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ABSTRACT The energy management and energy efficiency optimization are of particularly significant for
promoting the sustainable development of industrial processes. However, industrial raw data with uncertain,
relevant and inaccuracy characteristics influence the reliability and accuracy of energy efficiency analysis
and optimization modeling. Therefore, an energy efficiency analysis and optimization method based on a
novel data reconciliation (DR) integrating Gaussian mixture model (GMM) and mutual information (MI) is
put forward. First, the material flow information with multiple data characteristics corresponding operation
modes is divided through the GMM. Moreover, the novel data reconciliation model integrated with critical
variable and mutual information is established considering time-scale redundancy information in different
modes, then the comprehensive data reconciliation result is evaluated by the hypothesis testing. Furthermore,
the reconciled data is applied to analyze the exergy balance and built the energy efficiency optimization
model with multi-objective for a case study of industrial evaporation process. Finally, simulation case
and industrial application case are used to analyze and discuss, and the results show that the validity and
applicability of the proposed approach are illustrated in energy saving potential which is about 14.81%.

INDEX TERMS Energy efficiency analysis, energy optimization, data reconciliation, Gaussian mixture
model, mutual information, industrial processes.

I. INTRODUCTION
In the face of the rapid development industrialization and
urbanization, energy conversion and management of indus-
trial processes are critical for the sustainable development [1].
The effective and credible energy efficiency analysis and
optimization modeling is the key ways for achieving the eco-
nomic and environmental goals [2]. Nevertheless, the actual
industrial production is affected by many uncertain factors,
such as diverse material, process parameter variation, poor
production environment and market demand [3]. Meanwhile,
industrial plants rely on a large amount inputs of production
factors to achieve revenue grow, it is still an extensive man-
agement mode in terms of energy utilization [4]. In China,
there are enormous challenges and room for improvement in
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energy management. The reduction of energy consumption
and the improvement of energy efficiency have become a
long-term target [2]. Meanwhile, energy efficiency optimiza-
tion as an effectiveness way to ensure high energy efficiency
has received attention throughout industry and academic in
recent years [5]. Therefore, accurate energy efficiency analy-
sis and optimization is conductive for increasing economic
benefits, promoting production management, and reducing
environmental pollution in industrial processes.

Up to now, energy analysis methods [6] have emerged by
utilizing energy characteristics and conversion laws of vari-
ous processes or production equipment in industrial process
to evaluate the energy utilization effectively [7]. Generally
speaking, existing energy analysis methods are divided into
three types: enthalpy analysis, entropy analysis and exergy
analysis. The enthalpy analysis method uses the compre-
hensive energy consumption of the device as the evaluation

47436
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-4074-3998
https://orcid.org/0000-0001-5458-9154
https://orcid.org/0000-0002-2507-5776


S. Xie et al.: Energy Efficiency Analysis and Optimization of Industrial Processes Based on a Novel DR

criterion to analyze the energy utilization in quantity accord-
ing to the first law of thermodynamics [8]. However, not all
processes that satisfy the energy conservation can be realized,
and the second law of thermodynamics should be also satis-
fied. The disadvantage of enthalpy analysis method is that
the amount of energy is simply used to evaluate the energy
consumption, and the problem of equivalent conversion of
energy in the transmission process is ignored. Especially for
heat transfer, the process energy level will change with the
change of energy thermodynamic parameters (temperature,
pressure, etc.) inevitably. Therefore, the enthalpy analysis
method has certain limitations, which cannot grasp the keys
in the energy-saving technology transformation and cannot
reflect the energy consumption truly.

Moreover, the entropy analysis method reflects the change
of energy level by using the variation trend of entropy on
the basis of the second law of thermodynamics [9]. The
smaller the entropy increase, the smaller the loss, and the
higher the efficiency [10]. Nevertheless, the entropy as a
physical quantity, reflecting the internal chaos and disor-
der state of material, cannot be measured with instruments
directly but can only be calculated. Thus, entropy analysis
method describes the change of energy quality, but it is not
intuitive.

Furthermore, exergy analysis method focuses on that the
degree of deviation between the system and the environmen-
tal parameters is used to measure the energy which can be
utilized or transformed by the system [11]. Based on the
environmental reference state model, exergy analysis method
describes the variations and differences of energy quality and
quantity [12]. Moreover, the property, loss and conversion
efficiency of energy are analyzed through the energy analysis
method based on exergy, so as to find out the link with
the greatest exergy loss and evaluate the energy consump-
tion of each link of the system [13]. In general, the energy
analysis methods based on the exergy calculation, includ-
ing white box analysis model [14], heat exchange network
synthesis technology [15], gray box analysis model [16],
exergy economic method and pinch point technology [17],
etc., have been successfully applied in industrial process
energy analysis, such as boiler [18], atmospheric distilla-
tion unit [19], galvanizing annealing furnace [20], asphalt
plant’s rotary dryer [21], polygeneration energy system [22],
energy comprehensive utilization in solar heat pump sys-
tem [23], and other equipment and process energy analy-
sis. At present, the exergy efficiency and exergy destruction
rate as the main indexes are calculated and evaluated, and
the operating parameters were optimized to improve overall
production system performance by minimizing total cost rate
and maximizing exergy efficiency [24], [25]. Besides, exergy
analysis has been used for energy consumption evaluation
of industrial equipment, for instance, waste heat recovery of
biodiesel-fed diesel engine [26] and oxyfuel gas turbine [27].
In addition to the equipment-level energy consumption eval-
uation, exergy analysis has also been applied in the whole
process of industrial production like cogeneration nuclear

energy cycle system [28] and calcination process of lime
industry [29]. Themain causes of thermodynamic loss and the
exergy distribution of the relevant component are identified
and evaluated, and then the exergy efficiency is improved
through controlling key process variables. In fact, exergy
defined from the two aspects of quantity and quality is used
to evaluate the energy, and it can provide a good reference for
energy analysis and optimization in industrial production.

