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ABSTRACT To solve the problem of decreased filtering accuracy and even filter divergence for the case
that the model errors and measurement outliers exist simultaneously, an adaptively robust square-root
cubature Kalman filter (SRCKF) based on amending is proposed in this paper. Based on the error analysis,
the judgment criterion and the amending criterion related to the innovation are set. Then the filter could
overcome the influence of the measurement outliers with the robust amendment of the measurement noise
covariance matrix based on the principle of the innovation covariance matching. To further deal with model
errors, the newmethod of the adaptive amendment of the predicted state based on the innovation is developed
and combined. Finally, the proposed algorithm can balance the effect of the prior predicted value and the
posterior feedback measurement value on the filtering process and reduce the state estimation error. The
simulation results show that the proposed algorithm can effectively suppress the negative impact of the model
errors and the measurement outliers and can obtain better estimation performance and obviously decreasing
running time compared with the adaptively robust unscented Kalman filter (ARUKF) and the robust multiple
fading factors cubature Kalman filter (RMCKF).

INDEX TERMS Adaptively robust filter, adaptive amendment, measurement outliers, model errors,
square-root cubature Kalman filter.

I. INTRODUCTION
In recent years, sigma point-based Gaussian approximation
filters [1]–[9] have been researched intensively and have an
important application in the field of target tracking. Typical
ones include the unscented Kalman filter (UKF) [3], [4],
the central difference Kalman filter (CDKF) [5], the Gauss-
Hermite quadrature filter (GHQF) [6], and the cubature
Kalman filter (CKF) [7], [8]. These estimation algorithms
have better nonlinear state estimation performance and avoid
the calculation of the Jacobian matrix compared with the
extended Kalman filter (EKF) [9]. Especially, the CKF has
the properties of simplicity, high accuracy, good convergence,
etc. Reference [10] which has a popular application in various
state estimation areas. The square-root CKF (SRCKF) was
proposed to obtain better filtering performance and numerical
stability by introducing the square-root of the error covari-
ance matrix into the process of CKF. However, the estimation
performance will be degraded and the filtering results will be
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unreliable in the presence of model errors and measurement
outliers.

On the one hand, there are mainly two methods to over-
come the model errors [11]. The first is to improve the
adaptability and accuracy of the model. The adaptive current
statistical (CS) model and the improved interacting multiple
model (IMM) were combined with the SRCKF respectively
in [11], [12], which effectively improved the maneuvering
target tracking accuracy. The second is to develop adaptive
filtering algorithms to obtain better filter precision, among
which the strong tracking filter (STF) based on the fading
memory filtering theory [13]–[16] can effectively resist the
bad influence of model errors. On the other hand, it is nec-
essary to use robust techniques for controlling the measure-
ment outliers such as the Huber-based Kalman filter (HKF)
[17] and the robust UKF with gain correction [18], [19].
However, the above methods cannot effectively reduce the
negative impact of model errors and measurement outliers
simultaneously.

In fact, there are several robust filters that can deal with
the problem such as the robust M-M filter [20], maximum
correntropy Kalman filter [21], and the filters which applied
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heavy-tailed distributions [22], [23] and non-Gaussian
distributions [24], [25]. But these estimation methods have
limitations of complex theoretical derivation and numer-
ous iterations. Besides, efforts have been devoted to con-
structing adaptively robust filters in the literature [26]–[29].
Yang [26], Yang et al. [27] established the adaptively robust
Kalman filter (ARKF) theory which applied the robust esti-
mation methodology to control measurement outliers and
introduced the adaptive fading factor to overcome model
errors [30]. However, the ARKF may fail when the robust
estimation solution of the total state cannot be obtained in
some cases [28]. Therefore novel tracking derivative-free
filters based on the structure of the ARKF were proposed
in [28] and [29] which can overcome the limitations of
the ARKF and have fewer iterations. These filters named
the adaptively robust unscented Kalman filter (ARUKF)
and the robust multiple fading factors cubature Kalman fil-
ter (RMCKF) combined the STFwith the Huber-based robust
estimation. However, the modified measurement covariance
matrix and the fading factor were both determined by the
innovation in the ARUKF and the RMCKF. If the measure-
ment outliers lead to a big innovation, the system cannot
obtain the modified measurement covariance matrix and the
fading factor correctly and effectively. Besides, the formation
of the fading factor has problems such as the arbitrariness of
the introduced position [11], [31], [32] and a large amount of
calculation [33], [34].

