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ABSTRACT The demands for deterministic network services are getting significant. IEEE Time sen-
sitive networking (TSN) task group has aimed for deterministic services through IEEE 802 networks.
TSN’s solutions rely on the time-synchronization and the slot scheduling coordinated throughout a network.
The former requires costly hardware implementations for accuracy and scalability. The latter requires a
schedulability analysis, which is proven to be NP-complete and not scalable. For modest-to-large scale
dynamic networks, a more flexible solution is necessary. We propose a scalable framework that guarantees
any desired jitter upper bound, including zero jitter. The framework is composed of; packets with relative
time-stamps, a network that guarantees latency bounds, and buffers at the network egress. The latency bounds
of a network can be of any value. The buffer holds packets for predetermined intervals to reproduce arbitrary
inter-arrival intervals to inter-departure intervals, based on the network’s latency bound. The idea behind the
proposed framework is to minimize the latency first with work-conserving schedulers, and then adjust the
jitter at the egress of a network. We argue that this is simpler than minimizing latency and jitter at the same
time. A direct benefit of such simplicity is its scalability. We examine the network solutions that guarantee
latency bound, such as the DiffServ and the Flow aggregate-interleave regulator (FAIR), as the candidates for
the component in the framework. We show with a case study and simulations that the proposed framework
can guarantee smaller latency bounds, with zero jitter, than those of the TSN’s synchronous approach.

INDEX TERMS Deterministic network, jitter, latency, time-synchronization, TSN.

I. INTRODUCTION
A. DEMANDS FOR DETERMINISTIC NETWORKS
The demands for deterministic network services are getting
significant. It is strong in closed small networks such as in-car
networks or smart factory networks, in which the latency
and jitter requirements are clearly defined. Typical control
cycles in automated factories are 100-1000ms with a jitter
of <1ms, while in robotics control cycles can go <1ms
with a jitter of <1µs [1]–[3]. The On-Board Software Ref-
erence Architecture Network Communication Specification
(OSRA-NET), the European standard for satellite network,
defines seven communication classes and their jitter bounds
as well as the latency bounds. OSRA-NET is a small net-
work with at most 15 end-points, expected to accommo-
date 25 end-points in a near future [4]. See Table 1 [4].
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TABLE 1. OSRA-NET traffic classes [4].

A class 6 flow in OSRA-NET, for example, requires max-
imum latency of 10ms and maximum jitter of 2ms, while
having more than 100Mbps data rate.

Common public radio interface (CPRI) in 5G network is
another example of small networks with stringent latency
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and jitter requirements. CPRI is a packet-based constant-
bit-rate protocol developed to transport data between the
remote radio heads (RRHs) and baseband units (BBUs)
pool. CPRI network is usually a simple single-hop network.
While achieving the throughput of 10Gbps as required in
the fronthaul networks, CPRI is expected to maintain the
maximum end-to-end latencies less than 100-250µs [5], [6],
jitter within 65∼100ns [6], [7] and BER (bit error rate) less
than 10−12 [6], [8], otherwise performance of the networks
degrades significantly [9].

There are also emerging applications that require latency
and jitter bounds in larger scale networks. Machine-
to-machine communications for ‘cloudified’ industrial
and robotic automation involves moderate-to-large scale
networks. This type of communications requires very
fine-grained timing accuracy for the dispersion of control
commands and for the collection of telemetry data over a
wide area [10]. ITU-T SG-13 has defined such services to
support critical grade reliability and extremely low as well as
highly precise latency for the delivery of packets [10]. This
is because some industrial controllers require very precise
synchronization and spacing of telemetry streams and control
data, facilitating, for example, precise operation of robotic
effectors alongmultiple degrees-of-freedom [10]. Despite the
fact that even loose jitter bound requirements are hard to be
satisfied in large scale networks, the importance of ‘on-time
service’ as well as ‘in-time service’ is emphasized in [10].

For another example, the 3GPP TS23.501 specifies
the periodic automation control flows with data rates of
only 0.1∼0.2Mbps to have the upper bound 10ms [11].
See Table 2. ITS stands for intelligent transport systems,
in the table.

TABLE 2. Flow types characteristics specified in 3GPP TS23.501.

B. PROBLEM STATEMENT
We consider the problem of guaranteeing the jitter bound
in arbitrary sized networks with any type of topology, with
random dynamic input traffic. The jitter is defined to be
the latency difference of two packets within a flow, not a
difference from a clock signal or from an average latency,
as it is clearly summarized in RFC 3393 [12].

In large scale networks, the end-nodes join/leave, and the
flows are dynamically generated and terminated. Achieving
satisfactory deterministic performance in such an environ-
ment would be challenging.

C. PREVIOUS WORKS ON JITTER MINIMIZATION
For small networks such as in-car networks or 5G fronthaul
networks, IEEE TSN task group defines a set of solutions of
latency and jitter minimization [13]. The solutions rely on the
time-synchronization of every node in the network and slot
scheduling that is coordinated among nodes throughout a net-
work. Note that we use the term time-synchronization, instead
of clock-synchronization. The time or phase-synchronized
systems are defined such that significant events occur at
the same time with the same rate [14]. In contrast, in the
frequency-synchronized systems the events occur at the same
rate but not necessarily at the same time.

The synchronized nodes allocate service time slots to a set
of predefined traffic flows such that the flows are continu-
ously served by consecutive nodes. This is called ‘peristalsis’,
and is the heart of the TSN solutions. The complexity resides
at the allocation of slots to a set of flows, however, such
that the performance requirements of various flows are met
in given networks. This slot allocation task is called ‘slot
scheduling’ or just ‘scheduling’. It is not to be confused with
the traditional packet scheduling, with which it is decided
when the packets in the queues are served.

The slot scheduling is a time and resource consuming
task. When the network is large, it is quite a burden to the
network operator. A conflicting schedule is defined as one
that schedules more than one of the assigned slots at the
same time. Finding a non-conflicting schedule of packets is
proven to be NP-complete, even with fixed sized slots similar
to a TDMA [7]. [15] and [16] proved that the problem of
producing a non-conflicting schedule to multiplex multiple
flows can be reduced to the classical graph-coloring prob-
lem, which is known to be NP-complete. Even the heuristic
algorithms take long for the slot scheduling as the number
of flows increase. With randomized topologies with a set
of time-sensitive flows randomly generated, the time taken
for slot scheduling is 102 seconds with 200 flows [17].
It grows to almost 104 seconds when the number of flows
is 1000 [17]. For dynamic environments where critical flows
appear and disappear over time, runtime reconfigurations
are necessary [18], which makes the scheduling problem
even harder. Moreover, in cases the propagation delay is
significant compared to the slot length, synchronization
and coordination among the nodes may become ineffec-
tive, therefore a more careful slot allocation is necessary.
An on-line time-slot reconfiguration framework for TSN
based on software defined networking (SDN) context is also
proposed [19]. The joint optimization of admission control,
slot scheduling, and routing problems in TSN is considered
in [19].

The time-synchronization requirement across every node
in the network has two difficulties. First, time synchroniza-
tion function implementation may impose hardware support,
thus too much overhead to lightweight embedded nodes.
Second, the synchronization accuracy may not be up to the
level of traffic requirements. There are two representative
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protocols for network-wide time-synchronization, net-
work time protocol (NTP) and precision time protocol
(PTP) [20], [21]. NTP uses timestamps in the application
layer and has a limited synchronization accuracy to 1ms [22].
In software based implementations, PTP achieves mean
synchronization accuracy of 30 µs and standard deviation
of 54µs [23]. Those results can be slightly improved by using
real-time operating systems and communication channels,
but even in this case reaching sub-µs synchronization accu-
racy remains a tough task [24]. PTP can reach the accuracy
to 1µs or lower, provided with a hardware timestamp func-
tion and compensation for transmission path delay, for a
node 30 hops away from the grandmaster [25]. Considering
the CPRI’s jitter requirements of 65∼100ns [6], the hardware
implementation is a must for such an application. However,
this comes at the cost of being more expensive both in terms
of components and development costs.

