2ϒk−2 (39)

By the same steps, we have wk−q ≤ (T + δ − t)qϒk−q, q =
3, . . . , k − 1. When t > T , we have

‖ wi−1 ‖∞≤ εk,1ϒ ′k−1 (40)

with ϒ ′k−1 = (1+ ‖ Ak,k+1 ‖ exp(
−k1
δ
+ 1)). By the same

steps, we have wk−q, q = 3, . . . , k−1 are bounded. With the
inverse coordinate transformation (21) and (22), then

sj+1 =
j+1∑
q=1

bj+1,q (T + δ − t)γ−j+q+1 wq (41)

and the control input (25) is rewritten as

u = −
k∑

p=1

Ãk,psp −
A+k,k+1γ sk

φ

−

k−1∑
j=1

A+k,k+1ak,j(k + γ − j)

φk+1−j
sj

−

k−1∑
j=1

A+k,k+1ak,jAj, j+1
φk−j

sj+1 − k1A
+

k,k+1wk (42)

According to the coordinate transformations (8) and (9),
one has wk is bounded, then − sk

φ
,
∑k−1

j=1
ak,j

(φ)k+γ−j
sj and

−
∑k−1

j=1
A+k,k+1ak,jAj, j+1

φk−j
sj+1 are bounded. Then the control

input is bounded. The proof is completed.
Remark 8: The boundary value εk,1 of the state wk in (30)

is related to the magnitude of the uncertainties χ0, and
it can be adjusted by choosing the parameters k1. Indeed,
the system uncertainty has a significant influence on the con-
trol performance. The advanced nonlinear control methods
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in [24] and [25] can provide a good solution for dealing with
various uncertainties.

C. PRESCRIBED-TIME STABILIZATION WITH STATE
CONSTRAINTS
In this section, the barrier Lyapunov function is proposed for
restraining the amplitudes of system states. Before moving
on, we give the following lemma.
Lemma 4: [22] For any positive constant kw, the fol-

lowing inequality holds for any vector x ∈ Rn in the
interval ‖ x ‖< kw,

log
k2w

k2w − xT x
≤

xT x
k2w − xT x

(43)

where log(•) denotes the natural logarithm of •.
Then consider system (1) by coordinate transformations in

Theorem 1 and Lemma 3, we have
ẇi = −

k1
φ(t)

wi + Ai,i+iwi+1, i = 1, . . . , k − 1

ẇk = 4̄+
Ak,k+1
(φ(t))γ

(u+
∑k

q=1 Ãk,qsq + γ (t,w))
(44)

with 4̄ =
γ sk

(σ (T−t)+δ)γ+1
+
∑k−1

j=1
ak,j(k+γ−j)

(σ (T−t)+δ)k+1+γ−j
sj +∑k−1

j=1
ak,jAj, j+1

(σ (T−t)+δ)k+γ−j
sj+1. Then we design the controller u

below,

u = −
k∑

p=1

Ãk,psp + (φ(t))γA+k,k+1

×(−
γ sk

(φ(t))γ+1
−

k−1∑
j=1

ak,j(k + γ − j)
(φ(t))k+γ+1−j

sj

−

k−1∑
j=1

ak,jAj, j+1
(φ(t))k+γ−j

sj+1 −
k1

(φ(t))r
wk

−
γ1

2
wk

(φ(t))r (k2wk − w
T
k wk )

) (45)

Theorem 3: Consider the dynamics (1) with transforma-
tions (3-12) and control law (45), the transformed system
states w and s, the original system state x and control input
u are prescribed finite time bounded with amplitude con-
straints.

Proof: Define the BLF Lyapunov function candidate as

Vk = log
k2wk

k2wk − w
T
k wk

(46)

Hence, the states wk in (44) with the boundary ‖ wk ‖< kwk
is guaranteed if Vk is made bounded. Due to equations (38)
and (39), states wq, q = 1, . . . , k − 1 are also bounded. The
derivative of Vk along (44) is given as

V̇k =
wTk ẇk

k2wk − w
T
k wk

=
wTk

(k2wk − w
T
k wk )

(4̄+
Ak,k+1
(φ(t))γ

(u

+

k∑
q=1

Ãk,qsq + γ (t,w))) (47)

With Lemma 4, we have log
k2wk

k2wk−w
T
k wk

≤
wTk wk

k2wk−w
T
k wk

.

Then according to controller (45) and Young’s inequality,
the derivative of Vk can be rewritten as

V̇k =
−k1wTk wk

(φ(t))r (k2wk − w
T
k wk )

−
γ1

2

wTk wk
(φ(t))r (k2wk − w

T
k wk )

2

+
wTk Ak,k+1γ (t,w)

(φ(t))r (k2wk − w
T
k wk )

≤
−k1

(φ(t))r
Vk −

γ1

2

wTk wk
(φ(t))r (k2wk − w

T
k wk )

2

+
wTk wk

2(φ(t))r (k2wk − w
T
k wk )

2

+
1

2(φ(t))r
‖ Ak,k+1γ (t,w) ‖2

=
−k̄

(φ(t))r
Vk +

1
2(φ(t))r

‖ Ak,k+1 ‖2 γ 2(t,w) (48)

with k̄ = 2k1+γ1−1
2 > 0. Similar to (28), we have

that the variable wk is bounded and remains in the sets
‖ wi ‖< kwk , if the initial value of wi(0) is in the set
‖ wi(0) ‖< kwk . Then recalling (44), states
wi, i = 1, . . . , k − 1 are also bounded. With s = 8Gx,
s = P−1w, 8 and G are nonsingular transformation, we can
know that the states of x and s are prescribed-time bounded
and limited by ‖ x ‖∞<‖ P−18G ‖22 max(kwi). The proof is
completed.
Remark 9: With the proposed controller (45) the state wk

is designed to be bounded in prescribed time by (44), and then
states wi, i = 1, . . . , k − 1 are bounded in prescribed time.
In fact, the barrier Lyapunov function considered in (46) can
only ensure the constant constraint, the time-varying barrier
Lyapunov function which is close to practical applications
can be referred to [23]. Moreover, the high-order full-state
constraints can be solved based on [19]–[21], which will be
our future work.