Furthermore, improvement of energy efficiency is a con-
ductive way to achieve economic growth and friendly envi-
ronment. In the recent years, energy efficiency optimization
methods have been concerned highly [30]. The energy cost
is reduced in a variety of ways, such as energy-efficiency
scheduling integrating process optimization [31], using key
performance indicators which relate to energy [32]. More-
over, aiming at the construction of the energy efficiency opti-
mization model, production information such as historical
working condition is introduced to further improve the model
structure to meet the actual production demand [33]. Besides,
to improve the effectiveness of energy efficiency optimiza-
tion modeling, it can construct knowledge-based mechanism
to ensure the convergence of optimization algorithm [34].
In addition, it can also make use of data analysis meth-
ods such as data envelopment analysis [35] and improved
Contourlet neural network [36] to improve the optimization
performance for guaranteeing the high energy efficiency and
reasonable energy efficiency assessment strategy. The previ-
ous works provide motivation and inspiration for the energy
efficiency optimization of the evaporation process in this
paper.

However, firstly, due to uncertain fluctuation of feed con-
dition and changes in production demands, the production
process has multiple stable working states, that is, mul-
tiple production modes. There are obvious differences in
data characteristics under different production modes, which
leads to the fact that single global modeling strategy can-
not meet the effectiveness of energy efficiency analysis and
optimization. In addition, the measured data in the industrial
processes interfered by the detection instrument and harsh
environment, has noise characteristics and multiple dimen-
sions. Thus, the material flow information cannot inflect
the actual production, which is detrimental to assess energy
efficiency accurately. Moreover, some variables of interme-
diate equipment are unmeasured for the industrial processes,
resulting in insufficient data redundancy and partial mate-
rial flow information which is missing. Hence, recogniz-
ing the above challenges, to avoid the limitations for the
existing energy efficiency optimization methods, the main
contributions of this paper are summarized: (1) In order
to avoid comprehensive and accurate of energy efficiency
optimization being affected by the diversity of data charac-
teristics, this paper divides the industrial production process
with multi-features material flow information into several
sub-mode by the Gaussian mixture model. (2) Data rec-
onciliation technology is used to obtain the complete and
reliable process monitoring information and the critical
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variable is introduced to improve data redundancy of local
data reconciliation modeling in each mode. Meanwhile,
mutual information is applied to characterize the nonlinear
correlation for reconciliation model, and the hypothesis test-
ing is applied to evaluate the reconciliation results. (3) Based
on the process analysis and raw data preprocessing for a case
study, the exergy is analyzed and calculated to construct a
multi-objective optimization model based on the maximum
exergy efficiency and minimum steam consumption, further
reduce the unnecessary exergy loss and improve the energy
efficiency for evaporation process of industrial production.

The rest of this paper is organized as follows. The novel
data reconciliation on the basis of GMM and mutual infor-
mation is presented in Section II. Section III elaborates
a case study for energy efficiency optimization modeling
with exergy balance analysis of the evaporation process.
Section IV presents experimental simulation results anal-
ysis and industrial application. We conclude this study in
Section V.

II. THE NOVEL DR BASED ON GMM AND MUTUAL
INFORMATION
To ensure the feasibility of energy efficiency optimization of
the industrial processes, superior data quality is especially
significant. In fact, for the industrial processes, under the
influence of the uncertainty fluctuation of production con-
ditions and product demand adjustment, the data features,
such as mean value, variance and correlation coefficient are
obvious different. This indicates that the different production
modes exist and the effectiveness of reconciliation model is
affected by the single global data reconciliation modeling
method. Furthermore, the measurement error is not only from
the sensor, but also caused by feedback control, external
interference and model error. The measurement error may
have nonlinear correlation. Besides, the long-process indus-
trial production is composed of many production equipment,
and the material flow information of intermediate equipment
is absence due to running environment and economic con-
ditions. It results in the insufficient data redundancy. Conse-
quently, above practice issues are considered, and according
to GMM and mutual information, a novel data reconcilia-
tion scheme with multi-features material flow and time-scale
redundancy information is established.

In this section, we review the existing data reconcili-
ation approaches and propose a generic data reconcilia-
tion with time-scale redundancy information firstly. Then,
the detailed processes of the novel data reconciliation scheme
are described.

A. PROPOSED GENERIC DR MODEL
Data reconciliation originally proposed by Kuehn and David-
son [37] minimizes the errors from measured data based
on the Lagrange multiplier method. Inspired by Kuehn’s
work, a lot of diversified data reconciliation models have
emerged. From the early linear data reconciliation to the
bilinear data reconciliation research, it gradually develops to

the nonlinear data reconciliation for more and more complex
research object [38], [39]. In fact, data redundancy is a signifi-
cant prerequisite for data reconciliation. The adaptability and
accuracy of the data reconciliation model are limited when
the measured data with low redundancy. Thus, it is possible
to improve data redundancy by introducing constraints, such
as equations of pressure drop, efficiency of turbine internal,
steam flow rate, and heat flow characteristics [40], even
equipment characteristic [41], [42], or changing the data rec-
onciliation model structure [43]. Furthermore, for the process
industry with multi-equipment cascade and uncertainties,
the research of data reconciliation method integrating multi-
ple sub-reconciliation models has become a trend [44], [45].

Generally, the data reconciliation is limited to use the
measured variables at the same time to determine the rec-
onciliation model. However, in the long-process industrial
production process with connected multi-equipment, the key
material flow information of intermediate equipment cannot
be detected due to the environmental restrictions, resulting in
insufficient data redundancy. Therefore, the critical variable
is introduced in this paper to improve the monitoring accu-
racy by using the time redundancy information of continuous
steady-state data.