PTP measures the one-way transit delay from a master to
a slave by exchanging the messages in both directions with
time-stamps. Based on the obtained latency value and the
time-stamp of the master, the slave node calculates the clock
offset and corrects it. For this message exchanging protocol to
work accurately, a few assumptions must be made. 1) First,
this exchange of messages happens over a time interval so
small that this offset can safely be considered constant over
that interval. 2) Second, the transit time of a message going
from the master to a slave is equal to the transit time of a
message going from the slave to the master. 3) Third, both
the master and slave can accurately measure the instance
they send or receive a message. The degree to which these
assumptions hold true determines the accuracy of the clock at
the slave device [21]. It is easy to see that these assumptions,
especially the second one, may go wrong in networks with a
large number of hops.

With all the efforts mentioned above, however, there is no
system that can guarantee a jitter bound in general networks
with arbitrary traffic yet. For a limited topology, such as a
single-hop CPRI network, there are researches about achiev-
ing zero jitter with packet-level slot scheduling methods in
lightly utilized environments [7]. This work shows that even
for a smallest network with lightly loaded traffic, it is neces-
sary to micro-manage the slots with the size of a single packet
transmission, and to reorder slots dynamically, in order for
achieving zero jitter [7].

Another work on jitter bound [26], [27] utilized an input-
buffered switch architecture with a slightly different type of
slot scheduling. An IP packet is divided into 64byte ‘cells’
and the scheduler allocates fixed slots to cells from input ports
at every node. A frame is composed of a finite number of
slots (F). This work requires matrix operations of complexity
max(O(N 2), O(NF)), where N is the number of ports in a
switch. It tried tominimize jitter of video traffic at every node,
and the extra jitter is removed from the ‘playback buffer’
at the end of the network, based on the prior knowledge of
a fixed inter-arrival times (i.e. 33ms) of the video frames.
No time-synchronizations or time-stamps are necessary [28].

In real time protocol (RTP) and RTP control protocol
(RTCP), the timestamps are used mainly for two purposes.
The first is to measure the time related performances and
to feedback for the adaptive encoding or the faults diagno-
sis [29]. The second is to control the jitter at the applica-
tion playback buffer. Additionally, since the time-stamps of
RTP/RTCP may have the same format with NTP, it can be
used for network time-synchronization. The time-stamps in
RTP, however, is to be set to represent the sampling instance
of the periodic multimedia data, or the intended presentation
instance of the data, not the actual transmission instance of
a packet. For example, if a video frame consists of multi-
ple packets, these packets should have the same time-stamp
value. This is because the RTP is usually above UDP, a trans-
port layer protocol, thus handled at the OS level. It is hard
to predict precisely the transmission instance before actual
transmission. The time-stamps in RTP for the jitter control,
therefore, does not play a critical role if the receiver is already
aware of the flow’s presentation period, as in the case of [28].

D. CONTRIBUTIONS AND CONTENTS
This paper proposes a new framework for jitter bound guaran-
tee. The framework does not require a time-synchronization,
or a slotted operation. It requires three components;
1) a network that can guarantee latency upper bounds,
2) packets with relative time-stamps, and 3) buffers that are
able to hold packets for pre-defined intervals. The relative
time-stamps is the time-stamps inscribed by traffic sources
that are not synchronized with other nodes. The key idea
is that, based on the latency bound value provided by the
network, the first packet of a flow is buffered long enough to
make sure that the inter-departure times of all the subsequent
packets of the flow are similar to their inter-arrival times.
While the time-stamps are usually used for latency/jitter mea-
surement [12], [29] or clock synchronization [20], [21], in this
work we use it as the primary tool for jitter bound guarantee.
It is proven that this framework can guarantee a jitter upper
bound of any desired amount, even zero jitter. It is also proven
that the framework still guarantees latency upper bounds as
well.

We examine the network solutions, which are able to
guarantee latency bounds, to include into the proposed
framework. We then analyze and compare the latency and
jitter performances of the proposed framework with the
TSN framework. The insight we gain through the analysis
is twofold. First, the isolation of critical packets or flows
from the bursts of other traffic is essential for latency and
jitter minimization. The work-conserving fair schedulers are
shown to be good at the isolation of the flows. Second,
the non-work conserving nature of the slotted operation is dis-
advantageous to both the latency and the jitter performances.
Such analytical results are confirmed with the simulations.

In Section II, we describe the proposed framework and
explain its properties. It is shown that even zero jitter
can be guaranteed with the framework. In Section III,
a brief background of various networks for latency guarantee
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is given. In Section IV, the detailed descriptions on themodels
for networks mentioned in the previous section are given.
In Section V, an analysis of an example network with light
load is given for a case study. The performances of existing
solutions for latency guarantee are compared based on the
simple exemplary network. Based on the latency upper bound
values, we suggest the jitter bound values achievable with
each solution. We validate the analysis with simulations in
Section VI. The conclusions and the future works are given
in Section VII and VIII, respectively.

II. PROPOSED FRAMEWORK FOR JITTER BOUND
In this section we describe a novel framework for jitter
upper bound guarantee. The framework requires a network
that guarantees latency upper bounds; packets with relative
time-stamps inscribed with the clock of the source, or of the
network ingress interface, not necessarily synchronized with
the other nodes; and a buffer before a destination, which can
hold the packets destined for the destination for a predeter-
mined interval. Figure 1 depicts the overall architecture of the
proposed framework. Only a single flow is depicted between
the source and the destination in Figure 1. The arrival (an),
departure (bn), and buffer-out (cn) instances of nth packet of
a flow are depicted. The E2E latency and the ‘E2E buffered
latency’ are defined to be (bn-an) and (cn-an), respectively.

FIGURE 1. Architecture of the proposed framework for jitter bound.
Packets’ arrival (an), departure (bn), and buffer-out (cn) instances of
nth packet of a flow are depicted. E2E latency (bn-an) and E2E buffered
latency (cn-an) should not be confused with each other.

The buffer is assumed to support as many as the number
of the flows destined for the destination. In cases where the
buffer is not suitable to be placed within an end station,
the network can attach the buffering function at the boundary.
The destination in Figure 1 can also be a small deterministic
network, like a TSN synchronous network.

We assume there is a mechanism for time-stamping
the arrival instances to the packets. One may use the
time-stamping function in the RTP over UDP, or TCP. Either
the source or the network ingress interface may stamp the
packet. In the case that the source stamps, the time-stamp
value is the packet departure instance from the source, which
is only a propagation time away from the packet arrival
instance to the network. Note that the source and the desti-
nation need not to share the synchronized clock. All we need

to know in the proposed framework is the differences between
the time-stamps, i.e. the information about the relative arrival
instances.

We also assume the latency upper bound of the flow is
guaranteed by the network. Let’s denote it with U. We also
assume that a latency lower bound is provided by the network
to the flow, which is denoted by W. The lower bound W
may be contributed from the transmission and propagation
delays within the network. The buffer holds packets in a flow
according to predefined intervals. The decision of the buffer-
ing intervals involves the time-stamp within each packet as
the following.

Let the arrival instance of nth packet of a flow be an.
Similarly let bn be the departure time from the network, of
nth packet. Then a1 and b1 are the arrival and departure
instances of the first packet of the flow, respectively. The first
packet of a flow is defined to be the first packet generated
by the source, among all the packets that belong to the flow.
Let’s say m is some value between W and U, W ≤ m ≤ U.
Let us summarize the symbols used in this section in Table 3.

TABLE 3. Mathematical symbols for the framework description.

The basic rule for the buffer holding interval decision is
given as follows.

Rule for the buffer holding interval:
• The buffer holds the first packet with the interval (m −
W), for some m, W ≤ m ≤ U. The buffer-out instance
of the first packet c1 is then (b1 +m−W).

