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ABSTRACT Visual defect inspection and classification are significant steps of most manufacturing pro-
cesses in the semiconductor and electronics industries. Known and unknown defects on wafer maps tend
to cluster, and these spatial patterns provide valuable process information for supporting manufacturing
in determining the root causes of abnormal processes. In previous studies, data augmentation-based deep
learning (DL) techniques were most commonly used for the identification of wafer map defect patterns
(WMDP). Data augmentation is an effective technique for improving the accuracy of modern image
classifiers. However, current data augmentation implementations were manually designed for the WMDP
problem. In this study, we propose aDL-basedmethodwith automatic data augmentation for theWMDP task.
Basically, it focuses on learning effective discriminative features, from wafer maps, through a deep network
structure. The network consists of a convolution-based variational autoencoder (CVAE) sequentially. First,
we pre-trained the CVAE on large training data in an unsupervised manner. Second, we fine-tuned the
encoder of the CVAE, which was followed by a neural network (NN) classifier, in a supervised manner.
Additionally, we describe a simple procedure for automatically searching for improved data augmentation
policies. The policy mainly consists of five image processing functions: rotation, flipping, shifting, shearing
range, and zooming. The effectiveness of the proposed method was demonstrated through experimental
results obtained from a simulation dataset and a real-world wafer map dataset (WM-811K). This study
provides guidance for the application of deep learning in semiconductor manufacturing processes to improve
product quality and yield.

INDEX TERMS Classification, convolutional variational autoencoder, deep learning, imbalanced data,
neural network, unsupervised pre-training, variational autoencoder, wafer map defect patterns.

I. INTRODUCTION
In conjunction with the fourth industrial revolution, the semi-
conductor market has been expanding rapidly [1]–[3]. Semi-
conductor demand has been exploding in areas such as
smartphones, virtual reality, automobiles, wearable devices,
internet of things (IoT), and robotics [4]–[6]. Many diverse
products are in demand. Semiconductor lines have become
diverse, and the semiconductor fabrication process is compli-
cated. Semiconductor manufacturers can produce semicon-
ductor products with high yields and high quality to ensure
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market competitiveness. Semiconductor processes increase
productivity through facility diagnosis, process control, sta-
bilization of yield rate, and so on. In addition, the semicon-
ductor fabrication process has been continually refined, and
design complexity has increased to enhance productivity and
semiconductor accumulation [7]–[9].

Semiconductor fabrication is conducted in two processes,
fromwafer fabrication to manufacturing the finished product.
The first is the fabrication process of the integrated circuits
on the wafer surface. The second is the testing process of the
wafer map, processed by a unit die or chip after fabrication.
As the fabrication process becomes more challenging and
complicated, the number of defects increase. The processed
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wafer was tested using the fabrication process, detailed later
on, and subsequently assisted in identifying several defects
[10]–[12]. As semiconductor manufacturing becomes com-
plicated, and the difficulty of the refined process techniques
increases, a new type of wafer defect map appears. This is
because the generating mechanism according to the defect
pattern of the wafer map is different. It is crucial to classify
wafer maps automatically to eliminate the cause of defects.

Most of the steps used in semiconductor fabrication are
conducted using a wafer map. If there are some abnormalities
in the manufacturing process, defects will occur on the wafer.
There are various types of defect patterns based on the man-
ufacturing methods or features of abnormal unit processes.
These defect patterns can be detected using wafer-map data
from the test step of a wafer. To determine the abnormality
process, causing wafer defects, at an early stage and to take
steps to recover the yield rate, it is necessary to analyze the
wafer map [13]. The process of sorting defective items among
semiconductor fabrication processes involves electrical die
sorting (EDS) [14]. It also tests the electrical motion state of
each semiconductor chip generated on a wafer. To improve
the yield rate of processing, engineers define and classify the
forms of a defective wafer, and identify a wafer map, resulting
in the EDS test [15]. Fig 1 shows an example of a wafer
map. A large circle indicates a wafer, and small rectangles
inside represent each die. The white color indicates that the
die passed all the tests without any error, and other colors
indicate that the die did not pass the test.

FIGURE 1. Example of a wafer map.