In detail, the critical variable is basically constant in a
short time or a quasi-steady state. Thus, the critical variable
is regarded as a measured variable in the novel data recon-
ciliation modeling. Nevertheless, the measured value of the
critical variable is unknown, such that the initial measured
value is given according to the actual experience, and the
reconciled data is regarded as the measured data of the next
iteration.Moreover, the critical variable iterates and gradually
converges under the constraint equations. Hence, a proposed
generic data reconciliation model is expressed following,

minψ =
l∑
i=1

n∑
j=1

(
xij,t − x̂ij,t

σi

)2

+

r∑
s=1

n∑
j=1

(
_ysj,t −

_ysj,t−1
_
σ s

)2
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x̂ iL ≤ x̂
i
≤ x̂ iU i = 1, 2, . . . , l

_y
s
L ≤

_y
s
≤

_y
s
U s = 1, 2, . . . , r

uqL ≤ u
q
≤ uqU q = 1, 2, . . . , p (2)

where t and t-1 are the present and the previous time, respec-
tively; xij,t and x̂ij,t are the measurement and reconciliation of
the jth sample for the ith measurement variable, respectively;
_y is the critical variable; σ is the standard deviation; l, r , p and
n are the number of the measurement variables, the critical
variables, the unmeasured variables and the samples, respec-
tively; u is the unmeasured variables. The redundancy charac-
teristic of the critical variable which is essentially invariant on
the time scale is used to improve the redundancy information
of the monitoring system.
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FIGURE 1. Structure of the proposed novel data reconciliation scheme.

B. A NOVEL DR SCHEME BASED ON GMM AND MUTUAL
INFORMATION
Traditional weighted least square method-based data
reconciliation provides the possibility to improve the data
quality in several applications. However, it fails to han-
dle the process data with multi-mode, nonlinear and low
redundancy, which causes biased reconciliations and thus
influences the accuracy of the processmodeling, optimization
and control severely. Therefore, a novel DR scheme based
on GMM and mutual information is proposed to overcome
the deficiencies of traditional weighted least square method-
based data reconciliation. It consists of three steps, first, the
multi-features material flow information is divided to the
different operation modes by GMM. Then, the critical vari-
able and mutual information are introduced to determine the
novel data reconciliation model. Furthermore, the hypothesis
testing is leveraged to evaluate the global data reconciliation
results.

1) GMM-BASED MATERIAL FLOW INFORMATION DIVISION
WITH MULTI-FEATURES
It is affected by the changeable operation condition and the
product demand, the data features, including the mean value,
the variance and the correlation coefficient are multifarious,
which lead to the fact that the probability density distribu-
tion of process data in multiple mode may overlap. Hence,
the material flow information with multi-features is divided
through GMM, and the process data is ensured in different
mode. GMM as an appropriate tool to determine the data dis-
tribution can describe mixed probability density distribution
and represent any complex probability density function with
enough gaussian components [46], [47]. Yu et al. improved

adaptive kernel partial least squares regression using the finite
mixture model based GMM and the multi-channel GMM
based for quality prediction and soft sensor [48], [49]. Sang
et al put forward aGMMand discriminant analysis method on
the basis of principal components [50]. On this basis, a finite
GMM based on Bayesian inference was used to monitor the
multi-mode production process [51].

For a measured sample dataset X = [x1, x2, . . . , xm] ∈
Rn×m, where n is the measured samples size, and m is
the number of measured variables. Assume K clusters in
GMM which is decided through the expert rules or priori
knowledge, thus, the process material flow information with
multi-features is divided into K local modes. Denote that
XCk = [x1Ck , x

2
Ck , . . . , x

m
Ck ] is the sample set in the kth

mode;xiCk =
[
x iCk ,1, . . . , x

i
Ck ,j, . . . , x

i
Ck ,nk

]T
is the measured

data for the ith variable in the kth mode; nk is the number of
samples of the kth mode. Based on multi-mode with multi-
features division, the proposed generic DR model of the kth
mode is established as,
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2) NOVEL LOCAL DR MODELING WITH DATA NONLINEAR
CORRELATION
Evidently, the measurement errors not only from sensor
error but also caused by uncertain factors such as external
interference, model error or feedback control, are nonlinear
correlation. Thus, the traditional weight least square data
reconciliation model which assumes that the measurement
errors are independent cannot meet the requirements of rec-
onciliation accuracy. Hence, a novel DR model with data
nonlinear correlation is proposed. First, based on the mutual
information, DR model including critical variable with data
redundancy is determined. Then, the reliability analysis of
reconciliation results is realized.

In the light of information entropy, the association degree
between two variables is represented to use the mutual infor-
mation which is an information measurement method [52].
It means that the introduction of one random variable
leads to the uncertainty reduction of the other random vari-
able. Therefore, based on introduced critical variable and
time-scale information, a novel DRmodel with data nonlinear
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correlation is expressed as
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whereW1 andW2 represent the mutual information matrix.

3) GLOBAL DATA RECONCILIATION EVALUATION
According to the novel local DR model mentioned before,
the similarity between the measured data and the production
modes is considered through the calculated probability. Then,
local DR result is obtained according to the different model.
Finally, the global data reconciliation results are obtained
through the weight combination method.

A set of online data sample is represented as xo =
[x1o , x

2
o , . . . , x

l
o], where for the lth measured variable, x lo is

the online measurement. According to the Bayesian inference
rule, the probability p(k |xo ) is calculated as Eq. (5). Then,
the local data reconciliation results of each mode are com-
bined in Eq. (6).

p(k |xo, �) =
p(k |� )p(xo|k, �)

p(xo|�)
=

ωk f (x |θk )
K∑
z=1

ωzf (x |θz )

(5)

x̂ io =
K∑
k=1

p(k |xo )x̂ io,k (6)

where � is the total parameters of GMM; θ is the param-
eters that ensure the Gaussian distribution; x̂ io is the global
reconciliation result; x̂ io,k is the reconciliation result of the ith
measured variable for the kth mode.

In addition, the objective function value is used to define
the reliability evaluation index. If the reconciliation result
after an iteration satisfies Eq. (7), the result is reliable.

ψ

χ2
1−α,r

≤ 1 (7)

where χ2
1−α,r is the 1 − α quantile of chi square distribution

with degree of freedom r ; significance level α is 5%; degree
of freedom r is the number of redundant variables.

Compared with the reliability evaluation index, if ψ ≤
χ2
1−α,r , it indicates that there is no gross error in measured

variables, that is, there is no fault in the instrument or equip-
ment. If ψ > χ2

1−α,r , the sensor is affected by faults.
Moreover, at the beginning of the iteration of the novel data
reconciliation method, the critical variable has not yet con-
verged, and the reconciliation results cannot generally meet
the Eq. (7).