• The buffer holds nth packet until the instance
max{bn, c1 + (an − a1)}, for any n > 1.

The second rule implies that a packet should be held in
the buffer to make its inter-buffer-out time (cn − c1) equal
to the inter-arrival time (an−a1). However, when its departure
from the network is too late, thus the inter-buffer-out time
should be larger than the inter-arrival time, then just pass the
buffer (cn = bn).
These two rules can be elaborated as the following.
Feasibility of the Algorithm 1: The buffer requires infor-

mation on W, U, b1c1, bn, and (an − a1). We assume that
W, U are informed by the network. The knowledge about b1
and bn are easily obtained by the buffer with its own clock.
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Algorithm 1 Buffer Holding Interval Decision
01: procedure BUFFER(m, PKT)

Bm is a preset value based onW, U, and the jitter bound
B W ≤ m ≤ U

BPKT is a packet just received by the buffer
02: if first packet in the flow then
03: hold the packet with the interval (m-W)
BThe buffer-out instance of the first packet c1 is then
(b1 +m−W)

04: TRANSMIT the packet at the decided instance
05: while there is a packet already arrived before the first

packet
06: hold the packet until the instance max{bn, c1+(an −a1)}

BLet’s say this is nth packet, n>1
07: TRANSMIT the packet at the decided instance
08: end while
09: else if the first packet has already arrived then
10: hold nth packet until the instance max{bn, c1+ (an − a1)}

BLet’s say this is nth packet, n>1
11: TRANSMIT the packet at the decided instance
12: else wait for another packet arrival
13: end if

The buffer has to keep the record of the time instance c1.
Finally the time difference (an − a1) can be calculated from
the difference of the time-stamps of the packets, which have
been written at the source. Note that the source clock does not
have to be synchronized with the buffer clock, i.e. the buffer
does not need to know the exact values of an or a1.
The implementation of the line 6 and 10 in Algorithm 1 is

feasible since max{bn, c1+(an − a1)} is greater than or equal
to bn, the packet departure instance of the nth packet from the
network, by definition.

The buffer has to be able to identify the first packet of
a flow, in order to identify the instance b1 and the relative
time-stamp values representing a1. If a FIFO property is
guaranteed in the network, then this is trivial. Otherwise, this
is achievable by a flag at the header, indicating the packet
is indeed the first packet. A sequence number written in the
packet header, such as the one in RTP, would work as well.
In networks without the FIFO property guarantee, if some of
the earlier packets (e.g. 2nd or 3rd packets of a flow) arrive
to the buffer sooner than the first packet, than they will be
buffered until the first packet’s buffer-out plus the additional
interval, as specified in the algorithm.

Figure 2 depicts the relationships between the arrival,
departure, and buffer-out instances of packets of the flow
under observation.

The following theorems hold.
Theorem 1: (Upper bound of the E2E buffered latency).

The latency from the packet arrival to the buffer-out instances,
(cn − an), is upper bound by (m+ U−W) .

Proof: By definition,

cn − an = max {bn, c1 + (an − a1)} − an

FIGURE 2. Relationship of packets’ arrival (an), departure (bn), and
buffer-out (cn) instances.

= max {bn − an, b1 + m−W − a1}

= max {bn − an,m−W + (b1 − a1)}

≤ max {U ,m−W + U} = m−W + U ,

since bn − an ≤ U for any n, and m ≥ W. The theorem
follows.
Theorem 2: (Lower bound of the E2E buffered latency).

The latency from the packet arrival to the buffer-out instances,
(cn − an), is lower bounded by m.

Proof: By definition,

cn − an = max {bn, c1 + (an − a1)} − an
= max {bn − an,m−W + (b1 − a1)}

≥ max {W ,m−W +W } = m,

since bn − an ≥ W for any n, and m ≥ W. The theorem
follows.

Now let us define the jitter, or the latency difference
between a pair of packets, as follows.
Definition : (Jitter). The jitter between the ith packet and

jth packet of a flow is defined to be rij = | (ci − ai) −(
cj − aj

)
|.

Theorem 3: (Upper bound of the jitter). The jitter is upper
bounded by (U-m).
Proof: Let’s define rn = rn1 = (cn − an) − (c1 − a1) .

Remember that c1 = (b1 + m −W) and cn = max{bn, c1 +
(an − a1)}. From the definition,

rn = (cn − c1)− (an − a1)

= max {bn − c1, an − a1} − (an − a1)

= max {bn − c1 − (an − a1) , 0}

= max {bn − b1 −m+W− (an − a1) , 0}

= max {(bn − an)−m+W− (b1 − a1) , 0}

≤ max {U − m+W −W , 0} = U − m, since U ≥ m.

The jitter between packets i and j, rij, can be rewritten such
as rij = | (ci − c1) − (ai − a1) −

(
cj − c1

)
+
(
aj − a1

)
| =

|ri− rj|. Since 0 ≤ ri ≤ U−m and 0 ≤ rj ≤ U−m, the jitter
rij ≤ U −m, for any i, j > 0. The theorem follows.
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Example :Now, let’s saywe have a flow requesting the E2E
buffered latency bound of 10ms, and jitter bound 1ms. Then
from Theorem 1, (m+U−W) = 10ms, and from Theorem 3,
(U − m) = 1 ms. Based on these equations we obtain
U = 5.5ms+W/2 and m = 4.5ms+W/2. As such, during the
call setup process, upon the flow’s requested specifications,
the network and the buffer may assign U = (5.5ms +W/2)
of the actual E2E network latency upper bound, and
m = (4.5ms+W/2) parameter for the buffering.

As an extreme case, if one wants to achieve an absolute
synchronization, i.e. the inter-departure times of the output
packets (cn − cn−1) are exactly the samewith the inter-arrival
times (an − an−1), then one may set the jitter to be equal
to zero. In this case we can achieve this synchronization by
setting m = U, i.e. by holding the first packet long enough
that the E2E buffered latency certainly exceeds the U. Then
the buffered latency upper bound becomes 2U-W, which is
close to 2U when W is negligible. Note that letting m = U
does not always mean the E2E buffered latency becomes 2U.
It is just the upper bound in the worst case in which the first
packet had already experienced the latency U in the network.

III. NETWORK SOLUTIONS FOR LATENCY GUARANTEE
In this section we review the works related to the latency
guarantee or, more generally, quality of service (QoS) control
mechanisms researched over three decades. We also examine
the possible candidates for adopting as the solution for latency
guarantee network necessary in our framework.

The flow-based approaches such as the integrated services
(IntServ) framework, or more specifically its Guaranteed
Service framework, has been known to provide the latency
bound guarantee [30], [31]. However, the IntServ’s packet
scheduling complexity is proportional to the number of flows,
which grows to millions in core networks. This scheduling
complexity prohibits the IntServ from being implemented in
real networks.

The differentiated services (DiffServ) framework provides
relative performance differentiation with 8 or 32 queues for
each priority class [32]. Flows belonging to a class are put
into a queue. The queues are served with strict priority.
Because of such simplicity, The DiffServ has been adopted
in the current Internet. However, the maximum burst of a
flow increases according to the sum of all the flows’ max
bursts within a queue. When there is a cycle in a network,
the max burst grows to infinity, so does the latency bound.
Therefore, the DiffServ framework does not provide a latency
bound in a general topology network. Recently it has proven
that a network that can be modelled as a multi-stage switch
without a cycle can guarantee latency bounds, if work-
conserving schedulers are used and input traffic is properly
regulated [33].

There are efforts to suppress the burst accumulation
caused by the flow aggregation, with interim regula-
tors [34], [35]. [34] pioneered the flow regulation in a
node to suppress the burst accumulation. [35] has devised
a fair scheduler that works as a regulator at the same time.