In ordinary semiconductor manufacturing companies,
skilled experts classify and analyze defective patterns of
wafer maps manually. However, when using this method,
the classification performance of wafer map defect patterns
can differ depending on the ability of the experts. Addition-
ally, when production increases, it is difficult to cope utiliz-
ing only experts according to the growth of semiconductor
demand [16]. Correspondingly, it is necessary to gain extra
capacity to enable the system to cope during high productiv-
ity. The use of machine learning model, that learns the knowl-
edge of experts, is one solution to increase capacity. There-
fore, there is much research on handling these issues using
machine learning or deep learning techniques. However, pre-
vious research faced some limitations. For example, there
was a problem with classifying only defect patterns learn-

ing step. Also common problem in many data-oriented real-
world semiconductor applications is class-imbalance [17].
Additionally, when the fabrication is refined and more com-
plicated, the defect patterns of the wafer maps will vary.
Therefore, it is necessary to develop a model that recognizes
a new types of defective wafer map pattern.

Another common problem in many data-oriented real-
world semiconductor applications is class-imbalance [17].
Previous studies have been conducted to classify wafer map
defect patterns to handle imbalanced data and irrelevant fea-
tures. In previous work, it was also handled by data augmen-
tation [18]. Data augmentation is the process of extending
the training data by applying class-preserving transforma-
tions such as rotation, flipping, shifting, shearing range, and
zooming of an image to the original data. These processes
have become important tools for achieving the accuracy of
modern machine-learning algorithms. Data augmentation is a
popular technique because of its simplicity in deep-learning
applications. However, applying multiple transformations to
the entire data set can increase the total size of the dataset
tenfold, so data growth can be an expensive process. This
may have some advantages in terms of overfitting, but it
increases the overall training data. It can also significantly
increase the cost of data storage and training time and can
scale linearly or super linearly with respect to the training set
size. Semiconductor engineers have applied many different
techniques, such as manual visual inspection and machine
learning algorithms, using manually extracted features for
wafer defect classification. Therefore, automatic wafer map
identification systems need to be developed by taking advan-
tage of machine learning and deep learning methods.

In this study, we consider the data imbalance problem
by developing a deep learning-based method. It automati-
cally classifies wafer map defect patterns without manual
data augmentation or feature extraction. We employed a
convolutional neural network (CNN) to extract visual fea-
tures from the wafer map images. A generative variational
autoencoder (VAE) was used to learn the data distribution
and sample augmented data. The data augmentation function
includes transformations such as rotation, flipping, shifting,
shearing range, and zooming. First, we pre-trained the con-
volutional variational autoencoder to learn training samples
and generate augmented data. Then, we fine-tuned only the
encoder part, followed by the neural network (NN) classifier
for the classification of wafer map defect patterns.

The contributions of this paper are summarized as follows:
1. We proposed an automatic classification method that

employs deep learning techniques, such as CNN and
VAE, for wafermap defect patterns withoutmanual data
augmentation and feature engineering.

2. We designed a convolutional variational autoen-
coder (CVAE) that learns the distributions of visual
data. Then, it also samples various data transformations
to solve data imbalance problems.

3. We automated the process of finding an effective data-
augmentation policy for a wafer map dataset. Each
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policy expresses several choices and orders of possi-
ble augmentation functions, such as rotation, flipping,
shifting, shearing range, and zooming.

4. Comprehensive experiments demonstrate that the pro-
posed method can obtain good results for identifying
wafer map defect patterns. By combining convolutional
operations and a generative model, we can obtain com-
petitive results with other state-of-the-art deep learning
methods. Additionally, we generated wafer map images
with various transformations for each non-defect and
defect class.

The remainder of this paper is organized as follows.
We first review related works in Section II. In Section III,
we introduce the proposed method in detail. Section IV
reports the experimental settings and results and provides a
discussion and analysis. Finally, conclusions and future work
are provided in Section V.

II. RELATED WORKS
Research has been conducted to classify defective wafers
into each pattern using wafer map information. In this
section, we review some recently published research that uses
machine learning and deep learning.

In the early stages, research has been conducted to extract
features from wafer maps and classify defective patterns
using machine learning techniques. Machine learning clas-
sification algorithms classify the defective patterns based on
the pre-defined visual features from the wafer map. Manually
or automatically obtained features, using feature extraction
techniques, have been explored in computer vision [19]. For
example, the features were extracted from the wafer map
using Hough transformation, and the defect ratio at the center
of the wafer was calculated. A variety of machine learning
classification algorithms then apply the extracted features to
classify defect patterns [20], [21]. In addition, wafer map
transformation into spatial correlation and dynamic time
warping [22] techniques were used in feature extraction, and
the defective patterns in the results were classified using
the k-nearest neighbor classifier [23]. As studied in domain
analysis, principal component analysis (PCA) introduces the
pattern index of the wafer map, which produces indices and
variables focused on the structural features of the wafer map
[24]. Therefore, in the case of a wide fluctuation of produced
items, there would be problems in conducting modeling
again. Additionally, singular value decomposition was used
to transform the wafer map into a regularized singular value,
followed by a k-nearest neighbor classifier [25]. However,
there are some problems in real-world situations when using
k-nearest neighbors, which makes it difficult to achieve good
performance when insufficient training data and high com-
putation time are required. After projecting the wafer map
into Radon the data is transformed into four feature sub-
sets, namely, max, minimum, means, and standard deviation,
an ensemble model was proposed based on the decision tree
of each feature subset [26].Moreover, applying density-based
and geometry-based Radon techniques to ensemble classi-

fiers, constructed with logistic regression, random forest,
gradient boosting machine, and artificial neural net [27] sug-
gested a model using the extracted features of the wafer map.