In this paper, an adaptively robust SRCKF based on amend-
ing (ARSRCKF) is proposed to resist the impact of model
errors and measurement outliers simultaneously. The main
contributions of this paper are summarized as follows. 1) The
measurement noise covariance matrix is amended based on
the principle of the innovation covariance matching to over-
come the measurement outliers influence. 2) The newmethod
that the predicted state is amended directly based on the
innovation is combined to deal with model errors, which is
proposed as an alternative to the introduction of the fading
factor. 3) The judgment criterion and the amending criterion
are set based on the error analysis to balance the effect of the
prior predicted value and the posterior feedbackmeasurement
on the filtering process and to reduce the state estimation error
finally. The simulation results are satisfactory and verify the
effectiveness of the proposed algorithm.

The paper proceeds as follows; the process of the SRCKF
is introduced in Section II. In Section III, the proposed
adaptively robust SRCKF is developed based on the given
error analysis, the judgment criterion, and the amending
criterion. Section IV presents two simulation scenarios that
demonstrate the efficiency and performance of the proposed
algorithm. Finally, Section V gives the conclusions.

II. SRCKF
The nonlinear discrete-time system with additive noise is
shown as follows:{

xk+1 = f (xk )+ wk
zk+1 = h(xk+1)+ vk+1

(1)

where xk+1 ∈ Rn and zk+1 ∈ Rm are the state vector and the
measurement vector at time k + 1, respectively. f and h are
the nonlinear state transition function and the nonlinear mea-
surement function, respectively. wk is the process noise. vk is
the measurement noise. wk and vk are mutually independent
with wk ∼ N (0,Qk ), vk ∼ N (0,Rk ).
To maintain the positive definiteness and the symmetry of

the error covariance matrix and thus improve stability and
numerical accuracy of the filter, the square-root of the error
covariance matrix is introduced into the process of CKF to
form the SRCKF algorithm.

Generally, QR decomposition to A is defined as
S = Tria (A), where S is the lower triangular matrix [11].
The process of the SRCKF can be summarized as follows.

A. TIME UPDATE
The posterior probability density function of the system at
time k is assumed to be p(Xk |Zk ) ∼ N ( ˆxk|k ,Pk|k ), then:
(1) Factorize

Pk|k = Sk|k (Sk|k )T (2)

(2) Evaluate the cubature points

X i,k|k = Sk|kξ i + x̂k|k , i = 1, 2, . . .m (3)

(3) Evaluate the nonlinear propagated cubature points and
the predicted state

X∗i,k+1|k = f (X i,k|k ), i = 1, 2, . . .m (4)

x̂k+1|k =
1
m

m∑
i=1

X∗i,k+1|k (5)

where n andm are the dimensional number of the state vector
and the total number of cubature points, respectively, which
satisfies m = 2n. ξ i =

√
m/2[1]i, [1]i is the ith column of

the followed points:

[1]=



1
0
...

0

 ,

0
1
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0
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0
0
...

1

 ,

−1
0
...

0

 ,


0
−1
...

0

 , . . .


0
0
...

−1



(6)

(4) Calculate the square-root of the predicted error
covariance

Sk+1|k = Tria
(
[χ∗k+1|k ,SQ]

)
(7)

where SQ is the square-root of Qk , which is obtained by
Cholesky decomposition(SQ = Chol(Qk )). χ∗k+1|k is the
n× m weighted and centered matrix as follows:

χ∗k+1|k =
1
√
m
[X∗1,k+1|k − x̂k+1|k ,X

∗

2,k+1|k

− x̂k+1|k , . . . ,X∗m,k+1|k − x̂k+1|k ] (8)
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B. MEASUREMENT UPDATE
(1) Evaluate the cubature points

χ i,k+1|k = Sk+1|kξ i + x̂k+1|k , i = 1, 2, . . .m (9)

(2) Evaluate the nonlinear propagated cubature points and
the predicted measurement

Z∗i,k+1|k = h(χ i,k+1|k ), i = 1, 2, . . .m (10)

ẑk+1|k =
1
m

m∑
i=1

Z∗i,k+1|k (11)