IEEE 802.1 TSN also has standardized multiple shapers,
or synonymously regulators, although their roles and aims are
slightly different from each other. The TSN standard aims to
guarantee latency upper bound in single domain networks,
therefore in relatively small scale networks. The P802.1Qcr
asynchronous traffic shaping (ATS) technique [36] presented
in TSN employs an output port, with interleaved regulators
(IR) per input port and a strict priority class-based FIFO
queuing system side by side. IR is a single queue system
that examines the packet at the head of the queue (HOQ),
and lets it leave as soon as it is qualified according to the
regulation rule of the flow the packet belongs to. The rest of
the packets in the queue are held until the HOQ packet leaves,
even if they are already qualified. However, it is proven
that a minimal IR does not increase the delay upper bound
of the attached FIFO system, such as the class-based FIFO
queue employed in TSN [37]. The ATS framework requires
an IR per input port at every output port of every node. The
regulation at every node, because of its non-work conserving
characteristic, degrades the probabilistic performance, such
as the average delay. It also implies increased implementation
cost.

The IntServ, the DiffServ, and the TSN ATS deal with
the latency upper bound, but they do not provide the jitter
bound guarantee. TSN task group has standardized multiple
functional components for jitter-sensitive services. Among
them, the 802.1Qbv time sensitive queues (also known as the
Time Aware Shaper, TAS), and 802.1Qch cyclic queuing and
forwarding (CQF) are built for jitter minimization as well as
latency guarantee.

The TAS defines the ‘‘gate’’ to each queue. The gates
are either open or closed on a time slot. Multiple gates
may open simultaneously. In such a case the strict priority
scheduling applies to the open queues. A central network
controller (CNC) determines which gates to open andwhen to
open. CQF function coordinates the slot openings in adjacent
nodes, such that flows traversing the nodes experience the
minimum latency. Based on these functions, TSN supports
a model for deterministic packet services. In this work we
will call these functions collectively as the TSN synchronous
approach. The TSN synchronous approach requires three
major efforts; 1) the time synchronization along the nodes
in the network, 2) the slot scheduling and coordination by a
central entity, and 3) feasibility test for flow admission con-
trol. These requirements significantly impact the scalability
of a network. The detailed operation of the TSN synchronous
approach is described in Section IV.A.

Recently it was proposed and standardized, in ITU-T
SG13, a hybrid approach between the IntServ and the TSN
ATS [38], [39]. It aims for the latency bound guarantee
in large-scale networks. Within an aggregation domain the
flows are aggregated into a flow aggregate (FA) accord-
ing to their input/output port pair, or additionally according
to flows’ requirements and characteristics. The FAs are
treated with separated queues and fair-queuing sched-
ulers, thus maintaining the FIFO property throughout the
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aggregation domain. Then at the boundary of the aggregation
domain the minimal IRs per FA are placed for the burst
suppression. See Figure 3. We call this approach the FAIR
(flow aggregate & interleaved regulator) framework. The
FAIR is proven to guarantee latency upper boundwithmodest
complexity in large scale networks. It was shown that the
FAIR even performs better than both the IntServ and the ATS,
in symmetric network topologies [38]. The detailed operation
of the FAIR is described in Section IV.C.

FIGURE 3. The Flow aggregate-interleaved regulator (FAIR)
framework [38].

IV. MODELING OF THE SOLUTIONS FOR LATENCY
GUARANTEE
In this section we review the detailed features of three dif-
ferent solutions for the latency guarantee network, namely
the TSN synchronous approach, the DiffServ, and the FAIR
framework. Then the three solutions are modeled to be used
in the case study of Section V, where the latency upper bounds
of the three solutions are analyzed.While theDiffServ and the
FAIR are relatively simple to understand, the TSN has a lot of
features and parameters to configure. The parameters related
to the slot and cycle operations are carefully examined. The
purpose of this section is twofold. First, it is to examine
the feasibility of adopting the solutions as a component of
the proposed framework. Second, it is to develop the accu-
rate simulations setup. The simulation results are described
in Section V.

A. THE TSN SYNCHRONOUS APPROACH
A TSN node’s output port is essentially a combination of
1) flow reservation and regulation functions, 2) IR per input
ports, 3) class based queues, 4) credit-based shapers which is
a combination of a starvation-prevention function and a burst
accumulation prevention function, for higher priority classes
queues, 5) gates that selectively open/close the queues based
on time slot, i.e. 802.1Qbv time-aware shaper (TAS), and
6) strict priority scheduler, and finally 7) frame preemption
for express class traffic. See Figure 4.

Additionally, 8) the selective openings of the queues are
synchronized and coordinated among successive nodes, i.e.
802.1Qch cyclic queuing and forwarding, for the best per-
formance of the network. The coordinated openings of the
queues, or the coordinated ‘slot scheduling’, are controlled
by a central network controller (CNC) in the network.

These components can be selectively combined and imple-
mented, according to service specific requirements. For
example, components  ®± only may be combined together
and can guarantee latency upper bound in any topology net-
work. We will denote the TSN ATS as such a combination.

FIGURE 4. Illustration of an output port of a TSN node and its functional
entities.

Another example combination may include ®± only. This
combination represents essentially the DiffServ framework,
and can guarantee latency upper bound in network topologies
without cycles, such as tree networks. We will denote this
combination as the DiffServ. Yet another example, including
®°±³ only, is a coordinated gate opening scheme, which
is the core of the TSN standard, and can be called the ‘TSN
synchronous approach’ collectively.

Basically there is no limitation on the slot start time and
the length, in general slot scheduling problems. Only the
implementation complexity prohibits the degree of flexibility
of slot generation. Let us examine how TSN suggests in this
problem. Figure 5 depicts the simplified logic of the output
port specified in the 802.1Qbv TAS function. Each switch
output port has 8 priority queues, and the arriving flow enters
different queues according to the priority or the service policy.
All the slots have a fixed length. The slots for the queues
are synchronized, i.e. the slot intervals exactly overlap. Each
queue has a gate (G in Figure 5). Gate control list (GCL)

FIGURE 5. The Traffic aware shaper (TAS) with gate control list (GCL).
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governs the gates’ open or closing at every slot. With the
value 1, we represent the gate of the queue is open, and
the flow in the corresponding queue can be transmitted; and
with 0 we mean it is closed. Note that more than one gate can
be open in a slot. Gate control list (GCL) is a finite list, and
this list repeats with a cycle, so the gate will be open/closed
periodically according to the cycle.

Usually in the 802.1Qbv TAS, GCL is cycled according
to a ‘hyper period’ based on the least common multiple of
all the periods of the flows, regardless of the queues they
belong to. For example, if we have three flows with period 3,
4, and 6, in any number of queues, then the hyper period has
twelve slots. In this case, once in every twelve slots all three
flows’ gates can be open simultaneously. The size of the hyper
period thus GCL is usually very large when there are many
flows, which increases the complexity of slot scheduling [40].

Note that based on the GCL, the slot length in 802.1Qbv
for all the queues are the same fixed value. How long the
slot should be is an open question in each implementation in
different circumstances. It should be set at a balanced point
in between the complexity and the precision. At an extreme
it can be as short as a byte. Consecutive slots, as many as the
bytes count of a packet, must be open for a packet to be ser-
viced. One may see those consecutive slots a single ‘variable
length’ slot. In such a case the cycle period would be too long,
and the scheduling too complex. Maybe a different method
for the slot assignment description than the GLC should be
used in this extreme case. At another extreme the slot can
be as long as to accommodate all the maximum bursts from
all the input ports. This may be a feasible implementation
and the most deterministic in its operation. However, a long
slot inevitably yields a long interval between the open slots,
which results in increased latency when the input bursts are
dispersed evenly over time. It is a well-known drawback of
the TAS that unsynchronized input flows have to wait for the
next slot opening. It was also shown, through a hardware-
based experiment with a star-topology 3-hop TSN network
with the TAS and the CQF, that the average latency and the
jitter increase as the slot length increases [41].