4) THE FRAMEWORK OF THE NOVEL DR INTEGRATED THE
GMM-MI
The structure of the novel DR integrated the GMM-MI is
shown in Fig. 1, and the main procedures are displayed as
below.

Step 1: Data preparation. The original data is collected
according to the measured variables.

Step 2: Based on theGMM, the processmaterial flow infor-
mation with multi-features is divided into the corresponding
running mode.

Step 3: TheDRmodel is established for eachmode through
the mutual information which describes the nonlinear corre-
lation of variables and the critical variable that improves the
data redundancy.

Step 4: The posterior probability that the sample belongs
to each mode combines with the reconciliation result from
different DR model, and the global reconciliation result is
obtained and evaluated by the reliability evaluation index.

III. CASE STUDY: ENERGY EFFICIENCY OPTIMIZATION
WITH EXERGY BALANCE ANALYSIS OF THE
EVAPORATION PROCESS
Aluminum as the largest consumption of nonferrous metal
materials is widely used in construction, military aviation and
other industries [53]. The preparation of aluminum requires
extraction of alumina which is then electrolyzed. Never-
theless, in China, the shortage of bauxite and the back-
ward industrial production technology lead to the growth of
energy consumption and resources and the reduction of inter-
national competitiveness in alumina enterprises. Therefore,
on the basis of improving data quality, how to guarantee
product quality and production efficiency through process
optimization and control to reduce energy consumption and
environmental pollution is an urgent problem for nonferrous
metallurgical enterprises. In this section, first, a schematic
description and data analysis is given for the evaporation
process. Then, exergy analysis method is carried out for eval-
uating the energy consumption. Afterwards, multi-objective
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FIGURE 2. The schematic chart of evaporation.

optimization based on exergy evaluation index is imple-
mented for improving energy efficiency in evaporation pro-
cess.

A. ANALYSIS OF EVAPORATION PROCESS
The evaporation process is an important part to improve the
circulating mother liquor concentration through the heated
steam in industrial alumina production. It is developed to
reduce the discharge of waste lye and thus protect the envi-
ronment. In fact, the steam consumption is about 48%-52%
for the total steam consumption, and the evaporation pro-
cess becomes the main energy-consuming process in alumina
plant. The evaporation process consists of liquid material,
steam and condensation water lines which work in parallel.
In the reactors, the steam is used to heat the liquid mate-
rial indirectly. The liquid material is discharged through six
evaporators and four flash evaporators. A schematic chart of
evaporation is shown in Fig. 2. Actually, the inlet steam and
liquid material come from the decomposition process and the
thermal power plant, respectively. The uncertain variation of
supplied materials and the change in demand of the outlet
liquid material concentration, which results in one steady
state production is no longer applicable to the actual situation.
Furthermore, the data characteristics such as mean value,
variance and correlation coefficient of normal process data
are obviously different under multiple production running
modes. Besides, the measurement error is not only from
sensor error, but also may be caused by external interference,
model error or feedback control and other uncertain factors.

On the other hand, the actual evaporation process is a long
and complex process involving several successive stages, and
a large number of detection information for the intermedi-
ate equipment are absent, for example the steam and liquid
material flow rate, the liquid material concentration, etc. can
only be obtained at the inlet and outlet of the whole process.
It leads to insufficient process data redundancy. The material
flow information is listed in Table 1 (× is unknown material
flow information, O is nonexistent material flow information,

and
√

is known material flow information). In addition,
the enthalpy of the steam (H ) cannot bemeasured directly, but
it is affected by the steam temperature (TV ). Thus, according
to the steam and enthalpy data in the enthalpy table of engi-
neering thermodynamics, the coupling relationship between
such physical parameters can be expressed in Eq. (8) through
the least square fitting method.

H = 2495+ 1.961TV − 0.002128T 2
V (8)

Actually, the outlet liquid material that satisfies the pro-
duction requirement is obtained through controlling the pro-
cess parameters and regulating the temperature distribution.
However, normally, the production operating often depends
on the experience of the operators. Obviously, this is man-
ual motivation and generally excessive energy consumption.
Therefore, in order to achieve green and efficient production,
improve energy efficiency, it is essential to ensure the accu-
racy and completeness of process data before energy con-
sumption optimization, which is conductive to improve the
effectiveness of the process modeling, energy consumption
optimization and production control.

B. ENERGY ANALYSIS WITH EXERGY
The exergy analysis is to recognize the inappropriate energy
utilization, expose the reasons and quantities of exergy loss,
and adopt energy-saving measures further. In the exergy
analysis for the evaporation process, the impact of pressure
loss is ignored, and only the thermal energy and chemical
energy in liquid material and steam is concerned. The exergy
of the evaporation process is divided that one is the exergy
of condensed water and steam, and the other is the exergy
of liquid material. As the evaporation process is a physical
reaction process, the chemical exergy of liquid material is not
considered to calculate exergy, but only the physical exergy
of condensed water, steam and liquid material are calculated.

The physical exergy of liquid material is expressed as:

ex = (he − he0)− T0 (se − se0) (9)
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TABLE 1. The material flow information for the evaporation process.

where he and se are enthalpy and entropy; he0 and se0 are
enthalpy and entropy in reference environment; T0 is temper-
ature in reference environment.

Here, the thermodynamic data of water and steam obtained
by the IAPWS-IF97 model is adopted to calculate exergy
of water and steam [54]. However, the ingredient of liq-
uid material is complex and its enthalpy and entropy have
no corresponding thermodynamic properties to be checked.
Therefore, the Eq. (9) is derived and substituted into the basic
thermodynamic equation dhe = Tdse + cvdP,

dex = (T − T0) dse + cvdP (10)

where cv is the specific volume.
The calculation formula of specific entropy as follows,

dse =
(
∂se
∂T

)
P
dT +

(
∂se
∂P

)
T
dP (11)

where
(
∂se
∂T

)
P
=

cp
T ,
(
∂se
∂P

)
T
= −

(
∂cv
∂T

)
P
.