Recently, various techniques have been proposed for the
identification of wafer map defect patterns by taking advan-
tage of deep learning. For example, without feature extrac-
tion of wafer maps or spatial filtering, research has been
conducted widely using CNN, which applies intact orig-
inal images. In CNNs, the features necessary for classi-
fication learn for themselves through convolution layers
[18]. In another recent study using CNN, a wafer map was
constructed according to 22 defective patterns, defined in
advance, and then using the map, the patterns were clas-
sified into convolutional neural networks and applied for
image retrieval. Even though the classification model showed
an accuracy of 98% for the artificial data, some patterns
extracted from the real data showed an accuracy of 68%. This
demonstrates the limitations of artificial data [28].

Moreover, Kyeong and Kim [29] proposed a CNN-
based classification model to classify mixed-type defect pat-
terns in wafer bin maps separately for each pattern circle,
ring, scratch, and zone. Cheon et al. [30] proposed an
automatic defect classification method based on deep learn-
ing that was designed to achieve high classification perfor-
mance for known defect classes and also classify unknown
defects. Jin et al. [31] proposed a clustering-based defect pat-
tern detection and classification framework, based on the
density-based spatial clustering of applications with noise.
Ishida et al. [32] proposed a deep learning-based failure pat-
tern recognition framework that only uses data augmentation
techniques with noise reduction, without accessing a large
amount of training data. Shen and Yu [33] integrated wafer
map defect recognition with deep transfer learning, which
reduces the training time and improves the feature learning
performance. It also addresses the problem of class imbal-
ance. Wang and Chen [34] used extracted features based
on three types of masks: polar masks, line masks, and arc
masks. These masks extract rotation-invariant features for
classifying defect patterns. Yu [35] proposed an enhanced
stacked denoising autoencoder with manifold regularization
techniques to generate discriminative features from wafer
maps. Yuan-Fu [36] used automatic optical inspection to
visualize defect patterns and identify the root causes of die
failures. Then, CNN and extreme gradient boosting methods
are employed for wafer map retrieval and defect pattern
classification. Shawon et al. [37] also modified the CNN
architecture to improve the classification performance and
used data augmentation techniques to solve the data imbal-
ance problem. Nakazawa and Kulkarni [38] proposed a deep
convolutional encoder-decoder neural network architecture
for detecting wafer map defect patterns, as well as seg-
mentation. Yu et al. [39] proposed a stacked convolutional
sparse denoising auto-encoder for wafer map pattern recog-
nition and a feature learning method to learn discrimina-
tive features from wafer maps. Yu and Liu [40] proposed a
deep neural network, which is a two-dimensional PCA-based
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convolutional auto-encoder for wafer map defect recogni-
tion. Alawieh et al. [41] used a deep selective learning tech-
nique and featured an integrated reject option where the
model chooses to abstain from predicting a class label when
the misclassification risk is high. Thus, there is a trade-
off between the prediction coverage and the risk of mis-
classification. Jang et al. [42] proposed an ensemble model
of a one-versus-one method that uses a CNN as the base
classifier for wafer map classification, and then exam-
ined the open set recognition problem, in which wafer
maps must be classified using major defect patterns. Tsai
and Lee [43] proposed a CNN encoder-decoder-based data
augmentation and depth-wise separable convolution-based
defect classification. They also developed a classifier with a
reduced-weight architecture based on depth-wise separable
convolutions [44]. Yu et al. [45] addressed the problem of
insufficient labeled images with various defects. They pro-
posed a semi-supervised deep-learning-based transfer learn-
ing algorithm by joining features and labels in an adversarial
network. Jin et al. [46] presented an image-based classifi-
cation method for wafer map defect patterns without any
specific preprocessing. They extracted high-level features
from a CNN fed to a combination of error-correcting output
codes and support vector machines for the classification of
wafer map defect patterns. Wang and Chen [47] used polar
mapping before training the CNN. Then, the circular wafer
map was transformed into a matrix. They also applied a data
augmentation technique to eliminate the effects of rotation.
Saqlain et al. [47] addressed the data imbalance and irrelevant
features problem using data augmentation techniques such as
rotation, flipping, shifting, shearing range, and zooming of an
image to the original data.

