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ABSTRACT Contention-based medium access control (MAC) protocols for underwater acoustic sensor
networks are designed to handle packet collisions that are caused by long propagation delays. However,
existing protocols are known to suffer from relatively high collisions, which decrease system perfor-
mance. To enhance system performance, we propose a contention-based MAC protocol that employs a
widely-popular machine learning technique, namely, Q-learning. Using Q-learning, the proposed protocol
allows the sensor nodes to intelligently select the back-off slots and accordingly schedule the transmission
of data packets such that collisions are minimized at the receiver. Unlike in existing protocols, the sensor
nodes are not required to exchange scheduling information, which implies that the proposed protocol
has low complexity and overhead. Under varying traffic loads and node numbers, the proposed protocol
is compared with the state-of-the-art ALOHA-Q for underwater environment (UW-ALOHA-Q), multiple
access collision avoidance for underwater (MACA-U) and exponential increase exponential decrease (EIED)
protocols. Results demonstrate the effectiveness of the proposed protocol in terms of energy efficiency,
channel utilization, and latency.

INDEX TERMS Back-off, collisions, medium access control, machine learning, Q-learning, slot selection,
underwater acoustic sensor networks.

I. INTRODUCTION
With recent technological advances, it is now possible to
explore and monitor the ocean through the application
of underwater acoustic sensor networks (UWASNs) [1].
Generally, UWASNs contain a large number of battery pow-
ered acoustic sensors [2] that execute collaborative tasks
such as oceanographic environment monitoring, data col-
lection, disaster prevention, and tactical surveillance [3].
Unlike terrestrial wireless sensors, underwater acoustic sen-
sors use acoustic waves to communicate with each other;
these are approximately five-fold slower than the radio fre-
quency waves used by terrestrial wireless sensors [4]. Despite
being slower, acoustic waves are preferable to radio waves
as they are relatively robust to attenuation while radio waves
suffer from high attenuation in underwater environments [5].
However, due to the lower propagation speed of the underwa-
ter acoustic channel, some distinct features such as limited
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bandwidth, low channel capacity, high bit error rate, and
high dynamics of channel quality are observed in underwater
acoustic sensor networks [3].

Medium access control (MAC) protocols are pertinent for
UWASNs as they provide high system performance in an
energy efficient manner by coordinating access to a shared
medium [6]. The aforementioned characteristics of the under-
water channel make direct application of terrestrialMAC pro-
tocols in UWASNs an inefficient process; thus, the process
must be rethought [7].

Generally, the major task of both underwater and terrestrial
MAC protocols is resolving collisions of data packets at the
receiver. However, for underwater MAC protocols, resolving
data packet collision at the receiver must include consider-
ation of transmission time along with the distance between
the senders and the receiver, while terrestrial MAC protocols
require consideration of transmission time only as the propa-
gation delay is negligible in the terrestrial domain [8].

Consider a small network with one receiver and two
senders in the underwater environment. In this network,
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FIGURE 1. Collisions caused by space-time uncertainty.

sender-1 and sender-2 have different distances with reference
to the receiver. Suppose that sender-1 and sender-2 want to
transmit one data packet to the receiver, and both senders
select the same sending time (Fig. 1(a)) for data packet
transmission. In this case, even with the same transmission
time collision is possibly avoided as both data packets arrive
successfully at the receiver at different receiving times.More-
over, assuming, that sender-1 and sender-2 transmit data
packets at different sending times and, despite these differ-
ences, the reception time for these data packets is possibly the
same at the receiver; a collision would then occur (Fig. 1(b)).
This phenomenon is a two-dimensional uncertainty, which is
better known as space–time uncertainty [9].

Considering the dynamicity and the complexity of under-
water acoustic channels, applying artificial intelligence (AI)
techniques found to be an effective solution. Hence, var-
ious works on UWASNs consider AI techniques to solve
a range of problems. For example, a combination of three
AI techniques, i.e., ant colony optimization, artificial fish
swarm, and dynamic coded operation, is designed to reduce
energy consumption and increase robustness [10]. Boosted
regression tree technique is used to classify the modulation
and coding scheme levels by investigating the underwater
channel characteristics [11]. A modulation selection method,
which is based on a conventional neural network and random
forest technique to ensure a reliable underwater acoustic com-
munication in the time-varying underwater acoustic channel,
is proposed in [12]. In [13], [14], and [16], Q-learning is
used to determine the optimal routing path, the selection of
adaptive underwater channels, and schedule the transmission
of data packets, respectively.