Once the length of the slot is decided, then the next ques-
tion is when to open the gates. At one extreme, if all the
queues are always open, then the whole node works as a
strict priority scheduler. At the other extreme, if the queues
are strictly open one at a time, in a round-robin fashion, then
the whole node works as a time-division multiplexing (TDM)
scheduler. In some sense, the TSN network can be consid-
ered as a set of TDM nodes with strict priority scheduler,
with a flexible slot-scheduling policy specified by a central
controller.

For a flow, if the cascaded nodes are successfully coordi-
nated, the queue assigned to the flow may open as soon as its
packet arrives at a node, and this may happen at every node
for every packet in the flow. This will be the best case for a
flow, and the intended operation of TSN 802.1Qch CQF. This
optimal scheduling is feasible in small networks with low
utilization with static flows and topology. On the other hand,

the queue for a flow may be closed just before the arrival of
the packet of the flow, at every node for every packet. This
will be the worst case. It is easy to see that the slot scheduling
plays the key role in the TSN network performance.

The slot scheduling techniques usually focus on, however,
the optimization of the flow acceptance ratio therefore the
overall revenue of the network. The optimization of a specific
flow’s performance is not the primary objective. As such,
we can expect a treatment to flow somewhere in between
the best case and the worst case described above. We model
the TSN synchronous approach to work as follows. First, the
lengths of the slots are different at each node and is
set according to the maximum input burst into the node.
Second, the nodes are synchronized and coordinated, such
that immediately after the slot completion at an upstream
node the adjacent downstream node’s slot starts.

B. THE DIFFSERV
The DiffServ framework can be modelled with class-based
queues and the strict priority scheduler. With the TSN’s con-
text, the DiffServ is composed of the components  and °
in Figure 4. Additionally, we assume for simplicity that every
lower priority traffic can be preempted with any of higher
priority packets.

C. THE FAIR FRAMEWORK
In the FAIR framework [38], the whole network is divided
into a few aggregation domains (ADs), and the flows that
share the same {input, output port} pair to/from an AD are
aggregated into a flow aggregate (FA). The FIFO property of
the FA within the AD has to be preserved. Minimal IRs per
FA are implemented at the boundary of the AD.

The minimal IRs at any ‘system’ boundaries suppress
the burst accumulations with the latency upper bounds
intact [37], given the conditions below are satisfied:

(1) Every flow into a ‘system’ conforms to an arrival curve
with parameters {average arrival rate, maximum burst size}.

(2) The system preserves the packets’ FIFO property.
(3) The IR regulates every flow to reproduce the arrival

characteristics at the ingress of the system.
(4) (Minimal IR) IR transmits immediately when the

packet at the head of the queue meets the output condition.
Such IR is called a minimal IR.

(5) IR provides zero latency, including transmission
latency, for packets satisfying output conditions.

Note that the condition (5) is inferred from
Theorem 3 in [37]. It is a necessary condition for (4) as
well. Theorem 3 of [37] states that the latency bound of a
FIFO system is not increased by the attached minimal IR.
In order for Theorem 3 holds for the packet that experiences
the maximum latency in the FIFO system, the minimal IR has
to provide the zero latency. A look-ahead function and a cut-
through capability are necessary for actual implementation of
a minimal IR.

In the TSN ATS, the ‘FIFO system’ in which these con-
ditions are met is an in/out ports pair of a switching node.
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In contrast, the FAIR framework extends the FIFO system to
an AD. The FAIR framework works as the followings, based
on the conditions described above:
• Flows are categorized into high priority and low priority.
• Low priority flows are put in a single FIFO queue at
the output port of all the nodes and scheduled in strict
priority mode with, preferably, preemption.

• High priority flows are handled as follows.
– The network is divided into several ADs.
– Within an AD, the flows with the same {input,

output port} to/from the AD are aggregated into a
single FA.

– In a node, a fair queuing-based scheduling is per-
formed per FA with a queue for each FA. This
operation lets the AD, for an FA, become a FIFO
system in Condition (2) above.

– Minimal IRs per FA are placed at the boundaries of
ADs. See Figure 3 in Section III.

– Only the flows conforming the initial arrival char-
acteristics or the flows from the IR are accepted to
an AD.

For a small network, the whole network can be a single
AD, thus the IRs may be omitted, as in the case study of the
following section.

V. CASE STUDY
We consider a simple network with a set of small number
of time sensitive flows, which is similar to the one originally
analyzed in [42], [43]. It is also similar in terms of structure to
the prototype Ethernet network developed by an automotive
OEM [44].

The traffic ismade up of three classes whose characteristics
are summarized in Table 4. ADAS stands for advanced driver
assistant system, in the table. Characteristics of the flows and
their proportions are the same as in [42], [45] and inspired
from the case-studies provided by [46], [47].

TABLE 4. Characteristics of the three types of traffic used in [46], [47].

The video flow emits a larger burst compared to the other
types of flows. The number of C&C flows are more than
double the number of the other two types of flows combined.

We have further simplified the flows characteristics such
that the Audio flows (A flows) emit 256byte packet every
1.25ms, Video flows (V flows) emit 30∗1500byte bursts with
33ms period, and C&C flows (C flows) emit 300byte packet
every 5ms. Four A flows and a V flow (red curve) share the
route, so do 20 C&C flows, as depicted in Figure 6.

FIGURE 6. Network topology and the flows in the case study.

Link Capacity for all the links are set to be 1Gbps, which
is common with Gigabit Ethernet nowadays. With the nota-
tion for a flow {Packet length, Max burst, Arrival rate},
Audio flow’s parameter set is {256B, 256B, 256B/1.25ms}∼
{2Kbit, 2K, 1.6Mbps}, Video flows’ parameter set is {1500B,
30∗1500B, 30∗1500B/33ms}∼ {12Kbit, 360Kbit, 11Mbps},
and C&C flows’ parameter set is {300B, 300B, 300B/5ms}
∼ {2400bit, 2400, 480Kbps}. It is summarized in Table 5.
In the studied case, the total arrival rate is well below the link
capacity. It is 5.4% of the link capacity. It is not uncommon
that the high priority traffic occupies only a small fraction of
the link. The case study with high utilization is partly covered
in Section V.E.

TABLE 5. Traffic types and their approximated flow parameters used in
the case study.

The packet length, maximum burst size, and the period of a
flow are fixed. The only randomness that can be introduced in
the analysis is the start time of the period, or the phase. The
input traffic phase usually cannot be controlled in general.
Since we are interested in the worst case scenario, however,
we only consider the input pattern that produces the worst
performance of the network. We consider the case that all
the flows’ periods (or the burst arrivals) start exactly at the
same time. The packet under observation arrives last among
the burst.

Given the topology, the input flows, and their destination;
we will consider three types of solutions that all guarantee
latency bound. They are the TSN synchronous approach,
the DiffServ, and the FAIR framework. The three types of
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traffic are assumed to have the same high priority. We will
observe each flow and their latency upper bounds. We will
show that the DiffServ and the FAIR framework, with the
buffers at the boundary, work as well as or even better than
the sophisticated TSN synchronous approach.

A. LATENCY BOUND WITH THE TSN SYNCHRONOUS
APPROACH
We follow the model in Section IV.A. We assume that the
propagation delay at every link is negligible. We assume for
simplicity, that any lower priority traffic is preempted by
the higher priority traffic. In order to minimize the latency,
we also assume that the slots are of variable length. The
slots for high priority traffic have to open according to the
input burst amount of the high priority traffic. The slots in
cascading nodes are synchronized and coordinated such that
right after a node’s slot completion, the downstream node’s
slot is open. The slots in neighbor nodes do not overlap so
that every packet in an upstream node can be served in the
downstream node’s slot right after its service completion in
the current node.