Moreover, the Eq. (10) is substituted into the Eq. (11),

dex=cp
(
1−

T0
T

)
dT+

[
cv−(T−T0)

(
∂cv
∂T

)
P

]
dP (12)

Therefore, the physical exergy can be expressed as
Eq. (12),

ex =
∫ T ,P

T0,P
cp
(
1−

T0
T

)
dT +

∫ T0,P

T0,P0
cvdP

= cp
(
T − T0 + T0 ln

T0
T

)
(13)

For the stable working conditions, the exergy balance is
given as,

Exin1 − Exout1 = (Exout2 − Exin2)+ SI (14)

The Eq. (14) represents that the heat absorbed by the
cold liquid material increases from Exin2 to Exout2 for heat
exchanger, and the heat released by the hot liquid material
decreases from Exin1 to Exout1. The exergy loss SI is divided
into internal irreversible exergy loss of heat exchange Ic
which is the exergy from the condensed water and steam
exported the equipment or the evaporation process, and exter-
nal irreversible exergy loss Isr which is the exergy between
the cold and the hot liquid on the inside and outside of the
heating tube in the heat transfer process.

Nevertheless, the exergy loss as an absolute variable is
unable to compare the degree of exergy utilization in process
or equipment under different operating conditions. Thus, it is
more appropriate for the exergy efficiency ηex to show the
operational efficiency of the equipment, as follows,

ηex =
Eeffective
Ein

× 100% (15)

where Eeffective is the effective exergy of the system or equip-
ment; Ein is exergy supplied to the system or equipment.

1) EXERGY ANALYSIS OF EVAPORATOR
In detail, the exergy flow balance of the ith evaporator is
formulated as,

Evsi−1+Evci+Evfi−1+Emii+1=Evoi+Ewwi+Emoi+Izi (16)

where Evsi−1 is the exergy for the secondary steam of the (i−
1)th evaporator; Evci is the exergy for the flash steam of the
ith condensation tank; Evfi−1 is the exergy for the steam of
the flash evaporator; Emii+1 is the exergy for the inlet liquid
material; Ewwi is the exergy for the condensate water; Evoi is
the exergy for the secondary steam of the ith evaporator; Emoi
is the exergy for the outlet liquid; Izi is the exergy loss for the
ith evaporator.

2) EXERGY ANALYSIS OF FLASH EVAPORATOR
For the flash evaporators, the exergy balance equations are
expressed as,

Emol = Emf 1 + Evf 1 + Is1 (17)

Emf 1 = Emf 2 + Evf 2 + Is2 (18)

Emf 2 = Emf 3 + Evf 3 + Is3 (19)

Emf 3 = Emo + Evf 4 + Is4 (20)

where for the 1st evaporator, the 1st, the 2nd, the 3rd
and the 4th flash evaporator, Emol,Emf 1,Emf 2,Emf 3,Emo
are the exergy of the outlet liquid material, respectively;
Evf 1,Evf 2,Evf 3,Evf 4 are the exergy of the flash steam for the
1st, the 2nd, the 3rd and the 4th flash evaporator, respectively;
Is1, Is2, Is3, Is4 are the exergy loss for the first, the second,
the third and the fourth flash evaporator, respectively.
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C. ENERGY EFFICIENCY OPTIMIZATION BASED ON
PERFORMANCE INDICATOR
Based on the problem that fieldworkers operate roughly at the
cost of a large amount of energy consumption for ensuring
the concentration of the outlet liquid material, an energy
efficiency optimization approach with multi-objective is put
forward to reduce the energy consumption as low as possible,
maintain production quality and improve energy efficiency.

1) HYPOTHESIS
In order to reduce the mathematical modeling uncertainty
under optimal operation, the following assumptions are
made:

(a) The flow of liquidmaterial is assumed to be steady flow,
and the steam is evenly distributed.

(b) Non-condensable gas is almost nonexistent, and sec-
ondary steam and live steam are saturated.

(c) The change of solute mass in the evaporator caused by
scaling is ignored.

2) OBJECTIVE FUNCTION
In evaporation process, the energy efficiency optimization is
to ensure that the outlet liquid material concentration meets
the production requirements with the minimum energy con-
sumption on the basis of the equipment operation capacity
and the process constraints. Meanwhile, energy conservation
and consumption reduction are to decrease the amount of the
steam, reduce the unnecessary energy loss, and improve the
energy usage efficiency.

Actually, the steam-water ratio (per mass units of water
evaporated by the mass unit of live steam) as an important
technical indicator of evaporation process, the larger the
steam-water ratio, the more steam needed to evaporate a ton
of water, and the higher the steam consumption. In addition,
comparedwith the exergy loss rate, improving the exergy effi-
ciency is conductive to guarantee the low energy consump-
tion. Hence, the objective functions of energy consumption
optimization are shown as follows,

min J1 = min (1− ηex) = min
(
1−

F s4ρ
s
4ems4

V0eV0 + F0ρ0em0

)
(21)

min J2 = min
(
V0
Wz

)
= min

(
V0

F0ρ0
(
1− C0ρ

s
4

/
Cs
4ρ0

))
(22)

where for the feed of the process, F0 and ρ0 are flow rate and
concentration; for the outlet liquid of the 4th flash evaporator,
F s4 and ρ

s
4 are flow rate and concentration; V0 is the live steam

flow rate; for the whole evaporation process, the unit exergy
of the feed, the unit exergy of the live steam, ems4 , em0, eV0 are
unit exergy for the outlet liquid material, respectively.

According to the reconciliation processing results, the liq-
uid material density is determined by the concentration,

as shown,

ρ = 1035.425+2.688CAl2O3 + 1.175CNaOH − 2.1CNa2CO3

(23)

where ρ is the density for the liquid material (kg/m3); CAl2O3 ,
CNaOH , CNa2CO3 are the concentration for the aluminium
oxide, the sodium hydroxide, the sodium carbonate (g/L),
respectively.

