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ABSTRACT This paper proposes a novel method that uses stator current signals to detect motor faults
under operational speed and load torque conditions. Previous studies on motor current signature analysis
(MCSA) have been devoted to developing methods to detect faults in non-stationary conditions; however,
they have limitations. Conventional methods require much domain knowledge or parameter selection for
signal decomposition, and are applicable under limited variable conditions. Thus, this paper proposes a new
feature, drive-tolerant current residual variance (DTCRV), for fault detection. This new approach requires no
domain knowledge and is applicable under varying speed and load torque conditions. In the proposedmethod,
first, the envelope of the current signal is calculated to extract its modulation. Second, the drive-related signal,
which greatly varies based on speed and load torque conditions, is extracted from the enveloped current
signal. Third, the drive-tolerant current residual (DTCR) is calculated; the DTCR is defined as the subtraction
of the drive-related signal from the enveloped current signal. Finally, the new health feature is calculated as
the variance of the DTCR. To demonstrate the proposed method, experimental studies were conducted under
several operating conditions (i.e., different speed profiles and load torque levels) with two fault modes: 1) a
stator inter-turn short and 2) misalignment. Results confirm the ability of DTCRV to promptly and accurately
detect faults in a variety of conditions; in contrast, conventional methods are greatly affected by the operating
conditions.

INDEX TERMS Current analysis, fault detection, permanent magnet motors, time-varying condition,
variable speed.

I. INTRODUCTION
Industrial motors are widely used in lots of manufactur-
ing processes and permanent magnet synchronous motors
(PMSMs), which are one type of industrial motors, are usu-
ally integrated into many types industrial equipment that
perform precise control, such as industrial robots, coopera-
tive robots, and CNC machines [1]–[3]. Since a trivial fault
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in any of the numerous PMSMs in a manufacturing line
can cause huge economic loss due to downtime and defec-
tive items, many studies have been conducted to develop
a robust fault-detection method for PMSMs [4], [5]. Many
studies on fault detection can be categorized as model-based
approach and signal processing-based approach in gen-
eral [6]–[10]. Among several signals that have been used
for the signal processing-based fault detection, the stator
current signal has emerged as the most generally analyzed
signal for monitoring the health condition of PMSMs and
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the load components in rotating systems; this analysis is
called motor current signature analysis (MCSA) [11], [12].
Despite continuous development of MCSA, practical appli-
cation of the approach is difficult in modern industrial sys-
tems, where non-stationary operating conditions (i.e., various
speeds and load torques) are prevalent [13]–[17]. The signal
deformation that results from these variable drive-related con-
ditions makes it difficult to identify the fault-related fluctua-
tions because the drive-related current signals are dominant
in the non-stationary conditions of normal operation.

To address this issue, several previous studies have tried
to detect motor faults by examining transient current sig-
nals. Time-frequency analysis (TFA) represents signals in the
time-frequency domain; therefore, the spectral properties of
signals can be shown in time-series. Most previous research
using TFA has investigated the trend of coefficients accord-
ing to the particular fault frequency [18]. In [19]–[22], the
energy around fault characteristic frequency was computed
in Wigner-Ville distribution (WD), and its behavior on speed
and load variations were investigated. Similarly, the har-
monic order tracking method was developed to identify rotor
faults using Garbor transformed current signals [23]. The
TFA-based approaches, however, require motor-specific
domain knowledge (e.g., fault frequencies, the number of
poles, rotating frequencies) and usually time-consuming.
The signal decomposition-based approaches can be one
of the ways to avoid the challenge of TFA-based approaches.
The discrete wavelet transform (DWT), which decomposes
a signal using high- and low-pass filters with particular
mother wavelets, was applied to detect a motor fault by
utilizing the detail signals in DWT that revealed the fault
patterns [24]–[27]. In [28], DWT decomposed the current
signal of which the fundamental component was removed by
the adaptive filter to detect faults under variable driving con-
ditions. Also, the intrinsic mode function (IMF) calculated
by empirical mode decomposition (EMD) was investigated to
extract the information related to faults in the current signals.
Several fault indicators were developed to detect faults under
non-stationary condition, such as the degree of fluctuations
of IMFs [29], [30], the energy of IMFs [31], and the instan-
taneous amplitude of IMFs computed by the Hilbert-Huang
transform (HHT) [32], [33]. The signal decomposition-based
approaches, however, demand the selection of the particular
bandwidth or decomposition level that is sensitive to the
fault. Furthermore, the aforementioned TFA-based and signal
decomposition-based approaches have not been validated to
detect faults with one criterion under various speed profiles
and various load torque levels simultaneously. Considering
that industrial machines operate in various load and speed
conditions, the development of robust fault detectionmethods
that can be applied in non-stationary conditions with minimal
expertise is still required.