In the present study, we focused on reducing the col-
lision probability at the receiver by designing a novel
Q-learning-based MAC protocol for UWASNs. Q-learning is
a popular model-free reinforcement learning technique that is

based on the state–action pair value denoted Q(s,a), where s
denotes a state and a denotes an action. Briefly, Q-learning
predicts the Q(s,a) value without any prior knowledge on
the parameters of the system of a given environment. The
Q(s,a) value for taking an action in a particular state is defined
by a policy π , which determines how an agent behaves at a
given time [15]. The agent is considered an entity that learns
and makes decisions independently while everything outside
the agent is considered the environment [11]. For learning,
the agent explores its environment by selecting a particular
action in each state based on the Q(s,a) values. Depending on
the action performed, the agent receives a positive or negative
reward. The ultimate goal is to determine the action that
generates the maximum reward.
Q-learning, if applied to underwater acoustic sensor net-

works, may increase the performance of these networks
by reducing collisions at the receiver. Additionally, as
Q-learningworks on a trial-and-error basis, it does not require
signaling information exchange to schedule the transmission
of data packets and its algorithm has a relatively low compu-
tational complexity.

The main contributions of the current study are as
follows.
• An underwater Q-learning-based MAC protocol, which
has the major advantage of low-signaling overhead and
low complexity, is proposed to optimize the selection of
back-off slots while offering low packet collisions.

• A newly designed reward function that is based on the
outcome of transmitted data packets, i.e., success or
collision. Moreover, for the first time, the normalized
received power level, which is not considered in the
existing contention-based MAC protocols, is considered
to determine the number of collisions.

• Through a system-level simulator, the energy efficiency,
latency, and channel utilization of the proposed protocol
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under varying traffic loads and the number of nodes is
investigated.

The remainder of this paper is organized as follows.
Section II provides a discussion on the related works.
In Section III, the assumptions and conditions are presented,
whereas in Section IV the proposed scheme is introduced.
Numerical results are presented in Section V and conclusions
are drawn in Section VI.

II. RELATED WORKS
Previous studies have shown that the two general classes of
MAC protocol, contention-based and contention-free MAC
protocols, attempt to complete a common task, namely,
collision minimization at the receiver [16]. Contention-based
underwater MAC protocols can use full underwater channel
bandwidth [17]; thus, most efforts to design underwaterMAC
protocols have focused on the contention-based class.

Handshaking and random-accessMAC are the two classifi-
cations of contention-based MAC protocols. In handshaking-
based MAC protocols, sender and receiver nodes exchange
small control packets before data packet transmission for
the reservation of channels and the avoidance of colli-
sions. In random access-based MAC protocols, collision
avoidance is a probabilistic approximation [6] because the
senders’ data transmission has no prior coordination. Hence,
handshaking-based MAC protocols have dominance over
random access-based protocols in terms of collision avoid-
ance but they show less efficiency in terms of energy and
latency.

Fang et al. proposed the carrier sense multiple access with
collision avoidance for underwater (UW-CSMA/CA) [18],
an asynchronous underwater MAC protocol in which a
combination of carrier sensing and handshaking is applied
to reduce collision probability. The main principle of the
UW-CSMA/CA algorithm is similar to that of the original
CSMA/CA algorithm but with enhancements in the state tran-
sition rules, transmission deferment rules, and waiting slot
time. These three improvements have been introduced into
UW-CSMA/CA to harmonize the underwater environment
features.

Similar to the UW-CSMA/CA algorithm, the handshaking-
based MAC protocol slotted floor acquisition multiple access
(slotted FAMA)was proposed byMolins and Stojanovic [19];
this was adapted from the FAMA protocol with the addi-
tion of an ARQ technique. Although similar, slotted FAMA
differs from UW-CSMA/CA because it is synchronized and
channel access is divided into fixed time slots where all the
packets (RTS, CTS, DATA, or ACK) must be delivered at
the beginning of the time slot. The length of the time slot
is the combination of maximum propagation delay, length
of RTS/CTS packet, and guard time. The introduction of
the time-slotting technique in slotted FAMA minimizes the
chance of collisions and eliminates the requirement for long
control packets.

Peleato and Stojanovic [20] proposed an improvement to
the slotted FAMA protocol that minimizes overheads and

increases energy efficiency. The improved protocol also uti-
lizes the handshaking technique, but it includes the addition
of a waiting time period between the time when a CTS packet
is received and the time the sender node starts sending its data
packet, which avoids potential packet collisions.

Another improvement to the slotted FAMA proposed by
Dong et al. [21] considered an adaptive slot duration strategy
that avoids packet collisions by using the handshaking tech-
nique while trying to offer good throughput of MAC in the
UWASNs.