The detailed slot assignments at each node are depicted
in Figure 7. The inter-arrival intervals for A, V, and C flows
are 1.25ms, 33ms, and 5ms, respectively. The hyper-period
of the slot assignment is therefore 165ms, based on the
least common multiple of these three intervals. Note that
in Figure 7, the slots are used by either A only, A&C only,
and A, C, & V together, in the first three nodes. For example,
the A flows collide with the C flows every four slots, and
share the slot. Also note that there are slots used for the other
combinations of flows, which are not depicted in Figure 7.

FIGURE 7. Periodic slot assignments for each node in the TSN
synchronous approach, with the hyper-period of 165ms.

The precise variable length slots used in our model may not
be easily attained by the current TAS implementations with
the GCL that is a simple record of 0/1 on fixed length slots.
A coarse fixed length slot assignment imposes a loose latency
bound. The slot assignment policy in our model can be seen
as the optimum yet complex implementation of TAS.

The worst case packet latency for C&C flows is analyzed
in Figure 8. At the 1st node, the slot is long enough to
just accommodate the maximum burst. The worst packet’s
arrival is a little behind all the other bursts. (We mean by

FIGURE 8. The worst case scenario of C&C flows in the TSN synchronous
approach with the variable length slot scheduling. The latency is 1.712ms
in this scenario.

the ‘worst packet’ the packet experiences the worst latency.)
It has to wait the whole burst’s service (or synonymously
transmission) time. At the 2nd node, the slot is long enough
to just accommodate the maximum burst, and is perfectly
synchronized with the 1st node. But the arrival of the worst
packet is just behind all the burst from the other input port.
At the 3rd node’s upper output port, the slot length can be as
short as the 1st node. The worst packet’s service time is at the
last of the slot. At the 4th node, the slot can be as short as the
twenty C flows’ burst transmission time. The worst packet is
served last within the burst.

As we have seen the worst case scenario in Figure 8,
even with the perfect slot assignment, the latency bound
is 1.712ms.

Similar arguments can be applied to the worst case analysis
for the audio or video flows. Their latency upper bounds are
identical at 2.032ms.

Now, let us consider the case where the C&C flows and
their queue have a higher priority than the A or V traffic.
Assume that the strict priority scheduler can preempt the
lower priority packets. Then the C&C flows are treated as
if there is no other traffic. The slot length can be as small as
the twenty C flows burst at 1st and 3rd, and 4th node, and the
forty C flows burst at 2nd node. The latency bound in this case
is 0.24ms.

B. LATENCY BOUND WITH THE DIFFSERV
The DiffServ framework uses the class-based queuing and
strict priority scheduling. It also uses resource reservation and
admission control for high priority traffic, such that the link
capacity at every output port does not exceed the total input
arrival rate of that port. In the studied case, the total arrival
rate is well below the link capacity. It is 5.4% of the link
capacity. The TSN, and the original 802.1Q itself is based on
the DiffServ architecture implemented in Layer 2 network.

We assume for simplicity, that the three types of traffic
share a single queue. If they are placed in separate queues, and
if C&C flows have higher priority than A/V flows, the perfor-
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mance of the flow under observation would be much better.
We further assume, as in the TSN synchronous case, the lower
priority traffic is preempted, again for analysis simplicity.
By these assumptions it is equivalent to the case that the
scheduler has only a FIFO queue. If the queues are separated
according to the traffic types, the C&C flows would be served
with a higher priority, thus have a lower latency.

The worst case in strict priority scheduler, or any other
work-conserving packet scheduler, happens when the maxi-
mum burst of packets from all the flows arrive almost simulta-
neously, and the packet under observation arrives last among
them. This is the case analyzed in Figure 9.

FIGURE 9. The worst case scenario of C&C flows with strict priority
scheduling. The latency is 0.8584ms in this case. The dotted lines and light
blue boxes denote the worst case of TSN synch. approach in Figure 8.

At the 1st node, the maximum burst from all the flows
arrives at once. The worst packet’s arrival is just a little
behind all the other bursts. It has to wait the whole burst’s
service (or transmission) time. At the 2nd node, the service
starts immediately after the first packet’s service completion
at the first node. This is natural with a work-conserving
scheduler. Therefore, we should make the 2nd node’s service
start instance to be as late as possible to build the worst
scenario. This happens when the first packet is the maximum
length packet. The arrival of the maximum burst from the
other node happens at the same time. Therefore, the worst
packet is served last among the packets from the two input
links. Considering the 1st and 2nd nodes together, the com-
bined worst latency through two nodes is (the max length
packet + total burst) service time.
At the 3rd node’s upper output port, there is no more cross-

ing traffic with the flow under observation. We argue that any
packet in this case, after arrival, is servedwithin themaximum
length packet’s service interval, which is 1500byte video
packet service interval. Consider a minimal sized packet that
arrives at the 3rd node right after the maximum length packet,
without input link idle. We can think the arrival instances of
both packets are almost identical. The minimal sized packet’s
service starts at the instance the max length packet’s service
completion. The service completion of the minimal packet is

also almost identical to the max packet’s service completion.
Therefore, the minimal packet has also been delayed as long
as the max packet’s service interval. A similar argument
applies to a packet with any length. We omit the argument
for the readability of the paper. At the 4th node, there are only
C&C flows, which have the same fixed length packets. The
packets depart exactly as they arrived, because the transmis-
sion times of a packet in the different links are the same.

As we have seen the worst case scenario in Figure 9, with
the strict priority scheduling with preemption, the latency
bound is 0.8584ms, which is less than the one with the TSN
synchronous approach. Similar arguments can be applied to
the worst case analysis for the audio or video flows. Their
latency upper bounds are identical at 0.868ms.

Now consider the case where the C&C flows have a higher
priority than the A and the V traffic. Assume that the strict
priority scheduler can preempt the lower priority packets.
Then the C&C flows are treated as if there is no other traffic.
With a similar argument with the one in Figure 9, we obtain
the latency bound 0.1032ms.

As it is now clear, that the inferiority of the TSN syn-
chronous approach in the case study comes from the fact that
the slot assignment is on the burst level, i.e. every node should
wait until the slot, ormax burst, service of the previous node is
finished. In the strict priority scheduling, the next node may
have to wait at most the maximum length packet’s service
time. Considering this fact, it may be possible to improve the
synchronous approach with a finer (e.g. packet) granularity
slots, if the network topology and traffic pattern are simple
enough for the schedulability test to be feasible.

C. LATENCY BOUND WITH THE FAIR
The core of the FAIR framework is the aggregation of flows
based on input/output port pair. It may have more aggrega-
tion criteria, such as the traffic specification and required
performance, but in this study the aggregation based on ports
pair also makes the same traffic types to be aggregated into
a FA. Since the FAs do not need to be segregated, the minimal
IRs are not necessary in this topology.

Note that the separation of FAs for different traffic types,
thus separation of queues, does not imply the priority dif-
ferentiation among the traffic types. The queues are served
fairly and accordingly to its total arrival rates. In this study
we employ the deficit round robin (DRR) scheduler at every
node. DRR is relatively simpler than the ones with ‘virtual
service time’ based schedulers such as the packetized gen-
eralized processor sharing (PGPS) scheduler, yet the latency
performance is acceptable. It is also known to preserve the
fair share of the competing queues [48].

The graphical analysis in the previous subsections does
not work well with the DRR. Instead we adopt the notion of
Latency-Rate (LR) server [49] and its known properties. The
DRR is the representative round-robin LR scheduler.

The four nodes that the flow under observation passes
through, can be considered as a single scheduler with the
total latency that is the sum of the latencies of all the four
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nodes, according to the LR server property. This property
is interpreted as ‘‘pay burst only once’’. Table 6 lists the
symbols used in this analysis.

TABLE 6. Mathematical symbols in the case study.

Formally stating, if the flow i traverses only the LR sched-
ulers Sj in its path (with total k LR schedulers), then the
end-to-end latency experienced by the packets in the flow is
bounded by the following inequality [49].