Therefore, this paper proposes a novel method to detect
motor faults under variable speed and load torque condi-
tions. In the proposed approach, a drive-tolerant current
residual (DTCR), which is defined as the subtraction of the

drive-related signal from the enveloped current signal, is used
to reflect the health state of a rotating system in a way that is
robust to variable driving conditions. First, the Hilbert trans-
form (HT) is used to obtain the envelope of a stator current
signal. Next, to extract the drive-related signal, the gradient
of the envelope current signal and linear regression are used.
Then, a new feature is defined – drive-tolerant current resid-
ual variance (DTCRV) – by calculating the variance of the
DTCR. The work outlined in this paper offers four primary
contributions:

1) The proposed DTCRV feature can detect faults
under operational speed profiles and various load
torque conditions. This is meaningful because most
real-world data are acquired under unconstrained driv-
ing conditions.

2) The proposed DTCRV method is practical in that both
the motor-specific domain knowledge and the parame-
ter selection for signal decomposition are not required.

3) The proposed DTCRV method can be applied with
less computational cost, as compared to the TFA-based
approach.

4) The proposed DTCRVmethod is demonstrated through
experiments that study both mechanical and electrical
faults under several driving conditions using PMSMs.

The remainder of this paper is organized as follows.
Section II summarizes the background required to understand
the proposed method. The proposed method is described in
detail in Section III. In Section IV, the effectiveness of the pro-
posedmethod is confirmed through two experimental studies:
1) a stator inter-turn short and 2) misalignment. Section V
summarizes the conclusions of the paper.

II. BACKGROUNDS
This section briefly explains the background of the stator
current signal from the perspective of operating conditions
and for fault diagnosis. Next, several previous studies that
have used the stator current signals for fault diagnosis are
summarized; further, we outline the challenges of the prior
methods when applied in various speed and load torque
conditions.

A. THE RELATION OF THE STATOR CURRENT AND
DRIVING CONDITIONS
The electromagnetic torque Te is a torque produced by the
interaction between the magnetic field and the stator current
in a motor. For a PMSM, Te can be expressed as [34]

Te =
3p
2
[φiq + (Ld − Lq)id iq] (1)

where p is the number of poles, φ is the flux linkage generated
by the permanent-magnet poles of the rotor, id , iq and Ld ,Lq
are the stator currents and inductances of the d- and q-axis,
respectively. id and iq are the values converted from the
three-phase stator currents using dq-transform for pursuing
convenience in control. In the case of field-oriented control
systems, which are generally used for servo-systems, iq is
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TABLE 1. Fault characteristic features in the current spectrum.

interpreted to be proportional to Te, because the flux of the
d-axis is controlled to be continuously aligned with id [35].
Considering the surface-mounted PMSM,which has the same
Ld and Lq value, Te and the electromechanical torque equa-
tion can be expressed as

Te(t) = kiq(t) = J
d
dt
ωr (t)+ Bωr (t)+ TL(t) (2)

where k is the torque constant, J is the inertia of the rotating
system, B is the friction coefficient, ωr (t) is the rotating
speed, and TL(t)is the load torque. From (2), the driving
conditions (i.e., load component, velocity, and acceleration)
are confirmed to affect not only Te(t), but also iq(t), which is
the converted value of the stator current signals.

B. STATOR CURRENT SIGNATURE DUE TO FAULTS
Severalmechanical faults, (e.g., misalignment, unbalance and
bearing wear) make the airgap non-uniform [20]. This state
is called eccentricity. The non-uniform airgap affects the
permeance, which is inversely related to the airgap length as

3(t, θ) =
µ0

g
(1+ δs cos(θ − ϕs)+ δd cos(ωr t − θ )) (3)

where, µ0 is the permeability of air, g is the nominal airgap
length, ϕs is the angle of the minimum airgap position due to
the static eccentricity, and θ is the circumference angle. δs and
δd are the normalized degree of static and dynamic eccentric-
ity [36], [37]. Considering the fundamental harmonic term,
the magnetomotive force (MMF) can be approximated as