(3) Calculate the innovation and the square-root of innova-
tion covariance matrix

ek+1 = zk+1 − ẑk+1|k (12)

Szz,k+1|k = Tria
(
[Zk+1|k ,SR]

)
(13)

where SR is the square-root of Rk , which is obtained by
Cholesky decomposition(SR = Chol(Rk )). Zk+1|k is the l×m
weighted and centered matrix (l is the dimensional number of
the measurement vector) as follows:

Zk+1|k =
1
√
m
[Z∗1,k+1|k − ẑk+1|k ,Z

∗

2,k+1|k

− ẑk+1|k , . . . ,Z∗m,k+1|k − ẑk+1|k ] (14)

(4) Evaluate the cross-covariance matrix

Pxz,k+1|k = Xk+1|kZTk+1|k (15)

where Xk+1|k is the n × m weighted and centered matrix as
follows:

Xk+1|k =
1
√
m
[χ1,k+1|k − x̂k+1|k ,χ2,k+1|k

− x̂k+1|k , . . . ,χm,k+1|k − x̂k+1|k ] (16)

(5) Calculate the Kalman gain

Kk+1 = (Pxz,k+1|k/STzz,k+1|k )/Szz,k+1|k (17)

(6) Update the estimate state

x̂k+1|k+1 = x̂k+1|k + Kk+1(zk+1 − ẑk+1|k ) (18)

(7) Update the square-root of the estimation error covari-
ance matrix

Sk+1|k+1 = Tria
(
[Xk+1|k − Kk+1Zk+1|k ,Kk+1SR]

)
(19)

III. ADAPTIVELY ROBUST SRCKF BASED ON AMENDING
A. ERROR ANALYSIS AND AMENDMENT
In nonlinear filtering, the model errors (caused by model mis-
match, aircraft manoeuver, abrupt state changes, and some
other factors) and the occurrence of measurement outliers
are the key reasons that lead to the decline of the filtering
precision, the degradation of tracking performance, and even
the divergence of the filter.
As described above, if model errors and measurement out-

liers occur individually, there are effectivemethods. However,
neither the STF nor the robust Kalman filter designed for

controlling measurement outliers can overcome the negative
impact brought by model errors and measurement outliers
simultaneously, which is due to the design concepts of the
algorithms: 1) In essence, the STF avoids filter divergence
by increasing the weight of current measurement data in
the filtering process. Therefore, the performance of the STF
will be badly affected by the occurrence of measurement
outliers. 2) The reason for the filter divergence caused by
model errors is that the previous data play a strong role in
the state estimation, so it is necessary to make full use of the
information of the current measurement data for correction.
However, the robust techniques designed just for controlling
measurement outliers will mistake model errors for measure-
ment errors, make an increment in the measurement noise
covariance matrix, and further reduce the contributions of
measurements. Therefore, it is difficult to overcome model
errors effectively.
It can be seen from (18) that the estimated state is com-

posed of the prior predicted state and the feedback of the
innovation.
In the event of the model errors at time k , the predicted

state and the predicted measurement at the time k + 1 will
have a deviation, then the accuracy of the state estimation
will decline, which is reflected in the large increase of the
innovation at the time k + 1. The STF adjusts the gain
matrix in real-time by introducing the fading factor, which
is actually amending the second item of (18). In fact, the first
item x̂k+1|k , can be directly amended based on the innovation
which reflects the trend and the predicted state deviates from
the actual state. Then even facing the abrupt state changes,
the filter can catch up with the target state in real-time
by amending and compensating the predicted state x̂k+1|k
according to the actual changes, and finally achieve the pur-
pose of improving the estimation accuracy.
Due to the nonlinear property of measurement, the exis-

tence of interference, and the measurement noise, measure-
ment outliers occur from time to time, which will lead to
a dramatic increase of the innovation. In this case, still
amending the predicted state value will obviously lead to
a further increase of the prediction error or even the fil-
ter divergence. Then, the measurement noise covariance
matrix Rk can be amended to reduce the weight of the mea-
surements in real-time during the filtering process based on
the principle of the innovation covariance matching.
Just like the ARUKF and the RMCKF, the proposed algo-

rithm can overcome the negative impact of model errors
and measurement outliers simultaneously by combining the
above two aspects of the amendment. But if measurement out-
liers lead to a big innovation, the two amending methods will
make an unwanted effect offset. Then the system cannot make
the best use of the contributions of the model information and
the measurement on the filtering process correctly.
Based on the above analysis, it can be concluded that the

changes of the innovation determinewhether to amend. And it
is necessary to set the thresholds to judge the source of errors,
so as to choose how to amend.