Di ≤
σi − Li
ρi
+

k∑
j=1

2
Sj
j . (1)

The latency (written in italic) defined in LR server concept
is a different term used elsewhere in this work. Latency in
non-italic is synonymous to delay. Latency of a scheduler
in LR server can be interpreted to be a maximum interval
a flow may have to wait, from the start of a busy period,
to be served with its allocated service rate. The packetized
generalized processor sharing (PGPS) is an ideal but complex
LR scheduler. PGPS’s latency is given as follows [49].

2PGPS
i =

Li
ρi
+
Lmax
r
. (2)

The latency of a DRR scheduler, in case the quantum
values may be smaller than the max packet length, is given
as follows [50].

2DRR
i =

1
r

[
(F − ϕi)

(
1+

Li
ϕi

)
+

∑N

n=1
Ln

]
, (3)

where F is the sum of all quantum values (ϕi) of active
flows in the scheduler, and N is the number of active flows.
Quantum refers to the amount of data serviced at one time,
which is determined in proportion to the service rate allocated
to each flow [48]. Note that the latency of DRR is a function
of the sum of all the flows’ max packet lengths, while the
latency of PGPS is only affected by the maximum packet
length overall. Therefore, the latency of DRR is affected
by the number of the other flows. It would be preferable
to use the PGPS in cases where the complexity of PGPS is
acceptable.

In this case study we assume that the flows with the same
traffic type and the same input/output port are aggregated
into s single FA. There are six such FAs in the network for
the case study. An FA is allocated to a separated queue. The

queues in a node are served by DRR with the input rates
proportional to the quantum values; 128bit for the four flows’
Audio FA (total 6.4Mbps), 220bit for the single flow’s Video
FA (11Mbps), and 192bit for the twenty flows’ C&CFA (total
9.6Mbps). The sum of the quantum values, F in (3), is 540 for
example in the 1st node. Solving (3) for each node, we get
21st node
i = 21.1us,22nd node

i = 44.8us,23rd node
i = 21.1us,

and23rd node
i = 2.4us. From (1), we get the latency bound to

be 0.2164ms. Note that for the C&C FA the max burst size is
equal to the twenty times of the max packet length.

Similar arguments can be applied to the worst case analysis
for the audio or video flows. Their latency upper bounds are
0.1391ms and 1.024ms, respectively. Note that the bound of
audio flows is lower than that of C&C flows, since they have
less number of flows and less amount of maximum burst
within a flow aggregate. The bound of the video flows is
larger, again because of its larger maximum burst. It is note-
worthy that the FAIR framework isolates the flows from the
other types of flows and their bursts, with separated queues
per FA. Therefore, the FAIR is able to differentiate the latency
bounds for each flow type. Observe that (1) or (3) does not
include the max burst term of the other types of flows.

The three frameworks’ latency bounds for the C&C
flow is summarized in Table 7. Among the solutions with
the same priority assignments to A, V, and C traffic,
the FAIR framework’s upper bound is the lowest. The results
in Tables 7 and 8 are accurate since they are from the exact
analysis. The latency bounds provided by all three solutions
are within the required deadline of 5ms. Giving higher pri-
ority to C&C flows greatly helps reduce the latency bounds
both for the TSN and the strict priority scheduling.

TABLE 7. Latency bounds for C&C flows with different frameworks.

The three frameworks’ latency bounds for each type of
flows are summarized in Table 8. The audio and video flows’
bounds by all solutions are also within the required deadlines.

D. JITTER CONTROL WITH EACH SOLUTION
We consider the problem of guaranteeing a jitter bound with
the network solutions in the case study. For the C&C flow,
either the FAIR or the DiffServ solution can be the network
of choice.

The FAIR can guarantee 0.2164ms latency upper bound.
Therefore, the parameter U is equal to 0.2164ms. The sum of
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TABLE 8. Latency bounds for Each flows with different frameworks.

the packet transmission time in four nodes is 4 times 2.4µs,
which is the latency lower bound, the parameter W is equal to
9.6µs. If we let the parameter m in Section III to be equal to
U, 0.2164ms, then from Theorem 1, the E2E buffered latency
upper bound is (m+U-W), which is equal to 0.4304ms and
the jitter bound is U-m, is equal to 0. We can achieve a per-
fect synchronization without time-synchronization functions
specified in the TSN standard, while meeting the latency
bound requirements (10ms in this case) by a wide margin.

Note that CPRI is expected to maintain the maximum end-
to-end latencies less than 100-250µs [5], [6], jitter within
65-100ns [6], [7], in 10G Ethernet network. Scaling down to
a 1G network, we infer about 1∼2.5ms latency bound and
0.65∼1µs jitter bound. If we let the jitter bound to be 1µs,
then again from Theorems 1 and 3, with the FAIR framework,
m = U-1us = 0.2154ms, m+U-W = 0.4294, U-m = 1us.
As such the latency bound 0.4294ms meets even the stringent
CPRI requirement of 1ms.

The DiffServ framework, with simple strict priority sched-
ulers for high priority traffic with preemption, can guar-
antee 0.8584ms. We can also achieve zero jitter with the
DiffServ framework, with a buffer, at the cost of lengthen-
ing the E2E buffered latency upper bound roughly twice,
to 1.7144ms. This is the similar bound to that of the TSN
synchronous approach, which is 1.712ms. With 1us jitter
bound, the buffered latency bound is 1.7134ms. See Table 9
for comparison.

In Table 9, the latency bound of TSN is E2E latency
bound. All the other bounds for strict priority and the FAIR
frameworks are the E2E buffered latency bounds.

E. LATENCY BOUND OF THE FAIR WITH VARYING TOTAL
INPUT RATE
The FAIR framework can provide latency bounds also in
highly utilized situations. If we let the combination of 8
audio flows, 2 video flows, and 40 C&C flows be a unit of
input traffic, and increase the number of the units, we can
examine the relationship of the traffic load and the latency
bound. From (1) and (3), we find the E2E latency is equal to
(p∗154.4K+ 61.3K)/1G second, where p is the number of the
traffic unit. With p = 1, which is the case studied in previous
subsections, the link utilization is 5.4%. The E2E latency of
the FAIR framework versus the link utilization is shown in
the Figure 10. Roughly twice the E2E latency value in this
graph is the E2E buffered latency with zero jitter. We can see
with the p value is equal to 15, or the utilization around 81%,

TABLE 9. Latency and Jitter bounds for C&C flows in the case study with
the proposed framework.

FIGURE 10. E2E latency bound of C&C flows with the FAIR framework in
the case study network, versus link utilization. Up to 80% load, the E2E
buffered latency is less than 5ms, the C&C flows’ latency requirement.

it is still possible to guarantee 5ms E2E buffered latency with
zero jitter.

VI. SIMULATIONS
We simulate the network of Figure 6 that is also used for the
case study in Section V. The input traffic and the routes also
follow the description in Figure 6. The flows’ characteristics
follow Table 5. The simulation environment is constructed
using OMNeT++. It is a C++ based network simulation
framework, which is known to be good for constructing dis-
crete event network simulations [51]. The detailed simulation
parameters for input data generation are given in Table 10.
Note that the packet length, burst size, and the period are all
fixed values.

TABLE 10. Input data parameters used in the simulation.
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Also given in Table 11 is the DRR scheduler’s parameters
used for the FAIR solution. The capacities for all the links are
set to 1Gbps.

TABLE 11. DRR scheduler’s parameters used for the FAIR solution in the
simulation.

In the simulation, all the flows have the same phase, i.e.
emit the maximum burst at the start of the simulation. It is
so set in order to observe the worst case behavior at the
earlier stage of the simulation. A single run of the simulation
lasts for 16.5 seconds. The C&C flows, the audio flows, and
the video flows produce 3,300, 13,200, and 15,000 packets
respectively, for a single run. We perform 100 runs indepen-
dently. All C&C flows with the same input port and output
port were observed.