F(t, θ) = F1(t) cos(ωt − pθ ) (4)

where F1(t) denotes the major amplitude of MMF, and ω is
the electric rotating speed. Then, the airgap flux density B is
defined as the product of MMF and the permeance as

B(t, θ) = F(t, θ) ·3(t, θ)

= KB(t)[Bc + Bm cos(ωr t − θ )] cos(ωt − pθ ) (5)

V(t) = RI(t)+
d
dt
8(t) (6)

whereKB(t) is F1 (t) µ0/g,Bc is 1+δs cos (θ − ϕs), Bm is δd ,
R is stator resistance, and V(t) is power supply voltage. As B
is the derivative of the flux 8(t), the stator voltage equation
(as in (6)) implies that the major component of the stator
current can be expressed as

I(t) = KI (t)[Ic + Im cos(ωr t − ϕm)] cos(ωt − ν)

= I1(t) cos(ωt − ν)+ αI1(t) cos((ω ± ωr )t − ϕ) (7)

where KI (t), Ic, and Im are the corresponding terms of KB(t),
Bc, and Bm, respectively. I1(t), ϕ, ϕm and ν are the coeffi-
cients and phases of the stator current’s major components,
including the terms related to the static and dynamic eccen-
tricity, and α is the modulation index. Based on (7), the faults
can be confirmed by investigating the amplitude modulation
(AM) in the stator current signals. Also, the electrical faults
represented by stator turn shorts affect the stator current
by showing odd multiples of the supply frequency’s third
harmonics [16], [38], [39], or AM of the rotating frequency
[40], [41]. Therefore, the AM of the stator current can be
observed in both the mechanical and electrical fault states of
a rotating system.

C. BRIEF REVIEW OF FAULT DIAGNOSIS USING THE
STATOR CURRENT IN TIME-VARYING CONDITIONS
TABLE 1 summarizes the fault characteristic frequencies
fc in the current spectrum, which were used in previous
studies, where fs, fr are the supply and rotating frequency,
respectively, and n = 1,2,3,. . . Since fc cannot be applied
to non-stationary conditions directly due to the time-varying
fs and fr , several studies have conducted TFA to track the
magnitude of fc in the time-frequency domain [19], [22],
[23]. In particular, WD has been widely used to calculate
the features in the time-frequency domain [19], [22], and
pseudo-WVD (PWD) often replaces WD to compensate for
interference terms in practical applications [20]. For exam-
ple, the energy of 3fs could be extracted for investigating
stator inter-turn shorts; the energy around fs ± fr/2 could
be calculated to investigate mechanical faults using PWD.
These TFA-based approaches require several motor-specific
information and the speed profile to compute the time-
varying characteristic frequencies. Therefore, signal decom-
position techniques (e.g., DWT [24]–[28], EMD [29]–[31],
HHT [32], [33]) have been adopted to readily extract the
fault-related components. When DWT was used, the energy
of the specific detail signals could be calculated for the
health feature [26], [27]. The specific detail signals were
selected based on an observation of the fault-pattern. When
EMD [29]–[31] or HHT [32], [33] was used, the IMFs that
reveal the fault-related components were investigated after
decomposing the drive-related components in the preceding
IMFs. However, the observation of the appropriate decom-
posed signals containing fault information is difficult for
the signal decomposition based approach. In addition, most
of the aforementioned studies were validated under only
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FIGURE 1. A framework of the proposed DTCRV method.

variable-speed profiles. Therefore, the application of these
conventional methods for real driving conditions – in which
the speed varies under several load torque conditions – is
uncertain.

III. THE PROPOSED DTCRV METHOD
This section presents the proposed DTCRV method to detect
faults under operational speed and load torque conditions.
Fig. 1 offers a flowchart of the proposed method. The details
of each step are described in Sections A and B, focusing
on the principle of the proposed method. In Section C,
the contribution and advantages of the proposed method
are explained with the comparison of the conventional
methods.