Owing to the limitations of previous studies, we developed
a novel classification technique by modifying the CVAE. The
modified CVAE automatically performs data augmentation
without manual rules or large data generation. In addition,
pseudo-data are generated from the distribution of each class
label. The experimental results demonstrate the efficiency of
the proposed method.

III. PROPOSED METHOD
In this section, we discuss the basic structure of the proposed
method in detail. We also provide the training procedure and
hyperparameter settings.

A. ARCHITECTURE
Wafer maps provide important information when repre-
sented as images for engineers to identify the root causes of
die failures during semiconductor manufacturing processes.
In computer vision, CNN is a deep learning-based technique
commonly applied to analyzing visual imagery. In real-world
problems, data imbalance is a critical issue. As we discussed,
CNN is the basic technique adopted in the identification
tasks of wafer map defect patterns, and data augmentation
techniques are generally used for data imbalance problems.
In this study, we employed CNN as our base feature learner.
Instead of using manual data augmentation, generative mod-

els generate samples for high-dimensional datasets, learns the
data distribution, and generates new samples from the learned
distribution. We designed a CVAE that is improvised with
image operations such as rotation, flipping, shifting, shearing
range, and zooming for more effective image generation.
We then used the basic NN technique for the classification of
defect patterns. It calculates the probability distribution for
each class label, and the maximum value is chosen for the
final prediction. First, we pre-train the CVAEmodel by mini-
mizing the reconstruction loss, and the mean square error was
also used. Second, we train the NN classifier by minimizing
cross-entropy loss. An overview of the proposed method is
presented in Fig 2. As shown, we input wafer map images to
the proposed method and identify whether they are defective
or not. The common defect patterns are edge ring, edge local,
center, local, scratch, random, donut, and near-full. In the
following sections, we explain the proposed method in detail.

FIGURE 2. Overview of the proposed method.

1) CONVOLUTIONAL NEURAL NETWORK
A CNN is a type of deep neural network with the capability
of extracting useful features by utilizing several convolutional
operators. It is particularly suitable for two-dimensional data
structures; therefore, it is a popular pattern recognition clas-
sifier in image processing.

In a CNN, as a weighted kernelK slides over every position
of input data x, the convolution operation of the input data and
kernel is triggered, resulting in a feature map:

S(i, j) = (X ∗ K )(i, j) (1)

=

∑
m

∑
n
I (i− m, j− n)W (m, n) (2)

where S is the feature map resulting from input data x and
kernel K , and ∗ denotes the convolution operation.

Typically, the kernel size is smaller than the input data
size, but with greater depth. This means that several different
kernels are applied to the input data at the same time, resulting
in the same number of feature maps. The weights of the
kernels were adjusted during the training.

Although CNNs are mostly applied for the identification of
wafer map defect patterns, they have also been successfully
explored in fault classification and diagnosis in semicon-
ductor manufacturing processes [48]. Because wafer map
defect patterns have the same 2-dimensional data structures
as images, the CNN for analyzing images is suitable for
identification.
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2) VARIATIONAL AUTOENCODER
VAE, an important generative model, has a similar network
frame as an autoencoder, which consists of two parts: an
encoder and a decoder. In the autoencoder, the encoder
defines a mapping from input data x ∈ Rdx to a latent variable
z ∈ Rdz , while the decoder defines a mapping back from
the latent variable z to the input space, which outputs the
reconstructed x̂. The training objective of the autoencoder
is to make the reconstructed term x̂ as close as the original
one x, forcing autoencoders to learn the latent features of
normal data. In VAE, the latent variable z is constrained to
be distributed according to a prior distribution pθ (z), usually
a multivariate unit Gaussian N (0, I ), forcing the model to
learn the distribution of input data. However, when mapping
from the input data x to the latent variable z, according to
Equation (3), pθ (z|x) is usually intractable because pθ (x) is
also intractable.

pθ (z | x) =
pθ (x, z)
pθ (x)

(3)

Hence, variational inference techniques are used to solve
this problem in a tractable manner by finding an approxima-
tion posterior qφ(z|x).

qφ (z | x) = N (µz, σ 2
z I ) (4)

where the mean µz and standard deviation qz of the approxi-
mation posterior qφ (z | x) are derived by the encoder.
Given an inference model qφ (z | x), the evidence lower

bound (ELBO) can be derived as follows:

log pθ (x) = Eqφ(z | x)[log pθ (x)] (5)