3) CONSTRAINTS
The operation parameters should be limited the feasible
region to satisfy the equipment capacity and technical
requirements, that is, to satisfy process constraint condi-
tions, including mechanism model constraints, live steam
flow rate constraint, live steam temperature constraint, feed
flow rate constraint, and heat transfer temperature difference
constraint.

a: THE CONSTRAINT OF MECHANISM MODEL
The secondary steam generated by the evaporator is supplied
to the preheater, and the inlet liquid material of the evaporator
comes from the preheater. Besides, evaporator, preheater and
condensation water tank as a whole unit, are used for model-
ing and research of mechanism. The mechanism models are,

FiCi = F0C0(i = 1, 2, 3, 4) (24)

F5C5 = F02C0 + F6C6 (25)

F6C6 = F01C0 (26)

F sj C
s
j = F0C0(j = 1, 2, 3, 4) (27)

(F01 + F02) ρ0 + V0 = F s4ρ
s
4 + V6 (28)

(F01 + F02) ρ0cp0T0 + V0H0

= F s4ρ
s
4cp

s
4T

s
4 + V6H6 + V0T ′ncpw + Q (29)

where for liquid material of the evaporator, F , T and cp are
flow rate, temperature and specific heat, respectively; T ′n is
temperature of condensed water; V is secondary steam flow
rate for the evaporator; F01 and F02 are feed flow rate of the
5th and the 6th evaporator; cpw is specific heat of water; for
liquid material of the flash evaporator, F s, ρs, T s and cps are
flow rate, density, temperature and specific heat, respectively;
Q is the heat loss.
The evaporation process is based on heat transfer, so the

optimization model needs to satisfy the mechanism balance
relationships.

b: THE CONSTRAINT OF LIVE STEAM FLOW RATE
The live steam is the main source of heat for evaporation
process. Under the condition of the actual live steam flow rate
exceeding the acceptable value, it may condense the excess
steam into water, resulting in a waste of steam. Neverthe-
less, insufficient concentration of sodium aluminate solution
affects the product quality if live steam flow rate is low. So,
the constraint of live steam flow rate can be expressed as:

V0,min ≤ V0 ≤ V0,max (30)
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c: THE CONSTRAINT OF LIVE STEAM TEMPERATURE
The heat transfer in the evaporator is influenced by the live
steam with high pressure and high temperature used directly
for heating without condensation. Therefore, the steam pres-
sure cannot be too large, and the live steam temperature
constraint condition is:

TV0,min ≤ TV0 ≤ TV0,max (31)

d: THE CONSTRAINT OF FEED FLOW RATE
The product concentration is affected by the fluctuation of
feed flow rate. The heat of liquid material decreases with the
increase of feed flow rate, which leads to the decrease of the
product concentration.Moreover, tomake sure the production
efficiency and quality, the feed flow rate for the 6th and the
5th evaporator should be controlled within:

F01,min ≤ F01 ≤ F01,max (32)

F02,min ≤ F02 ≤ F02,max (33)

e: THE CONSTRAINT OF FEED TEMPERATURE
Under the condition of the constant negative pressure,
the higher the feed temperature, the less heat is needed to
evaporate the water in feed. Meanwhile, the change of the
feed temperature affects the distribution of the effective tem-
perature difference and product concentration and steam con-
sumption. Thus, the feed temperature should be constrained
within a certain range:

T0,min ≤ T0 ≤ T0,max (34)

Thus, the energy efficiency optimization based on the
multi-objective is expressed as,

min J1 = min (1− ηex) = min
(
1−

F s4ρ
s
4ems4

V0eV0 + F0ρ0em0

)
min J2 = min

(
V0
Wz

)
= min

(
V0

F0ρ0
(
1− C0ρ

s
4

/
Cs
4ρ0

))
s.t. G (V0,TV0,F01,F02,T0) = 0

F01,min ≤ F01 ≤ F01,max

F02,min ≤ F02 ≤ F02,max

V0,min ≤ V0 ≤ V0,max

TV0,min ≤ TV0 ≤ TV0,max

T0,min ≤ T0 ≤ T0,max

(35)

where G (·) is mechanism model; V0,min, TV0,min, T0,min,
F01,min, F02,min are the allowed minimum live steam flow rate
and temperature, feed temperature and flow rate, respectively;
V0,max, TV0,max, T0,max, F01,max, F02,max are the allowed max-
imum live steam flow rate and temperature, feed temperature
and flow rate, respectively.

The energy efficiency optimization for the evapo-
ration process is a multi-objective complex optimiza-
tion problem with inequality constraints and equality
constraints. Hence, the multi-objective state transition

FIGURE 3. Probabilities of each sample for modes.

algorithm (MOSTA) [55], [56] with its fast convergence and
proper solution strategy is utilized to find the true Pareto
solutions in this paper.

IV. RESULTS AND DISCUSSION
To demonstrate the availability and practicality of the pro-
posed energy efficiency optimization method based on the
novel data reconciliation, the simulation case and industrial
application case are used to analyze and discuss, respectively.

A. SIMULATIONS AND ANALYSIS
First of all, a total of 2880 samples were collected in an
acid-cleaning cycle for the evaporation process from an alu-
minium production plant in Zhengzhou, China, to evaluate
the proposed novel data reconciliationmethod. First, in accor-
dance with expert experience and prior knowledge, the exper-
iment data is divided into four Gaussian components, namely
four production modes, and the Gaussian mixture model is
further constructed. The probabilities of each sample for
modes are provided in Fig. 3. Moreover, the data recon-
ciliation model with the mutual information and time-scale
redundancy for the four modes are established, respectively.
Then, 100 sets of process data are used to realize the online
data reconciliation and improve the data quality.