VOLUME 9, 2021 47581



C. Li et al.: Adaptively Robust SRCKF Based on Amending

FIGURE 1. Judgment criteria for amending.

B. JUDGMENT CRITERION AND AMENDING CRITERION
1) JUDGMENT CRITERION
Draw a circle which is named the measurement confidence
circle while the center is the measurement value at time k+1
and the radius is 3

√
Rk+1. Because zk+1 ∼ N (ẑk+1|k ,Rk+1)

and the measurement noise is the Gaussian white noise,
when the filter works normally, there is a 99.73% proba-
bility that the predicted measurement ẑk+1|k will be within
[zk+1 − 3

√
Rk+1, zk+1 + 3

√
Rk+1] based on the probability

theory (3-σ rule). Equivalently, ẑk+1|k will be in the mea-
surement confidence circle with a 99.73% probability. The
non-representational measurement circle is just used to visu-
ally help illustrate the judgment criterion.

Similarly, the amending threshold can be equivalent to
the radius of another circle which is named the amend-
ing circle. When the model errors or the measurement
outliers occur, the absolute value of the innovation will
increase and exceed the threshold which means that the pre-
dicted measurement ẑk+1|k will appear outside the amending
circle.

Fig. 1 is the schematic diagram of judgment criteria for
amending. The black solid circle is the measurement con-
fidence circle, and the two dotted circles are the amending
circles. The parameters λ1 and λ2 are adjustment factors.
Rk+1(i, i) is the ith diagonal element of Rk+1, which reflects
the measurement error of variables in the corresponding
dimensions.

According to the previous analysis, it is necessary to set
the thresholds to judge the source of errors and determine
whether to amend. The two thresholds correspond to r1 and
r2 respectively in Fig. 1. If the ith component of the absolute
value of the innovation |ek+1(i)| < r1, there is no need to
amend. If r1 < |ek+1(i)| < r2, the adaptive amendment of the
predicted state and the robust amendment of the measurement
noise covariance matrix will be combined. If r2 < |ek+1(i)|,
the increase of the innovation is mainly due to the occurrence
of measurement outliers. In this case, only the measurement
noise covariance matrix is amended.

In the event of measurement outliers especially the mutant
measurements, there is a larger deviation between the mea-
surement value and the predictedmeasurement. Therefore the
radius of the amending circle corresponding to r2 is larger.
By contrast, the changes of the innovation caused by the
model errors are smaller because the process that the changes
of acceleration variable transmit to the measurable position
dimension and velocity variables is not instantaneous. If the
predicted measurement appears outside the amending circle
corresponding to r2, the deviation of the innovation will
be mainly due to measurement outliers. Then the adaptive
amendment of the predicted state based on the innovation
will make an unwanted offset for the robust amendment of
the measurement noise covariance matrix and even make
the filter not robust. Therefore, only the measurement noise
covariance matrix is amended in this case.
The parameters λ1 and λ2 are used to balance the effect

of the measurement value and the predicted value on the
amending area. λ1 can be set in the interval of [2,3]. r1 is
a bit smaller than r0 to reduce the state estimation deviation
caused by the error accumulation during the filtering process
and enhance the sensitivity to the target state changes. λ2 is
related to the system measurement accuracy and is generally
set larger to overcome the negative impact of the mutant
measurements. The setting interval is based on probability
theory and experience, in which the filtering algorithm can
achieve the optimal performance. And the basic principle of
avoiding excessive amendment on the filtering process needs
to be followed when setting λ1 and λ2. The main purpose of
this principle is to set a reasonable amending area by setting
λ1 and λ2, to balance the effect of the prior predicted value
and the posterior feedbackmeasurement value on the filtering
process, and thus reduce the state estimation error.