= Eqφ(z | x)[log
pθ (x | z) pθ (z)
pθ (z | x)

] (6)

= Eqφ(z | x)[log
pθ (x | z) pθ (z)
pθ (z | x)

qφ (z | x)
qφ (z | x)

] (7)

= Eqφ(z | x)
[
log pθ (x | z)+ pθ (z)− log qφ (z | x)

]
+DKL(qφ (z | x) ||pθ (z | x)) (8)

In Equation (8), the first term is ELBO, and the second term
is the Kullback-Leibler (KL) divergence of the approximate
qφ(z|x) from the true posterior pθ (z|x). To ensure qφ(z|x)
gets closer to pθ (z|x), the KL divergence term between them
has to be minimized. According to the equation, minimizing
KL divergence can be transformed into the task of maximiz-
ing ELBO. Therefore, the loss function of the VAE can be
expressed as follows:

LVAE (θ, φ, x) = −Eqφ(z | x)[log pθ (x | z)

+ log pθ (z)− log qφ(z|x)] (9)

The VAE has been successfully applied in different
domains. With a sliding window, the VAE can be used for the
clustering of wafer map patterns [49]. However, the standard
VAE with CNN is not used to classify wafer map defect
patterns. Hence, the standard VAE needs to be modified to
identify wafer map defect patterns by addressing imbalanced
data problems.

FIGURE 3. Overview of policy search.

3) POLICY SEARCH
We formulate the problem of finding the best augmenta-
tion policy as a discrete search problem. The operations
we searched were rotation (5, 10, 15, 20, 25, 30, 35, 40,
45), flipping (horizontal and vertical), shifting (width and
height), shearing range (horizontal and vertical), and zooming
(1%-20%). In total, we have 46 operations in the search space.

The search algorithm used in our experiment uses Rein-
forcement Learning, inspired by [50]–[54]. The search algo-
rithm has two components: a controller, which is a recurrent
neural network, and a training algorithm, which is a proximal
policy optimization algorithm [55]. At each step, the con-
troller predicts a decision produced by a softmax, and the
prediction is then fed into the next step as an embedment.
In total, the controller has 46 softmax predictions to predict
policies, each requiring an operation type and probability.
The controller is trained with a reward signal, which is how
good the policy is in improving the generalization of a ‘‘child
model’’ (a neural network trained as part of the search pro-
cess). In our experiments, we set aside a validation set to
measure the generalization of the child model. A child model
is trained using the augmented data generated by applying
the policies on the training set. For each example in the mini-
batch, one of the policies was chosen randomly to augment
the image. The child model was used as a reward signal to
train the recurrent network controller. As shown in Fig 3,
the RNN controller predicts an augmentation policy from
the search space. A child network with a fixed architecture
was trained to attain convergence, achieving accuracy. The
reward is used, with the policy gradient method, to update
the controller so that it can generate better policies over time.

4) NEURAL NETWORK CLASSIFIER
To establish a predictive model, we employ a simple NN
classifier followed by the downstream of the CVAE, which
fine-tunes the CVAE encoder part (f CVAE(encoder)) and fea-
ture extraction layers in an end-to-end manner for the
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identification task of wafer map defect patterns. The predic-
tor function (f NN ) can be summarized in Equation (10) as
follows:

y′ = f NN (f CVAE(encoder)(x)) (10)

The objective function of the NN classifier is to predict the
true class labels to minimize the cross-entropy loss between
the approximate distribution and the ground truth distribution.
The objective function of the predictor network (classifica-
tion loss) is summarized as shown in Equation (11):

LNN (x) =
∑

y log y′ (11)

where y is the ground truth value, and predicted y′ is the
predicted value.

The supervised NN classifier network provides predictions
of wafer map defect patterns as any of the given defect
patterns or non-defects.

B. TRAINING
To train a CNN model directly, we need large-scale image
data such as theWM-811K dataset [56], which contains more
than a hundred thousand images, but it is highly imbalanced.
If large-scale training data are required, the applicable prob-
lems of a CNN are very limited. To avoid such situations
and to make a CNN effective even for small-scale data, two
important steps have been performed sequentially. The first
step is to pre-train the generative models and replay the data
samples for downstream tasks. The second step is to fine-
tune the encoder of the pre-trained model, followed by a
supervised classifier to perform the prediction.

1) GENERATIVE PRE-TRAINING
During training, the gradients of the loss function are required
for the optimization of the ELBO. However, it is not easy to
differentiate the loss with respect to the variational param-
eters φ because the gradients cannot be back propagated
through the latent variable z. Hence, the re-parameterization
trick, following the work in [57], is applied to overcome this
problem.