A. EXTRACTION OF THE DRIVE-RELATED SIGNAL
Since the raw stator current signal consists of a fundamental
driving sinusoidal wave and other harmonics that can be gen-
erated by the controller, faults, or other factors, the envelope
of the raw stator current signal is firstly extracted. Based
on (7), the major component of the raw stator current signal
can be expressed as

x(t) = I1(t) cos(2π fst)+αI1(t) cos(2π(fs ± fk )t+ϕk ) (8)

where α is the modulation index; fk and ϕk are the frequency
and phase angle of the fault, respectively. Then, the analytic
signal of x(t) using HT can be related to the amplitude of the
enveloped current signal as

xa(t) = x(t)+ jx̂(t) = xm(t)ejψ(t) (9)

where xa (t)is the analytic signal of x(t), x̂ (t) is the HT
result of x(t) that is π/2 phase-shifted, xm (t) is the amplitude
of xa (t), and ψ(t) is the instantaneous phase. Based on
Section II-B, the information about the fault-related AM is
expected to be carried in xm (t). xm (t) conserves the magni-
tudes of x(t), while it reduces the effect of high-frequency
noises that are usually induced from a variable frequency
drive. In this study, the upper signal of xm (t), denoted as
ENV(t), is used.
Next, the drive-related signal is extracted from ENV(t).

In a balanced three-phase system, the magnitude of xm (t)
is proportional to Te(t); therefore, ENV(t) can be expressed
from (2) as

ENV (t) ∝ kiq(t) (10)

Based on the fact that iq(t) is the result of dq-transformation
of the three-phase x(t), iq(t) can be written from (8) as

iq(t)= I1(t)cos(2π fst−θ0)+αI1(t)cos(2π(fs±fk )t+ϕk−θ0)

= I1(t) cos(θp)+ αI1(t) cos(±2π fk t + ϕ′) (11)

where θ0 is set to 2π fst+θp; θp is the constant phase angle, and
ϕ′is ϕk − θp. Also, the right-hand side of (2) can be rewritten
to include the torque oscillations and spatial harmonics as

(J
d
dt
ωr (t)+Bωr (t)+Tc)+

∞∑
n=1

Tn(t) cos(2π fnt+ϕn) (12)

where Tc is the constant load torque, Tn, fn, and ϕn
are the amplitude, frequency, and phase angle for torque
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FIGURE 2. The procedure of extracting D(t) from ENV(t).

oscillations respectively. When (11) and (12) are incor-
porated into (2), the torque-current mechanism can be
described as

kI1(t) cos(θp)+ kαI1(t) cos(±2π fk t + ϕ′)

= (J
d
dt
ωr (t)+ Bωr (t)+ Tc)+

∞∑
n=1

Tn(t) cos(2π fnt + ϕn)

(13)

Sequentially the first term in the left-hand side corresponds
to the first term in the right-hand side, which is related to the
driving condition. Also, ENV(t) is proportional to (13) based
on (10) as

ENV (t) ∝ (J
d
dt
ωr (t)+ Bωr (t)+ Tc)

+

∞∑
n=1

Tn(t) cos(2π fnt + ϕn) (14)

The first term in the right-hand side of (14) can be matched
to the dominant linear trend of ENV(t) in the case of con-
stant acceleration. Although the motion of manufacturing
machines is complicated, the speed profile of a servo motor
usually consists of constant acceleration, short or no constant
speed, and deceleration.

Fig. 2 shows the procedure of extracting the dominant trend
from ENV(t) in the driving condition, which consists of con-
stant acceleration, constant speed, and constant deceleration.
The dominant trend of ENV(t) changes linearly as the speed
changes linearly in a uniform acceleration region. When the
driving condition changes from acceleration to stationary,
ENV(t) changes rapidly as Jdωr (t) /dt in (14) disappears and
becomes proportional to the level of load torque. Based on the
association of the dominant trend of ENV(t) and the driving
condition, the linear trend of ENV(t) is determined to be the
drive-related signal D(t). Before extracting D(t), the gradi-
ent of ENV(t), which is denoted as G(t), is computed for
subdivision. When the driving condition is switched, ENV(t)
changes drastically; thus, the transition time can be captured
at the large gradient points. After subdividing ENV(t) into
several sections, linear regressions of ENV(t) in each section
are calculated. Then, D(t) is defined as the union of lin-
ear estimation. In Fig. 2., G(t) has two peak points at the

transition time, and D(t) can be determined as the combina-
tion of the linear estimations in three subsections that G(t)
divides.

Unlike the previous approaches that decomposed the non-
stationary current signal empirically or removed the fun-
damental current signal using specific filters, the proposed
DTCRV method readily extracts the drive-related compo-
nents which are induced from the torque-current mechanism.
The linear regressedD(t) is a strict equation-based extraction;
however, several filters (e.g., moving average or low-pass)
can be substituted for the linear regression and applied to
various driving conditions.