2) AMENDING CRITERION
If the predicted measurement value is outside the area of r2,
the robust amendment is applied directly to the measure-
ment noise covariance matrix Rk+1 to reduce the weight
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FIGURE 2. Structure diagram of the algorithm.

of measurement outliers based on the principle the innova-
tion covariance matching. When the filter works normally,
the actual and the theoretical innovation covariance matrix
match as follows:

ek+1eTk+1 = Pzz,k+1|k = Pz,k+1|k + Rk+1 (20)

where Pzz,k+1|k and Pz,k+1|k are the innovation covariance
matrix and the observation covariance matrix respectively
which are determined by:

Pzz,k+1|k = Szz,k+1|kSTzz,k+1|k (21)

Pz,k+1|k = Pzz,k+1|k − Rk+1 (22)

However, when measurement outliers occur, the innovation
covariance matrix needs adaptation:

Pzz,k+1|k = Pz,k+1|k + µk+1Rk+1 (23)

where µk+1 is the scale factor to make (20) satisfied again.
Then the square-root of the innovation covariance matrix
in (13) will become:

Szz,k+1|k = Tria
(
[Zk+1|k ,

√
µk+1SR]

)
(24)

And the square-root of the estimation error covariance matrix
in (19) will become:

Sk+1|k+1 = Tria
(
[Xk+1|k − Kk+1Zk+1|k ,

√
µk+1Kk+1SR]

)
(25)

Then (24) and (25) will be used in the measurement update
process. According to [18], the adaptive scale factor is calcu-
lated by

µk+1 =
(
ek+1eTk+1 − tr[Pz,k+1|k ]

)
/tr(Rk+1) (26)

where tr is an operator for getting the trace of a matrix. It can
be seen from (23) that the scale factor will increase in the
event of measurement outliers. Then the measurement noise
covariance matrix increases and the filtering gain decreases,
which reduces the effect of measurement outliers on the state
update process.

If the measurement systems can measure the position and
velocity variables, the innovation at time k + 1 can used

to directly compensate and amend the predicted states of
position and velocity variables at time k+1. As k+1. As for
the predicted states of acceleration variables, the changes
of the amended velocity variables can be used. Therefore,
when the predicted measurement value is in the area between
r1 and r2, the criteria are combined with the amended robust
measurement noise matrix:
x̂k+1|k (1) = x̂k+1|k (1)+ ek+1(1) · k1
x̂k+1|k (2) = x̂k+1|k (2)+ ek+1(2) · k2
x̂k+1|k (3) = x̂k+1|k (3)+

(
x̂k+1|k (2)−x̂k+1|k (2)

)
· k3

(27)

where x̂k+1|k (i) is the ith component of the predicted state,
corresponding to the position, velocity and acceleration
dimension respectively. x̂k+1|k (i) is the ith component of the
amended predicted state. k1, k2 and k3 are the corresponding
amending factors of the position, velocity and acceleration
dimension.

To avoid the excessive or inadequate amending effect, three
aspects can be considered in the actual setting of k1, k2
and k3: Firstly, the amending factors can be set based on expe-
rience or obtained offline by various intelligent algorithms.
Secondly, the factors satisfy the formula of x = vt + 0.5at2.
After setting any two parameters in k1, k2, and k3, the third
parameter can be calculated by solving this formula. Thirdly,
the proportion of information provided by the innovation
should be considered. For example, if the innovation obtained
by the measurement system only includes the deviation of the
position dimension and velocity dimension, k1 and k2 can be
set slightly larger.

C. IMPLEMENTATION OF THE ADAPTIVELY ROBUST SRCKF
The structure diagram of the algorithm is shown in Fig. 2. The
involved steps are as follows:

1) Obtain the innovation at time k + 1 using (2) to (12).
2) Determine whether to amend and distinguish which

amending circle the predicted measurement is in based
on the judgment criterion. If no amendment is needed,
continue the filtering process according to (13) to (19).
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3) If the predicted measurement value is in the area
between r1 and r2, calculate the scale factor µk+1
with (13), (21), (22) and (26). Then amend the pre-
dicted state based on the amending criterion with (27).
Finally, complete the filtering process using (7) – (12),
(24), (14) – (18) and (25).

4) If the predicted measurement value is outside the
area of r2, complete the measurement update process
using (24), (14) – (18) and (25) after calculating the
scale factor µk+1 and the predicted state needs no
amendment.

5) Repeat the above steps.