The latent variable z is assumed to be a deterministic
function of x and a random variable ε sampled from a fixed
distribution, N (0, 1). Hence, the non-differentiable random
variable z is converted to a differentiable function of x and
a random ε.

z = µz + σz � ε, ε ∼ N (0, 1) (12)

where µz and σz are the variational parameters derived from
the encoder. The sampling number L during the training was
set to 1 because one sample was already sufficient. With
model loss, the negative ELBO, we trained the model using
the Adam optimizer [58] to update the weightings of the
model.

2) FINE-TUNING FOR CLASSIFICATION
Fine-tuning involves tuning the parameters pre-trained with
large-scale data using small-scale data. We fine-tuned the

TABLE 1. Model parameters.

encoder of the pre-trained CVAE, pre-trained with an imbal-
anced large amount of data.We added a supervisedNN classi-
fier after the encoder of the CVAE, ignoring the decoder part.
With model loss and cross-entropy, we also trained the model
using the Adam optimizer [58] to update the weightings of the
model.

C. HYPERPARAMETERS
In this study, we constructed a CNN-based VAE model for
WMDP, which has an encoder and decoder, each consisting
of one input layer, eight convolution layers each with batch
normalization, padding, and rectified linear unit (ReLU)
activation, and five pooling layers (four stacking pairs of
convolution-pooling-convolution). The supervised classifica-
tion layer has one dropout layer, two fully connected layers,
and one output layer. For a fair comparison, we used the
same convolution-based neural network architecture for all
the methods. In this model, each convolution and pooling
layer consists of subsampling filters of size 3× 3 and 2× 2,
respectively.

The first convolution layer extracts the features from the
input training wafer images of size 224 × 224 pixels. Each
convolution layer contained a set of learnable filters to extract
unique feature maps. The number of filters increases with
increasing depth of the convolution layer, and thus the num-
ber of feature maps also increases. However, feature maps
become smaller and more complex due to the pooling layer
in a deeper network. The proposed CNN-WDI model adopts
16, 32, 64, and 128 feature maps for the first, second, third,
and fourth stacking pairs, respectively. The model parameters
used in this study are listed in Table 1.

Zero padding was applied to all convolutional layers to
ensure that the dimensions of the input and output feature

VOLUME 9, 2021 52357



H. S. Shon et al.: Unsupervised Pre-Training of Imbalanced Data for Identification of WMDP

maps were the same. The Softmax activation function was
applied to the output layer of the model. In addition,
the Adam optimizationmethod, which combines the concepts
of Momentum optimization and root mean squared prop
(RMSProp), was selected as the optimizer. This optimizer
helps achieve a higher accuracy and improves the training
process. In addition, after many attempts, other parameters
such as batch size, learning rate, and number of pre-training
and training epochs were assigned as 128, 0.001, 500, and 20,
respectively. A smaller batch size improves the generalization
ability by computing an approximation of the gradient value
and then updating the other parameters.

IV. EXPERIMENTS
In this section, we first describe the experimental dataset used
in this study. Then, we show the metrics used for evaluating
all themethods. Finally, we provide the comprehensive exper-
imental results.

A. DATASET
The WM-811K dataset is a semiconductor dataset consisting
of 811,457 real wafer map images [56]. The wafer images
were collected from 46,293 lots in a circuit probe test of
the semiconductor fabrication process. A single lot con-
tains 25 wafer maps, so there should be 1,157,325 wafer
maps in total (i.e., 46,293 lots × 25 wafer/lot). Not all
lots have exactly 25 WMs, due to sensor faults or other
unknown reasons, and they were pruned from the dataset.
The dataset also contains additional information about each
wafer map, such as lot name, die size, wafer index num-
ber, failure type, and training and test labels. This is the
largest publicly available wafer map dataset that can be
accessed on the Multimedia Information Retrieval (MIR)
laboratory website [59]. Different sizes of wafer images exist
because of their two-dimensional nature and different pixel
values along the length and width of the image. We found
a total of 632 wafer images of various sizes ranging from
6× 21 to 300× 202.

Domain experts were responsible for defining nine differ-
ent defect classes of wafer maps and assigning manual labels
to 172,950 (21.3%) wafer maps in the entire dataset. Unfor-
tunately, the labeled dataset is highly imbalanced, and only
the no-defect class occupies 147,431 (85.2%) wafer maps
of the labeled dataset. The other eight defect classes, that
contain 25,519 (14.8%) wafer maps of the labeled dataset in
total, are given as Edge-Ring: 9680 (5.6%), Edge-Local: 5189
(3.0%), Center: 4294 (2.5%), Local: 3593 (2.1%), Scratch:
1193 (0.7%), Random: 866 (0.5%), Donut: 555 (0.3%), and
Near-full: 149 (0.1%). Fig 4 shows the randomly selected
wafer defect images from each class.