B. DRIVE-TOLERANT CURRENT RESIDUAL
UsingD(t) which is determined in advance, the drive-tolerant
current residualDTCR(t) can be calculated by the subtraction
of D(t) from ENV(t) as

DTCR(t) = ENV (t)− D(t) (15)

After D(t) is subtracted, the dependence of DTCR on the
driving condition becomes small; therefore, the influences
that are not related to the driving conditions are prominent
in the DTCR. Also, the fluctuations caused by faults receive
more attention. Then, the variance is calculated to arrive at a
representation of DTCR, which is defined as

DTCRV = E(|DTCR(t)− µ|2) (16)

where µ is the average of DTCR(t). DTCRV can be inter-
preted as the energy of the DTCR, since the energy of the
time-series signal is usually defined as a summation of the
squared signal and the mean of the DTCR would be zero in
the ideal case. When D(t) does not include all time-varying
effects, the DTCR could have a bias induced by a complicated
driving condition; thus, the variance can compensate for the
bias error of the DTCR.

C. THE CONTRIBUTION AND ADVANTAGES OF DTCRV
Through the proposed DTCRV method, the stator current
signals under operational driving conditions can be readily
utilized to evaluate the health condition of a motor. It is
beneficial that the DTCRV method, which is developed on
the basis of physical relations between the torque and current
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TABLE 2. Comparison of the proposed DTCRV and two conventional approaches.

of a motor, can be applied with less expertise. To precisely
describe the contribution and advantages of the DTCRV, it is
compared with two conventional approaches (i.e., TFA-based
and signal decomposition-based). TABLE 2 summarizes the
comparisons described below. The proposed DTCRVmethod
does not require any information about the fault. In contrast,
the two conventional approaches are based on the extraction
of fault-related components. Therefore, the two conventional
methods are limited to situationswhere the fault-related infor-
mation is pre-assigned, such as fault characteristic frequency
over time and the decomposition level that the fault pat-
terns reveal. The DTCRV method also does not require any
information about the driving condition; instead, it adaptively
decreases the effect of speed and load torque conditions by
subtracting the linear components in the current envelope.
For the TFA-based approach, the speed profile is essential
for calculating the characteristic frequency. The load torque
condition is optionally used to attempt to compensate for
its influence. Furthermore, the DTCRV is less susceptible
to the parameter settings and its time-cost is low because
the entire process of DTCRV is automatically handled in the
time-domain. In contrast, the time-cost for the TFA-based
approach is high due to the computation of many convo-
lutions. The signal decomposition-based approach is highly
affected by several parameters, such as the type of wavelet
function and the appropriate band using the DWT method,
or the selection of proper IMFs using the EMD and HHT
methods. Finally, the DTCRV method can highlight the cur-
rent fluctuations through the automatic reduction of drive-
related signals.

IV. EXPERIMENTAL STUDIES
To validate the effectiveness of the proposed method, two
experimental studies were explored: 1) a stator inter-turn
short (SIS) and 2) misalignment (MSGN). This section
first describes the experimental settings used to acquire
the datasets and then discusses the results of the proposed
method. Both cases also include a comparative analysis
with other previously published health features, which were
described in Section II-C, to confirm the superiority of the
proposed method.

A. DESCRIPTION OF THE EXPERIMENTAL SETUP
For the target motor, a 200W-5.5Nm, 20-pole, surface-
mounted PMSM embedded in 4th axis of a cooperative robot
was used (See Fig. 3 (a), (c)). Fig. 3(b) shows the test rig
setup used in the experiment. The target PMSMwas position-
controlled using an incremental encoder, of which the res-
olution was 4000 pulses per revolution. A hysteresis brake
(Magtrol, BHB-3BA) was connected to the motor shaft via
couplings; a torque meter (Unipulse, UTM-II) was installed
between two couplings to measure torque and speed. The
three-phase stator current signals were measured by current
probes (Tektroniks, A622), which were mounted between the
servo drive and the motor. All signals were collected with a
sampling rate of 12.8 kSa/s using anNI-system (C-RIO9066).
All driving conditions that were used in the experiment
are summarized in TABLE 3; two speed profiles (named
trapezoidal and triangle) with five load torque conditions
(0%, 30%, 50%, 70%, 100% of the rated load torque),

FIGURE 3. Experimental setup: (a) target PMSM, (b) the configuration of
the test-bed, (c) the robot in which the target PMSM is embedded
(4th axis).
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TABLE 3. The experimental conditions.

respectively, were studied. The trapezoidal profile was con-
figured by controlling a motor with 100 revolutions in
3 seconds, and the triangle profile was configured by con-
trolling a motor with 50 revolutions in 2 seconds. Among
all experimental conditions, the three load torque conditions
(0%, 50%, 100%) of each speed profile in normal (NOR) and
fault level 2 are described in the figures for representative
comparison.