IV. SIMULATIONS AND DISCUSSION
In this section, the proposed algorithm is compared with
the conventional SRCKF, the ARUKF [28], and the
RMCKF [29] to illustrate the filter efficiency in the scenarios
with the model errors or the measurement outliers. In the
simulations, the state vector is Xk = [x, ẋ, y, ẏ]T and the
measurement vector is Zk = [x, y]T , where x and y are
the position variables, with ẋ and ẏ being the corresponding
velocity variables. So there are only two amending factors
in the simulations. Then the innovation can be used to com-
pensate and amend the predicted states of position variables.
As for the predicted states of velocity variables, the changes
of the amended position variables can be used. The constant
velocity motion and coordinated turning motion are set and
modeled as FCV and FCT respectively by:

FCV =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 (28)

FCT =


1

sin(wT )
w

0
cos(wT )− 1

w
0 cos(wT ) 0 −sin(wT )

0
1− cos(wT )

w
1

sin(wT )
w

0 sin(wT ) 0 cos(wT )

 (29)

where w is the turning rate of 4 rad/s and T is the sam-
pling time with T = 1 s. The initial target state x0 =
[1000m, 200m/s, 1000m, 10m/s]T , initial covariance matrix
is P0 = diag(15, 15, 15, 5). The covariance matrices of
the process noise and the measurement noise are taken as
Qk = diag(1, 1, 1, 1) and Rk = diag(100, 100) respectively.

The Root Mean Square Error (RMSE) of the position are
used to quantify and evaluate the performance of various
filtering algorithms, and the 200-run Monte Carlo simulation
is conducted to obtain the statistically average results. The
RMSE is defined by:

RMSE =

√√√√√ 1
N

N∑
j=1

(
X i(k)− x̂

j
i(k|k)

)2
(30)

Where N is the total number of Monte Carlo simulations.

X i(k) and x̂
j
i(k|k) are the true value and the estimated state

value of the ith component of the target state at time k in
the jth simulation. In each simulation, the entire process is
realized for 225 s and the initial estimated value is consistent
with the initial target state value.

A. MODEL ERRORS
Model errors caused by the model mismatch and the state
mutations are taken into consideration in the first scenario.
The target is set for a hybrid maneuver with constant velocity
motion and coordinated turning motion, but all four algo-
rithms only use the model FCV when tracking, so as to intro-
duce the model errors caused by the model mismatch. The
coordinated turning motion is during 50 s ∼ 100 s and
140 s ∼ 190 s, and the target maintains the constant velocity
motion during the other time. At the same time, the state
mutations [0, 30 m/s, 0, 30 m/s]T and [0, 20 m/s, 0, 20 m/s]T

are introduced at epochs of 30 s and 120 s, so as to introduce
the model errors caused by state mutations.

Fig. 3 presents the true and estimated target trajectories,
which shows that all four algorithms can track the trajectory
of the target. However, during the two turning motion periods
when there is a model mismatch, the tracking performance
of the SRCKF decreases and the estimated target trajectory
cannot fit the true target trajectory well.

FIGURE 3. The true and estimated target trajectories.

Fig. 4 and Fig. 5 present the comparison of RMSE position
curves among the four algorithms. The corresponding mean
RMSEs and running time are listed in Table 1.
As seen from Fig. 4 and Fig. 5, although the filtering

accuracy of the SRCKF is higher when the target model is
accurate, it will be affected badly by the model mismatch and
the statemutations which lead to the large jumps of the RMSE
curves. By contrast, the proposed algorithm, the RMCKF,
and the ARUKF can obtain the faster convergence rate and
higher filtering accuracy. Besides, the proposed algorithm
and the RMCKF outperform than the ARUKF facing the
model mismatch and the state mutations.
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FIGURE 4. RMSEs of X-position in the first scenario.

FIGURE 5. RMSEs of Y-position in the first scenario.

TABLE 1. Comparison of the position tracking performances and running
time in the first scenario.

As shown in Table 1, the estimation accuracy of the pro-
posed algorithm is similar to that of the RMCKF and higher
than that of the ARUKF. Additionally, compared with the
SRCKF, the running time of the RMCKF and the ARUKF
increases by 134.01% and 129.99% respectively, while the
proposed algorithm only increases by 22.51%. The proposed
algorithm has advantages in running time and computational
load due to two reasons: 1) The proposed algorithm amends
the predicted state directly and avoids the calculation of
the fading factor. 2) The proposed algorithm amends the
measurement noise covariance matrix based on the principle

of the innovation covariance matching. However, the robust
correction in RMCKF and ARUKF involves a lot of matrix
inversion operations. The advantages will become more pro-
nounced as the dimensions of state vector and measurement
vector increase.