We split the experimental dataset into training, validation,
and testing sets, as shown in Table 2.

B. EVALUATION MEASURES
The measurements obtained from the confusion matrix were
compared with the classification achievements, obtained

FIGURE 4. Typical examples of nine wafer defect classes.

TABLE 2. Experimental dataset.

from sentiment classification in similar studies, to demon-
strate the accuracy of the method. Accuracy, precision, recall,
and F1measurement valueswere obtained from the confusion
matrix.

The abbreviations TP (true positive), FP (false positive),
FN (false negative), and TN (true negative) in the confusion
matrix in Table 1 have the following meanings:

The accuracy, precision, recall, and F1 measurement were
calculated according to the confusion matrix in Table 1. The
accuracy was calculated according to Equation (13).

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(13)

Precision is the total estimate of class labels accurately
predicted for each class. The precision was calculated using
Equation (14).

Precision =
TP

TP+ FP
(14)

The recall value is the weighted average of the correct
labels that are correctly classified for each class. This value
was calculated according to Equation (15):

Recall =
TP

TP+ FN
(15)

Other metrics, F1, were used to combine the precision
and recall values in a single measurement. The value of this
measurement is between 0 and 1, and if the classifier correctly
classifies all samples, it takes the value of 1. The F1 measure
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is given in Equation (16), and the F1 value is close to 1 for
good classification success.

F1 =
2× Precision× Recall
Precision+ Recall

(16)

All experiments were executed on an Intel Xeon E5-
2698 v4 @ 2.20GHz, 256GB (CPU), NVIDIA Tesla V100
32GB (GPU), and Ubuntu 18.04 operation system. We also
used the Scikit-Learn and Pytorch libraries with the Python
programming language for all analyses.

C. RESULTS AND DISCUSSIONS
In this section, we present some experimental results, includ-
ing a feature analysis that is selected by the CVAE. We then
discuss a comparative analysis with other baseline methods
and the efficiency of the proposed method.

1) GENERATION OF DEFECT PATTERNS
First, we pre-trained the unsupervised CVAE model on the
entire training set and corroborated it using the validation
set, as discussed previously. A CNN was used to extract
visual features, and VAE was used to learn the distribution of
each class label.We attempted to minimize the reconstruction
loss (mean squared error) during training on the training
set. The reconstruction error for 500 epochs in the training
set is shown in Fig 5. It constantly decreases, and it shows
the learning capability of our pre-trained model. The mean
squared error was used as the reconstruction error in our
experiment.

FIGURE 5. Reconstruction loss.

During training, we also tried to find the optimal augmen-
tation policy, composed of several image processing opera-
tions such as rotation, flipping, shifting, shearing range, and
zooming. As shown in Fig 6, we illustrated the examples of
each operation applied to the generated samples.

As shown in the figure, the generated images were
automatically transformed by image processing operations
instead of using manual data augmentation. We used the
rotation range from 5 to 45 degree and horizontal and vertical
flipping. These transformations do not change the size of
the generated images. In contrast, the other transformations
such as shifting, shearing, and zooming change the size of
generated images. For example, we used the zooming by
between 1% and 20%. The hybrid method sequentially inte-

TABLE 3. Performance comparison.

FIGURE 6. Generation of defect patterns.

grated image generation and various transformations can also
address the data imbalance problem efficiently.

2) PERFORMANCE EVALUATION
Secondly, we fine-tuned the only encoder part followed by a
simple neural network classifier for the identification task of
WMDP. We trained the supervised classifier on the training
dataset and evaluated it on the validation set. We attempted to
minimize cross-entropy loss during training. During training,
the classification loss was constantly decreasing among all
20 epochs.
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TABLE 4. Confusion matrix.

FIGURE 7. Accuracy of our proposed method on the validation set.

We evaluated the proposed method on the validation set
standard measures such as accuracy, precision, recall, and
F1-score. The classification performances on the validation
set is shown in Fig 7-10, respectively. We achieved satisfying
results in the first ten epochs. We highlighted the first ten
and last ten epochs as solid pink and dashed black lines,
respectively. We could not get clear information from the
accuracy (Fig 7) for the imbalanced dataset. As you can see,
we achieved the highest precision of 98.05% at the 5 th epoch
(Fig 8) and the highest recall of 96.83% at the 8 th epoch
(Fig 9). Our model has been satisfied at the 9th epoch by
achieving the F1-score of 95.82% (Fig 10).