IV. SIMULATION
In this section, we verify the effectiveness of the pro-
posed stabilization control methods in (25) and (45).
We consider the coefficients of the dynamics in (1)
as A = [1.5,−3.5, 2.5;−3, 0, 5; 0,−2, 5] and B =

[2, 0;−2, 2; 0,−5]. The matched uncertainties are assumed
to be τd = [2; 0;−5] ∗ sin(t), the desired prescribed conver-
gence time is chosen as T = 1s and the positive value δ is
chosen as δ = 0.05. The parameters γ1 = 1. Then according
to the block principle (2) and coordinate transformation (6),
we have

A11 = −0.9259, A12 =
[
−2.1376 6.7792

]
,
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FIGURE 1. The state x1 with controller (25).

FIGURE 2. The state x2 with controller (25).

A23 =
[
−2.8098 2.0000
−0.3239 −5.0000

]
,

Ã21 =
[
0.0521
0.7378

]
, Ã22 =

[
3.8236 2.1582
−0.7676 2.6764

]
,

G =

 0.6804 0.6804 0.2722
−0.6804 0.7245 −0.1102
−0.2722 −0.1102 0.9559

 ,
8 =

 1.0000 0 0
0.0392 1.0000 0
−0.1242 0 1.0000


With Theorem 1, the proposed non-singular coordinate trans-
formation can be obtained as

w =


1

(σ (T − t)+ δ)γ
O

A†12(γ + k1)

(σ (T − t)+ δ)(γ + 1)
1

(σ (T−t)+δ)γ

 (49)

To get fair comparison with [16], we use the same ini-
tial values as x0 = (0.5, 0.2, 0.3)T . The cases γ = 1 to
γ = 3 are chosen in (8) and (9), respectively. Compared
with case γ = 1 in [16], Figures 1-3 show the evolutions of
states for system (1). It is clearly shown that states xi, i =
1, 2, 3 can converge to the neighbor of the origin in the
desired prescribed time T = 1s, which proofs the proposed

FIGURE 3. The state x3 with controller (25).

FIGURE 4. Comparison of controller u with γ = 1 and γ = 2.

FIGURE 5. Comparison of the state x1 with controller (25) and (42).

controller (25) is effective when 0 ≤ t < T and t ≥ T . More-
over, the transient response performance can be effectively
improved by choosing a larger γ , which confirm that the
high power nonsingular coordinate transformations (8)-(9)
and (21)-(22) are significant and necessary. Figure 4 presents
the plots of controller (25) and the boundedness of the con-
troller is proved. In Figures 5-7, it can been seen that the
amplitude of state x can be limited. To further show the
effectiveness of the controller (45), we assume the constraint
bound of wk as kwk = 0.18. In Figures 8-9, the value γ
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FIGURE 6. Comparison of the state x2 with controller (25) and (42).

FIGURE 7. Comparison of the state x3 with controller (25) and (42).

FIGURE 8. State w2
2 without the influence of the uncertainty τd .

is given as γ = 2. In Figure 8, we assume the system
uncertainty τd = 0, and the comparison of state response
w2
2 with and without the constraint bound of kwk = 0.18 is

shown. With equation (49), the dimension of state w2 is 2.
From Figure 8, it illustrates that the state w2

2 will converge to
zero without the existence of the uncertainty τd . Moreover,
the controller proposed in (45) can bring the state w2

2 into the
specified constraint range kwk = 0.18, while the statew2

2 with
controller (42) will be out of limitation range. In Figure 9,
we assume the uncertainty τd as τd = [2; 0;−5] ∗ sin(t),

FIGURE 9. State w2
2 with the influence of the uncertainty τd .

and the comparison of state response w2
2 with and without the

constraint bound of kwk = 0.18 is shown. From Figure 9,
it shows that the state w2

2 can converge into the specified
constraint range kwk = 0.18 with the controller (45). It is
proven that the proposed controllers are effective.

V. CONCLUSION AND FUTURE WORK
In this paper, based on the block decomposition technique and
novel switching nonsingular coordinate transformation meth-
ods, the prescribed finite time stabilization control laws for
multi-input linear control systems are presented, which fills
the gap of the control time interval in the case of t > T while
guaranteeing continuity and boundedness of the controller.
Furthermore, the amplitudes of system states are restrained
with constant boundary value by introducing the barrier Lya-
punov function. Future research work will focus on the exten-
sion of the results to the prescribed-time consensus problem
of multiple linear systems with time-varying communication
delay inspired by [27]–[30]. Furthermore, the event trigger
prescribed time control of linear systems which can reduce
the burden of actuators will be another future work.
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