The scenario verifies the effectiveness of the proposed
algorithm in the presence of model errors (caused by the
model mismatch or the target state mutations). By setting
the reasonable amending threshold and amending criterion,
the proposed algorithm directly amends the predicted state.
Finally, the proposed algorithm not only obtains high filtering
accuracy but also has obvious advantages in running time and
computational load.

B. MEASUREMENT OUTLIERS
In the second scenario, the model errors (the same as those
in the first scenario) and the measurement outliers are intro-
duced simultaneously, i.e., z30 = z30 + [300 m, 300 m/s,
300 m, 300 m/s]T , z70 = z70 + [400 m, 400 m/s, 400 m,
400 m/s]T , z120 = z120 + [500 m, 500 m/s, 500 m, 500 m/s]T .
In addition, the measurements during 200 s∼ 202 s are set to
zero to introduce the continuous measurement outliers.

The comparison of RMSE position curves among the four
algorithms are depicted in Fig. 6 and Fig. 7. And the corre-
sponding mean RMSEs are listed in Table 2.

FIGURE 6. RMSEs of X-position in the third scenario.

As clearly seen from Fig. 6, Fig. 7 and Table 2, the curves
of the RMCKF, the ARUKF, and the SRCKF exhibit large
jumps at the moment when the measurement outliers are
introduced. And the RMCKF and the ARUKF can recover
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FIGURE 7. RMSEs of Y-position in the third scenario.

TABLE 2. Comparison of the position tracking performances in the third
scenario.

more quickly and have higher accuracy than the SRKCF.
However, the RMSE curves of the RMCKF and the ARUKF
have even higher peaks than SRCKF at the moment when the
model errors and measurement outliers occur simultaneously.
This simulation phenomenon also appeared in [28] and [29]
which verifies the previous analysis; that is, the effect of the
fading factor will make an unwanted offset for the effect of
the modified measurement covariance matrix.

By contrast, the proposed algorithm can not only con-
verge rapidly but also maintain higher filtering accuracy and
stability. And there are no large jumps of the curves like
the other algorithms because the proposed algorithm can
make the best use of the contributions of the model informa-
tion and the measurements correctly based on the amending
threshold and amending criterion. As seen from the mean
RMSEs in Table 2, the proposed algorithm has obviously
better estimation performance. It can be further found that
the proposed algorithm is affected by the simultaneous occur-
rence of the model mismatch and measurement outliers at
70 s. The simultaneous occurrence of the state mutations and

measurement outliers at 30 s and 120 s have little influence on
the filtering process. And the proposed algorithm stays robust
to the continuous measurement outliers during 200 ∼ 202 s.

V. CONCLUSION
In this paper, a novel adaptively robust SRCKF algorithm is
proposed aiming to obtain good estimation performance in
the presence of model errors andmeasurement outliers simul-
taneously. Based on the error analysis, the judgment criterion
and the amending criterion related to the innovation are set.
Then the measurement noise covariance matrix is amended
based on the principle of the innovation covariance matching
to suppress the measurement outliers influence, and the new
method that the predicted state is amended directly based
on the innovation is combined to deal with model errors.
Finally, the proposed algorithm can balance the effect of the
prior predicted value and the posterior feedbackmeasurement
value on the filtering process and reduce the state estimation
error.

The proposed algorithm is evaluated in two scenarios and
the simulation results demonstrate that: 1) The estimation
accuracy of the proposed algorithm is similar to that of
the RMCKF and higher than that of the ARUKF and the
SRCKF in the presence of model errors. Besides, the pro-
posed algorithm obtains obviously decreasing running time.
Therefore, the adaptive amendment of the predicted state
based on the innovation is effective and can be an alternative
to the introduction of the fading factor. 2) The proposed algo-
rithm can not only converge rapidly but also maintain higher
filtering accuracy and stability than the other algorithms
even when the model errors and measurement outliers occur
simultaneously.
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