We compared the proposed methods to the other base-
line methods such as SVM [60], ANN [61], VGG-16 [62],
and CNN-WDI [18] algorithms. For fair comparison on the
different split of the testing dataset. In the previous works,
CNN-WDI [18] shows the highest performance results.
We re-implemented the CNN-WDI method that achieved

FIGURE 8. Precision of our proposed method on the validation set.

the comparative results as shown in Table 3. As shown in
this table, the methods with manual data augmentation show
high results. In this paper, we develop an automatic WMDP
identification method without any manual augmentation.
Because manual data augmentation is very time-consuming
and non-memory efficient. Our hybrid method with the gen-
erative model and automatic image transformation operations
can reduce the memory usages and much human efforts.
We developed the CVAE method without any image trans-
formation by only generating data samples. It improved
the classification performance by 6%. Then we applied
automatic image transformation with policy search strategy,
to the CVAE method. It shows the highest classification
performance without manual data augmentation and com-
parative results with manual data augmentation techniques.
As conclude, the experimental results shown in Table 3 high-
lights the efficiency of our proposed method. As shown,
Saqlain et al. [47] achieved the F1-score of 87.7% on the
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FIGURE 9. Recall of our proposed method on the validation set.

FIGURE 10. F1-score of our proposed method on the validation set.

original imbalanced data and achieved the F1-score of 96.2%
on the manually balanced data. Our proposed method, CVAE
with automatic image transformation with policy search strat-
egy, achieved the F1-score of 95.1% without any human
efforts. Surprisingly, the proposed CVAE method achieves
the highest recall of 96.9%. It is very comparative to the man-
ual augmentation methods in terms of predictive performance
and can reduce much human effort.

As shown in Table 4, the confusion matrix performed by
our proposed method CVAE with image transformation is
provided. As you can see, we achieved high accuracy results
higher than 90% except for Donut defect pattern.

In this paper, we addressed the issue of manual data aug-
mentation; it requires much human effort. Instead of manu-
ally transforming training data, we automatically generated
fake data similar to original images and added an image
transformation function with a policy search strategy. For a
fair comparison, we selected the same image transformation
techniques used in the previous works. It reduces many pre-
processing steps and immensely scalable to add more image
transformation techniques. As shown in Table 3, the proposed
method CVAE is lower than the performance of the high-
est manually augmented method. However, we can quickly
improve it by adding other image transformation techniques.

The policy search algorithm is very efficient in finding the
best augmentation policy from many possible states even
there are many transformation techniques. May it increases
the computation time and memory usage. But it is not critical
in this research, and we can reduce it at the application level
for real-world scenarios.

V. CONCLUSION
In this study, we developed aDL-basedmethod, that is, CVAE
for WMDP, which employs CNN as a feature extractor, and
CVAE exploits the full connection between the features and
the subsequent convolved images in an unsupervised manner.
A simpleNN classifierwas used to identify the defect patterns
from input images in a supervisedmanner. The robust and dis-
criminative features from the wafer map through this network
can be extracted to identify the WMDP improvement. Addi-
tionally, an automatic policy search procedurewas defined for
improved data augmentation, instead of using manual func-
tions. CVAE achieves better recognition results on real-world
wafer map datasets than traditional WMDP methods and
other DL models. The comprehensive experimental results
verify that the CVAE is capable of learning effective features
from wafer maps. This study provides a new method for
the identification of WMDP using generative DL models,
with an automatic data augmentation procedure, control. It
addresses the problem of data imbalance and limited training
data, which leads to overfitting of DL-based methods.

The limitations of the proposed method are described as
follows. In the general research of wafer map defect pattern,
most methods utilized the limited dataset publicly available.
More challenging data is necessary to this semiconductor
manufacturing research field. We proposed automatic tech-
niques such as generative model and image transformation
with the policy search strategy to reduce human efforts.
However, it improves the computational cost, but it can be
reduced. We only considered the five transformations in the
image transformation phase, such as rotation, flipping, shift-
ing, shearing range, and zooming. There is also not exact
value of augmented data size for training.

In the future, we will discover more data that covers
more challenging issues in this research field. Also, we will
carry out further research on other generative models, that is,
generative adversarial networks and improved deep network
architecture to disclose the properties of CVAE. Addition-
ally, fast and adaptive algorithms for searching data aug-
mentation policies will be considered. We will improve the
proposed method in terms of both computational cost and
predictive performance for developing real-world applica-
tions. To increase the capability, we will employ more image
transformation techniques and discover augmented data
characteristics.
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