In this case, the standard deviation from the measurements
and the reconciliation results of measured variables are cal-
culated and compared by means of multi-modes and different
sub-mode data reconciliation results, as shown in Fig. 4. The
Figs. 4(a)-4(i) mean the comparisons of the standard devia-
tions for the feed temperature, the outlet liquid material flow
rate and temperature of the 4th flash evaporator and the 6th
evaporator, the live steam flow rate and temperature, the feed
flow rate of the 6th and the 5th evaporator, the secondary
steam temperature of the 4th flash evaporator, and the conden-
sate water temperature, respectively. The y-axis is the calcu-
lated standard deviation, and the signs ‘‘M’’, ‘‘R’’, ‘‘R(1)’’,
‘‘R(2)’’, ‘‘R(3)’’, ‘‘R(4)’’ in x-axis represent the calculated
standard deviation from measurements, reconciliations for
multi-modes, reconciliations for the first mode, reconcilia-
tions for the second mode, reconciliations for the third mode,
reconciliations for the fourth mode, respectively. Obviously,

47444 VOLUME 9, 2021



S. Xie et al.: Energy Efficiency Analysis and Optimization of Industrial Processes Based on a Novel DR

FIGURE 4. The comparisons of the standard deviation from measurements and
reconciliations for the multimode and each sub-mode.

FIGURE 5. The standard deviation of different variables under different case.

the standard deviation calculated by the reconciliations is less
than that calculated by the measurements, and the standard
deviation from reconciliations in sub-mode is greater than
that in multi-modes. Meanwhile, compared with the standard
deviation from measurements, the standard deviation from
reconciliations of condensate water temperature of the sixth
evaporator, live steam flow rate and live steam temperature
under multi-modes is decreased by 31.31%, 21.04%, 18.76%,
respectively. The standard deviation of other six variables also
decrease to varying degrees. It indicates that the proposed rec-
onciliationmethod guarantees themeasurements accuracy for
the production process with the multi-modes characteristics.

Furthermore, to explain the superiority of the proposed
data reconciliation method, the standard deviation obtained
under the four cases are compared, including the measure-
ments, the reconciliations from the reconciliationmodel with-
out mode division, the reconciliations from the reconciliation
model with diagonal matrix, and the reconciliations from the
reconciliation model with mutual information matrix. For the

different cases, the comparison results of the standard devi-
ation for 34 measured variables are demonstrated in Fig. 5.
Based on the comparative data, it should be noted that the
standard deviations from reconciliations with multi-modes
for different measured variables are obviously less than those
of other cases, which is more conductive to reduce the mea-
surement error.

In addition, the relative standard deviation (RSD) regarded
as the evaluation indicator of reconciliation results is defined
in Eq. (36). Fig. 6 shows the standard deviation and the
corresponding relative standard deviation for multi-modes
and different sub-mode. The reconciliation relative standard
deviation of each variable is negative, which reflects that the
standard deviation calculated from reconciliations is less than
that from measurements, and the standard deviation calcu-
lated from reconciliations in multi-modes is less than that
calculated under different sub-mode. In fact, the estimated
interval for the reconciliations is narrower than the measure-
ments. It follows that the proposed reconciliation method is
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FIGURE 6. The standard deviation and the relative standard deviation for multi-modes and different sub-mode.

FIGURE 7. The effect of feed flow rate on live steam flow rate and exergy
efficiency.

FIGURE 8. The effect of the feed temperature on live steam flow rate and
exergy efficiency.

more remarkable and the obtained reconciliations are closer
to the true value (36), as shown at the bottom of the next page.

Besides, to analyze the influence of operating parameters
on steam consumption in an acid-cleaning cycle, the data of 9
days (from the 3rd to the 5th, from the 14th to the 16th, from
the 26th to the 28th) were collected. The effect of feed flow
rate on live steam flow rate and exergy efficiency is displayed
in Fig. 7. Obviously, the increase in the feed flow rate results
in the live steam flow rate increasing while the corresponding
exergy efficiency decreasing. Moreover, the live steam flow
rate is reduced and the exergy efficiency is increased by
increasing the feed temperature, as shown in Fig. 8. Gen-
erally speaking, in the early stage of acid-cleaning cycle,
there is no scaling with the highest operating efficiency, less
steam consumption and smaller steam-water ratio. However,
with the extension of acid-cleaning cycle, scaling in the
evaporator occurs gradually, which directly affects the heat
transfer of the evaporator. In the latter stage of acid-cleaning
cycle, a lot of steam is consumed, resulting in larger steam-
water ratio. The change of the steam-water ratio is shown
in Fig. 9. From Fig. 9, in the early stage of acid-cleaning
cycle, the steam-water ratio decreases first and then increases.
When the evaporation system running after acid-cleaning,
a large amount of steam is applied to ensure stable operation
of production. This is lead to the fact that the steam-water
ratio is high. After the system is stable, the steam-water ratio
decreases and the required steam flow rate is reduced. In a
word, it can be seen from these three figures that the changes
of operating variables in the evaporation process have a com-
prehensive effect on exergy efficiency and steam-water ratio.

Subsequently, to assess the feasibility of the proposed
energy efficiency optimization strategy, the comparison of
MOSTA and nondominated sorting genetic algorithm II
(NSGAII) [57] are carried out. Moreover, the parameters
of the MOSTA are set as follows: α decreases periodi-
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FIGURE 9. The change of the steam-water ratio.

FIGURE 10. The Pareto profile for the steam-water ratio and the exergy
loss rate.

cally in an exponential manner from 1 to 1e-4, β, γ and
δ are set to 1. All parameters setting refer to the previous
papers [58]. For the NSGAII, the crossover probability pc
is 0.9, the mutation probability pm is 1/n, where n is the
number of the optimization variables. The Pareto profile
for the steam-water ratio and the exergy loss rate obtained
by the MOSTA and NSGAII is presented in Fig. 10. From
Fig. 10, the length between the blue endpoints of the entire
Pareto profile get by MOSTA is longer than that between
the red endpoints, which means that the MOSTA has a
better span metric. In addition, it is obvious that the blue
marks are uniformly distributed on the entire Pareto profile,
indicating that the MOSTA has better uniformity, namely,
spacing metric. In contrast, the MOSTA can converge to the
real Pareto profile with better distribution effectively and
quickly.

Based on the above analysis, under the condition of stable
operation of the system, the optimal results of the evaporation
process are displayed with different methods in Table 2.
From Table 2, the exergy efficiency and the steam-water ratio
are contradictory, and the steam-water ratio reduces at the
expense of the loss of the energy efficiency. It follows that

FIGURE 11. Comparisons of steam-water ratio for actual results, optimal
results of proposed method and optimal results of other method.