B. EXPERIMENT 1: STATOR INTER-TURN SHORT (SIS)
First, an SIS was emulated by coiling the uncovered windings
in the production stage. Fig. 4 shows a faulty stator, in which
a portion of the windings were chemically uncovered. Two
motors with different fault levels, where the degrees of uncov-
ered windings were different, were used in the experiment.
TABLE 4 describes the measured impedance (resistance,
inductance) of the two SIS and NOR motors; the uncovered
windings were coiled up only in the a-phase.

FIGURE 4. Inter-turn short windings of SIS2.

Fig. 5 shows the procedure for calculating DTCR from
the raw current signal in several driving conditions of NOR;
Fig. 6 shows calculation for SIS2. Comparing the raw cur-
rent of Fig. 5 and 6, the modulation caused by SIS can
be confirmed; the enlarged parts of Fig. 5(b) and Fig. 6(b)
obviously show the severity of modulation due to SIS at
the constant speed region. From all ENV(t) of each driving
condition in Fig. 5 and Fig. 6, it can be seen that ENV(t)
was highly influenced by the speed variation and load torque
level. The amplitude trend of ENV(t) was largely dominated
by the speed variation and was simultaneously proportional

to the load torque level. So DTCRs were obtained according
to the procedure as described in Fig. 1. G(t), which was
calculated to set the criteria for subdividing ENV(t), had
peak points when the speed profile was drastically changed,
regardless of the health state of the motor. There appeared
two peak points in Fig. 5(a-c) and Fig. 6(a-c), while only
one appeared in Fig. 5(d-f) and Fig. 6(d-f). Next, D(t) was
regressed in each section that the peaks of G(t) divide. Then
DTCRs were obtained by subtracting D(t) from ENV(t). The
small difference of DTCRs under variable speed and load
torque levels indicated the tolerance of DTCR to driving
conditions, as shown in DTCRs in Fig. 5. While the differ-
ence of DTCRs depending on driving conditions was small
in Fig. 6, DTCRs of Fig. 6 highly fluctuated compared to
those of Fig. 5. Therefore, we can confirm that the influence
of SIS onDTCRwas larger than that of the driving conditions.
Furthermore, DTCRswere occasionally amplified at the tran-
sient regions in the case of SIS. Not only the instantaneous
irregularities that occur right after the speed transition but the
deterioration of the stator windings where the current flows
could aggravate the fluctuation of DTCR, as shown in the
transient sections of DTCRs in Fig. 6.

Fig. 7 shows the results of each feature (i.e. EPWD, EDWT,
EHHT, and DTCRV), as determined using the PWD, DWT,
HHT, and the proposed DTCRV methods, respectively. Each
feature was normalized with an average feature value of
NOR. EPWD, EDWT, EHHT were calculated based on the
conventional methods described in Section II-C. For EPWD,
the magnitudes of the coefficients of PWD around 3fs were
mean-squared over time. For EDWT, the fifth detail signal,
d5 was selected and calculated as the sum of squares based
on the fact that the frequency band of d5 was from 1 kHz
to 2 kHz, which contains the characteristic frequency in the
constant-speed region, of which the fundamental frequency
was 500 Hz. For EHHT, the third IMF of the raw current
signal was extracted, and the variance of its instantaneous
amplitude was computed. As can be seen in Fig. 7, DTCRV
outperformed the other methods by detecting SIS with one
criterion. EPWD and EDWT had the similar values between
two speed profiles, but highly dependent on the load torque
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TABLE 4. The impedance of the motors used in the SIS experiment.

FIGURE 5. The procedure for calculating DTCR in NOR: [speed profile, load torque] (a) [Trapezoidal, 0%], (b) [Trapezoidal, 50%],
(c) [Trapezoidal, 100%], (d) [Triangle, 0%], (e) [Triangle, 50%], and (f) [Triangle, 100%].