Figures 11 to 13 depict the E2E latency bounds obtained
in the previous section, and the latency distributions obtained
from the simulations of the C&C, audio, and video flows with
three different solutions.With all the solutions, the theoretical
latency bounds match to the maximum observed latencies,
except the video flows’ bound in the FAIR solution. This
is because the latency upper bound in (1) considers an even
worse scenario than the case study. In the case study with the
FAIR, some of the video packets within a burst remain in the
queue even after all the other types of packets left the node.
The bound in (1) assumes the continuous backlog of all the
queues. In our case study, the later packets in a video burst do
not see the backlog of other types of flows in the scheduler.
As such the worst video packet experiences less latency than
the theoretical bound suggests. Other than this case all the
theoretical bounds match to the simulation results.

In Figure 11, in the box plot of TAS, the largest latencies
around 1.4∼1.75ms are observed when the three types of
flows’ slots overlap. Also in the box plot of TAS, the dots
in the middle, around 0.6∼0.7ms, represent the latencies of
the packets in the slots that overlap partly with video flow’s
slot. The TAS would show a smaller jitter compared to the
FAIR or the DIffServ, if these outliers were not present. This
is because for C&C flows, the period 5ms is the multiple of
the period of audio flows 1.25ms. Therefore, the C&C flows’
bursts always overlap with that of audio. This regularity
contributes to the smaller jitter of the TAS. Note that the
average latency of the TAS is alsomuch larger than the others.

In Figure 12, the FAIR shows the smallest bound. The
FAIR, or the DRR scheduler, protects the audio flows from
the burst of other flows. The FIFO scheduler in the DiffServ
also works well, except when the bursts of the audio and the
other type of flows overlap. The TAS shows the larger jitter
and the larger latency bound. This is because the audio flows,

FIGURE 11. Theoretical E2E latency bounds and the latency distribution
from simulation in box-and-whisker plots, of C&C flows with three
different solutions in the case study network.

FIGURE 12. Theoretical E2E latency bounds and the latency distribution
from simulation of audio flows.

FIGURE 13. Theoretical E2E latency bounds and the latency distribution
from simulation of video flows.

with the shortest period of 1.25ms, overlap with the other
types of flows with roughly 1/4 probability.

In Figure 13, we can see that the jitters of video flows in
all three solutions are higher than those of the other flows.
Also the latency distributions of the FAIR and the DiffServ
are almost identical. This is because a video flow has a
much larger burst of 360Kbit. The other flows’ bursts do not
significantly affect the latency of video flows.
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Figure 14 depicts E2E buffered latencies of all the packets
from two random sample C&C flows, that are set to have
zero jitter, observed during the simulations. According to the
actual latency experienced by the first packet of a flow,
the latencies of the subsequent packets are decided. Note that
the fixed latencies of the sample flows are placed around the
E2E latency bound, 0.2164ms. It is shown that the flows
achieve the zero latency with the proposed framework.

FIGURE 14. E2E buffered latencies of all the packets of two random
sample C&C flows observed during the simulation.

VII. CONCLUSION
We have proposed a novel framework that guarantees any
desired amount of jitter bound, without time-synchronization.
The network in the framework can be of any size, any topol-
ogy, or any input pattern, as long as it guarantees latency
bounds. We have shown that, with a proper selection of the
latency guarantee network, such as the FAIR, the proposed
framework can achieve a better latency bound, even with
zero jitter, than that of the TSN Synchronous approach. This
work seriously challenges the necessity of the tremendous
effort for time-synchronization, slot assignment, and coordi-
nation among the nodes. The proposed framework, however,
requires the additional buffer at the egress of a network, per
flow buffering operation, and time-stamping every packet.
These functions impose additional complexity. We argue that
such a cost for the additional functions is negligible compared
to the network-wide time-synchronization and slot schedul-
ing functions that are required in TSN.

The insight we have gained through the analysis is that
the isolation of critical packets or flows from the bursts of
other traffic is essential for latency and jitter minimization.
In a slotted operation, this means a smaller slot size, around a
packet transmission time, is preferable. In traditional statisti-
cal multiplexing environments, this means a flow or FA level
queuing and scheduling are preferable.

The basic philosophy behind the proposed framework is to
minimize the latency first by taking advantage of the work-
conserving schedulers, and then adjust the inter-departure
times to reproduce the inter-arrival times, at the boundary of a
network.We argue that this is simpler than trying to minimize
the latency and the jitter at the same time. The direct benefit
of such simplicity is its scalability. The time-synchronization

would be useful for wireless networks for energy efficiency
and multiple access, where synchronized channel access
reduces the collision rate. In wired full-duplex links, for the
synchronized approach to be beneficial, a more careful slot
planning would be necessary.

VIII. FUTURE WORKS
It is for further study how we can execute the buffer operation
precisely and efficiently in the proposed framework. Note
that, in order to have a packet depart the buffer at a certain
instance, the transmission of the packet must have started
earlier as much as its transmission time.Moreover, the buffer-
out instance cn can be the same with the buffer-in instance
bn, according to Algorithm 1. Therefore, we need a ‘look-
ahead’ capability to decide the incoming packet should be
cut-through, which is similarly required to the IRs in the TSN
ATS and the FAIR. Note that the look-ahead capability is
also required to the TAS in order for a transmitted packet
not to exceed the slot boundary. While the implementation
is feasible, how efficient could it be should be investigated
in future work. A tight cooperation with the network and the
buffer would be necessary in this regard. A buffer embedded
in the network boundary node can solve it easier. On the
other hand, in cases that look-ahead and cut-thorough are
too complex to implement, simply letting additional buffer
latency could solve the problem as well.

The increased E2E buffered latency bound by the proposed
framework, from U to almost 2U, can be mitigated by one
of some added functionalities. 1) First, one can measure the
latency of the flows’ first packet in the network exactly, and
buffer it to make its E2E buffered latency to be U. Then every
subsequent packet will experience the same E2E buffered
latency that is U, with zero jitter. How one can measure
the latency is for further investigation. For example, one
can synchronize only the boundary nodes of the network.
2) Second, one can expedite the first packet’s service with
a special treatment, to make its latency lower than the other
packets of the flow. If we can make the first packet’s latency
to be a small value 1, then every packet will experience the
same buffered latency1+U,with zero jitter. Considering that
the E2E latency bound is obtained from the case in which
rare events occur simultaneously, however, the first packet’s
latency is likely to be far less than what the bound suggests.
Therefore, the special treatment to the first packet may be
ineffective in real implementations.

The proposed framework can also be used for jitter control
among multiple sources’ flows having a single destination.
When a session is composed of more than one sources,
physically or virtually separated, the buffer at the boundary
can mitigate the latency variations of packets from different
sources due to different routes or network treatments. Such
a scenario may arise in cases such as 1) that a central unit
controls multiple devices for a coordinated execution in smart
factories, or 2) multi-user conferencing applications, in which
multiple devices/users physically separated can have a diffi-
culty in real-time interactions [10]. The sources, or the ingress
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boundary nodes of the network, need to be synchronized
with each other in order for the time-stamps from separated
sources to be able to identify the absolute arrival instances,
however. The detailed operations of such multi source sce-
narios are to be investigated.

Finally, as we have learned that a smaller slot would
certainly improve the TSN synchronous approach, it is to
investigate the possibility of a centralized coordinated oper-
ation of a network with very small fixed-length slots. If we
fragment packets into a fixed-length ‘cell’, e.g. 64byte, and
make all the slots in the network to be of length exactly a
cell transmission duration, and reassemble the cells only at
the boundary of a network, then the whole network could be
seen as a single multi-stage cell switch. Such a switch design
problem has been extensively studied for asynchronous trans-
fer mode (ATM) switches in 90’s [52], [53] and for data
center networks (DCNs) recently, where high throughput and
scalability are the primary design objectives [54], [55]. The
topology of a deterministic network would become one of the
design parameters. With the help from the centralized SDN
and the reinforcement learning paradigm in the networking
area, an intelligently synchronized slot approach based on
such cell switch architectures would also be promising.
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