FIGURE 12. Comparisons of exergy efficiency for actual results, optimal
results of proposed method and optimal results of other method.

FIGURE 13. The evaporation process of the alumina production in an
aluminum metallurgical plant.

the optimized mass of live steam is lower than the actual
production. In addition, the optimal exergy efficiency based
on the proposed method and the optimal exergy efficiency
of other method without data reconciliation are improved
by 2.25% and 1.51%, respectively. In fact, Pareto solution
set obtained by optimization provides a variety of options
for different control objectives, which meets the operation

RSD =
reconciled standard deviation-measured standard deviation

measured standard deviation
(36)
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TABLE 2. The optimal parameters and performance indicators of energy efficiency optimization problem.

FIGURE 14. Structure of the monitoring and energy efficiency optimization system.

requirements under different working conditions. When the
actual production process focuses on a certain index, Pareto
optimal solution is selected from another scheme with a
smaller index. If there is no special focus on the objective,
a tradeoff between the exergy efficiency and the steam-water
ratio is conducted. Obviously, the energy efficiency optimiza-
tion approach put forward is more effective in ensuring low
energy consumption and high exergy efficiency. Meanwhile,
the process data of 20 days in an acid-cleaning cycle were
obtained to optimize the steam-water ratio and the exergy effi-
ciency meeting the actual working condition. Furthermore,
the comparisons for optimal results of different methods are
displayed in Fig. 11 and Fig. 12. It follows from the com-
parison results, the optimal results of the proposed method
for the exergy efficiency compared with the actual results is
improved by an average of about 2.45%, while the optimal
results of other method for the exergy efficiency is improved

by an average of about 1.52%, indicating that the proposed
energy efficiency method has better performance on energy
conservation and consumption reduction.

B. INDUSTRIAL APPLICATION
The monitoring and energy efficiency optimization system
is performed and tested in the one of the aluminum met-
allurgical plant in China (Fig. 13). The proposed approach
runs on an industrial computer with a 2.7GHz CPU and 4GB
RAM in a Microsoft Windows 7 environment. A graphi-
cal human-computer monitoring interface software platform,
including the functions of the important condition monitor-
ing, data reconciliation, exergy analysis and optimization,
etc., is developed for high-level optimization control, and
the DCS system, laboratory analysis station and energy sta-
tion are utilized for low-level data acquisition. The plat-
form is implemented through using Microsoft Visual C++,
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FIGURE 15. The energy consumption index of the 10 days before the
system.

FIGURE 16. The energy consumption index of the 10 days after the
system.

Microsoft SQL Server, and provided production guidance for
the actual plant, presented as Fig. 14.

To exhibit the superiority of the proposed strategy and
the benefit of the energy efficiency optimization system,
the energy consumption per unit product as the main eval-
uation index is used for analysis of energy conservation.
The data of the 10 days before the system and the data of
the 10 days after the system are collected to compare the
performance of the proposed strategy applied in industrial
plant. According to the calculation general rule of the com-
prehensive energy consumption (GB/T 2589-2008), steam is
converted into standard coal by the conversion coefficient of
standard coal which is 0.1286. To compare the energy con-
sumption of the 10 days before and after the energy efficiency
system, the details for the live steam flow rate, an amount of
steam converted into standard coal, the outlet liquid material
flow rate, and the energy consumption per unit product are
demonstrated in Fig. 15 and Fig. 16. It can be seen intuitively

that the specific numerical changes of energy consumption
indicators of the 10 days before and the 10 days after the
system implementation.

It follows that the total amount of energy consumption
converted into standard coal is 1967.84tce, the total out-
let liquid material flow rate is 137876m3, the comprehen-
sive energy consumption per unit product is 14.27kgce/m3

before the system. Nevertheless, after the system, the total
amount of energy consumption converted into standard coal
is 2084.22tce, the total outlet liquid material flow rate is
156336m3, the comprehensive energy consumption per unit
product is 13.33kgce/m3. Hence, for the system, the energy
consumption is reduced by 6.58% after the monitoring and
energy efficiency optimization system of the evaporation pro-
cess is applied for actual production. Clearly, the automation
level of production technology is improved and the produc-
tion process is optimized. In addition, it also achieves the
purpose of energy conservation and consumption reduction.

V. CONCLUSION
This paper put forward an energy efficiency optimization
strategy based on a novel data reconciliation for improving
energy utilization and reducing energy consumption. The
multi-features material flow information is divided into sev-
eral sub-mode by the Gaussian mixture model. In addition,
the critical variable introduced to improve the data redun-
dancy is applied for the local data reconciliation modeling
with the mutual information, and the hypothesis testing is
used to evaluate the data reconciliation results. Moreover,
exergy analysis is employed for energy utilization of pro-
duction equipment according to a case study about evapora-
tion process. Subsequently, an energy efficiency optimization
model based on performance indicator is established and is
solved by the MOSTA. Finally, the simulations and indus-
trial application illustrate that the proposed energy efficiency
optimization method has better effectiveness and superiority
for energy-saving and cost-reducing in terms of the exergy
efficiency and the steam-water ratio. Besides, the process
measurements preprocessed by data reconciliation can better
obtain effective production information, and further improve
the accuracy of optimization and the production efficiency of
alumina industry. Thus, the energy consumption of evapora-
tion production can be reduced by more than 2%, which sig-
nificantly improves the energy efficiency of the evaporation
production.

Furthermore, in the production process of alumina, the
concentration of the feed for the evaporation process is deter-
mined by the preceding decomposition process, and the live
steam used for heating is provided by the thermal power plant.
In addition, the product quality of the evaporation process is
determined by the production requirements of the subsequent
digestion process. Due to the limitation of detection condi-
tions at present, it is difficult for the production operation of
evaporation process to track the production changes of the
preceding and the subsequent processes in time. When mul-
tiple production processes in series, it is of great significant
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to how to improve energy efficiency of the whole alumina
production process under the premise that multi-processes
have the characteristics of multiple working conditions and
nonlinearity.
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