TABLE 5. Performance of SIS detection and average time-cost for calculating one feature.

level as shown in Fig. 7(b, c). Since EPWD and EDWT of SIS in
low load torque condition were smaller than those of NOR in
high load torque condition, only SIS2 under 100% load torque
level was detectable. Through the result, we can determine
that the effect of load torque condition was difficult to be

suppressed or separated using PWD or DWT. EHHT showed
the deficient performance with widespread values in all driv-
ing conditions (See Fig. 7(d)). The inferior performance of
EHHT might be due to the unstable extraction of IMF which
is conducted empirically.
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FIGURE 6. The procedure for calculating DTCR in SIS2: [profile, load torque] (a) [Trapezoidal, 0%], (b) [Trapezoidal, 50%], (c) [Trapezoidal,
100%], (d) [Triangle, 0%], (e) [Triangle, 50%], and (f) [Triangle, 100%].

FIGURE 7. Results of the proposed and the conventional methods under SIS: (a) DTCRV, (b) PWD, (c) DWT, (d) HHT.

TABLE 5 quantitatively shows the performance of SIS
detection using two measures for class separation: 1) the
Fisher discriminant ratio (FDR) [42] and 2) the probability

of separation (PoS) [43]. DTCRV had an overwhelmingly
better separation capacity in both measures. The outstanding
performance of DTCRV was possible because its techniques,
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FIGURE 8. The test rig for misalignment: (a) NOR and (b) MSGN2.

which suppress the drive-related components, enhanced its
sensitivity to the fault. Further, it is noticeable that the unit
computing time of DTCRV was significantly faster than
that of EPWD and EHHT, as can be seen in TABLE 5. All
the time-costs were measured under i7-6700K CPU with
32GB RAM. The faster computing time of DTCRV than
EPWD was attributed to its calculation in the time-domain
only. The repeated convolutions to convert signals in the
time-domain to the time-frequency domain are not required
for DTCRV. Also the reason for the fast computing time of
DTCRV than EHHT was that the procedure of determining
the drive-related signal of DTCRV was much simpler than
calculating local maxima and local minima. The results of
DTCRV in 50% load torque conditions were sometimes low,
as shown in Fig. 7(a). These results could be explained based
on the influence of the control system in deceleration. The
motors were forced to stop in the commanded time in differ-
ent load torque levels and the load torques were also used

in deceleration. When the load torque was low, the output
torque had to be replenished for the on-time stop; when the
load torque was high, the output torque for hindering fast
deceleration was required. This explanation was supported
by checking the deceleration regions of Fig. 5 and 6. How-
ever, it is important to note that DTCRV showed remarkable
performance when subjected to both speed profile and load
torque variations, although it was affected by the control in
deceleration.

C. EXPERIMENT 2: MISALIGNMENT (MSGN)
To investigate a mechanical fault, MSGN was emulated
by rearranging the vertical height of the motor, as shown
in Fig. 8. Two fault levels (2 mm and 4 mm) were used in
the experiment.

Fig. 9 shows the procedure for calculating DTCR from the
raw current signal in several driving conditions of MSGN2.
Comparing the raw current signals in Fig. 9 with those
of the corresponding operating conditions in NOR (shown
in Fig. 5), the amplitude became larger. This was because
much output torque was required to compensate for the
interference, which MSGN induced to normal output torque.
Also, ENV(t)s of MSGN showed more peak shapes, while
those of SIS had the form of modulation, as shown in the
enlarged parts of Fig. 6(b) and Fig. 9(b), respectively. The
large fluctuation of ENV(t) sometimes caused the oscillated
G(t), as can be seen in Fig. 9 (a, b). Nevertheless, it was not
hard to divide sections because the peak points of G(t) were
determined relatively. Comparing DTCRs in Fig. 9 with those
of Fig. 6, DTCRs inMSGNmore fluctuated than those of SIS.

FIGURE 9. The procedure for calculating DTCR in MSGN2: [profile, load torque] (a) [Trapezoidal, 0%], (b) [Trapezoidal, 50%], (c) [Trapezoidal,
100%], (d) [Triangle, 0%], (e) [Triangle, 50%], and (f) [Triangle, 100%].
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FIGURE 10. Results of the proposed and the conventional methods under MSGN: (a) DTCRV, (b) PWD, (c) DWT, (d) HHT.

Through this large fluctuation, we can suggest that DTCR is
more sensitive to mechanical faults.

Fig. 10 shows the results of each feature (i.e. EPWD, EDWT,
EHHT, and DTCRV), as determined using the PWD, DWT,
HHT, and the proposed DTCRV methods, respectively. The
normalization of each feature and the calculation of the con-
ventional features were conducted in the same way described
in Section IV-B. For EPWD, the magnitudes of the coeffi-
cients of PWD around fs ± fr/2 were mean-squared over
time. For EDWT, the seventh detail signal d7 was selected
and calculated as the sum of squares because the frequency
band of d7 was from 250 Hz to 500 Hz, which was able
to contain the time-varying characteristic frequency fs ± fr .
For EHHT, the second IMF of the raw current signal was
extracted, and the variance of its instantaneous amplitude
was computed. Like the results in Section IV-B, the behav-
iors of DTCRV were robust to variable speed profile and
load torque conditions. From the results that EPWD and
EDWT were proportional to the load torque level as shown in
Fig. 10(b, c), the influence of the load torque levels on EPWD
and EDWT seemed to be higher than that of MSGN. EPWD
could detect MSGN at 70% and 100% load torque levels;
however, MSGNs under 50% or less load torque levels were
not distinguishable from NOR at 100% load torque level (See
Fig. 10(b)). EDWT had a significant variance in each operating
condition due to the insufficient signal decomposition; the
characteristics of MSGN were concealed in the load torque

conditions (See Fig. 10(c)). As shown in Fig. 10(d), EHHT was
able to detect MSGN2 because the drive-related components
were separated in the first IMF; however, EHHT could not
detect MSGN1. While HHT was not able to detect SIS,
it showed decent performance in MSGN detection. Through
these irregular result of HHT, the effect of instability that the
empirical procedure of HHT causes could be confirmed.

TABLE 6 quantitatively describes the performance and
unit computing time of all the features, which were measured
in the same state as in Section VI-B. The result of high FDR
and PoS values with the small time-cost in DTCRV confirmed
its outstanding performance compared to the other three
features. Though both MSGNs showed the higher DTCRV
values, as compared to those of NOR, the DTCRVs of
MSGN1 and MSGN2 did not linearly increase, and DTCRVs
of MSGN2 were spread in the trapezoidal speed profile case
(see Fig. 10(a)). It seems possible that these results were due
to the slight misalignment that resulted from the repeated
experimental disturbances. However, it is noticeable that the
proposed DTCRV approach can promptly detect the incipient
MSGN without any information about the fault or driving
conditions.

D. REMARKS OF DTCRV RESULTS
Through the results of two experimental studies, the DTCRV
method have shown the noticeable performance as below:
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TABLE 6. Performance of MSGN detection and average time-cost for calculating one feature.

1) DTCRV was able to detect a fault without being
affected by the driving condition (i.e., speed profiles
and load torque levels), while the conventional methods
were dominated by the driving conditions.

2) Neither motor-specific information nor parameter set-
tings for signal decomposition were required to calcu-
late DTCRV.

3) The computational cost of DTCRV was low.

V. CONCLUSION
This paper proposed a new, drive-tolerant current resid-
ual variance (DTCRV) method for detecting faults under
operational speed and load torque conditions. The proposed
method extracted the envelope of the raw current signal to
emphasize its modulation, which contains both drive-related
and fault properties. Then, drive-related components were
estimated using gradient-based linear regression. The DTCR,
which was taken by subtracting drive-related components
from the envelope signal, highlighted the unexpected oscil-
lations from the abnormal state. Finally, the variance was
computed to quantify the variation of the DTCR. Two case
studies that investigated the different fault modes (i.e., SIS
and MSGN) were demonstrated to validate the performance
of the proposed approach. These case studies showed that
the DTCRV method could detect each fault under several
driving conditions, while the conventional methods using
PWD, DWT, and HHT suffered from the effect of driving
conditions. The primary benefits of the proposed method
are that it can detect an incipient abnormal state without
requiring information about the fault or the driving condition.
Moreover, the computational time of DTCRV is far less than
that of the TFA-based approach, motor domain knowledge
is not required, and the number of parameters that DTCRV
demands is also less than that of both TFA-based and signal
decomposition-based approaches. Future work can be con-
ducted to identify fault modes considering control constraints
under a wider range of driving conditions. Further, DTCRV
will be investigated and applied to other motors embedded in
industrial robots or electric vehicles.
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