Multiple access collision avoidance for underwater
MACA-U [22], a collision avoidance underwater MAC pro-
tocol, proposed by Ng et al. is an adaption of the terres-
trial MACA protocol but with changes to the control rules
and packet forwarding approach. Although MACA-U is a
handshaking-based MAC protocol like the other abovemen-
tioned MAC protocols, it differs by not using carrier sensing
before sending an RTS, which improves energy efficiency,
and not including an ARQ technique, which eliminates extra
overheads.

These handshaking-based underwater MAC protocols
guarantee collision avoidance but degrade the channel uti-
lization as significant amount of idle time is introduced in
the network. Additionally, their exchange of control packets
can introduce high energy consumption, latency, and extra
overheads into the network.

In [8], [23], and, [24] for UWASNs, random access MAC
protocols i.e., different variants of Aloha-based protocols
have been proposed, where one of the protocol use slot guard
time for the mitigation of packet collisions [8], while others,
such as, protocol proposed in [17] add additional control
packets for collision avoidance. A receiver synchronized
approach is used in the protocol proposed in [18] to minimize
packet collisions at the receiver. However, for high traffic con-
ditions or large number of sensor nodes, the random-access
protocols suffer from low channel utilization following high
latency and energy consumption.

Apart from the above-mentioned approaches, several other
procedures, such as back-off algorithms, that can reduce the
collision probability at the receiver are applied to contention-
based MAC protocols. One of the examples named exponen-
tial increase and exponential decrease (EIED) is applied to
many existing works [25]–[28]. In EIED, the back-off value
is exponentially incremented or decremented based on the
status of a packet transmission, i.e., success or collision. The
fixed tuning of EIED introduces a considerable amount of idle
time at the network when the traffic load is high and for large
number of sensor nodes, which affects the network’s channel
utilization.

Contention-free MAC protocols, that is, TDMA based
MAC protocols are well-known for scheduled data packet
transmission that can mitigate data packet collisions at the
receiver. In [29], [30], and [31], a TDMA based MAC pro-
tocol is proposed where collision reduction at the receiver
comes at the cost of a large scheduling delay. The reason is
that first the central node has to collect the information to
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determine the transmission/reception schedule, then it has to
send out the schedule information to the sensor node, and
finally the sensor nodes, on receiving the schedules, transmit
their data packets accordingly.

Owing to low-computational requirements, Q-learning is
widely-studied in terrestrial MAC protocols to solve issues
such as time-slot scheduling [32], data transmission schedul-
ing [33], and active and sleep time adjustment for duty
cycling [34]. At present, very few studies have been con-
ducted on using Q-learning-based protocols in underwater.
Most existing research focuses on routing, while only two
protocols focus on the MAC layer. One extends the lifetime
of underwater acoustic sensor networks [35] and the other
focuses on improving the channel utilization of underwater
acoustic sensor networks [16].

III. ASSUMPTIONS & CONDITIONS
A data gathering star network topology is considered wherein
the sink is located at the center and sensor nodes are
uniformly distributed within the transmission range of the
sink [24], [36], [38]. In this study, the sensor nodes are con-
sidered to be the last-hop nodes of a multi-hop data-gathering
network. These last-hop relay nodes collect data either from
the environment or from sensor nodes that are more than
two-hop away from the sink and send to the sink. Such net-
works can be useful in real-world applications, such as mili-
tary surveillance, oceanographic data collection, underwater

environment monitoring, etc. [1], [3], [5]. Time is slotted with
the duration of the packet length plus guard time.

We assume that sensor nodes are synchronized with the
sink and that the propagation delays are known. Synchroniza-
tion in this studymeans that each sensor node knows the exact
transmission time that corresponds to the data packet arrival
time at the sink [24], [37]. Based on synchronization, the data
packet is transmitted in a way that the data packet arrives
at the beginning of the slot at the sink regardless of sensor–
sink distance. The associated events are illustrated in Fig. 2,
where the n-th data packet of Nodei denoted by Di(n) and
m-th data packet of Nodej denoted by Dj(m) are generated at
any time and backed-off before being transmitted to alleviate
possible collision at the sink. The transmission time was
calculated by considering the targeted slot at the sink and the
distance. The transmitted data packets are then received at
the beginning of the targeted slot at the sink, e.g., in Fig. 2,
the k-th and (k+2)-th slots forDi(n) andDj(m), respectively.
Sensor nodes were considered static; hence, the movement of
sensor nodes caused bywater current andwaves, for example,
is ignored.

Based on Throp’s underwater channel model, we assume
that by using pre-acquired information on distance and fre-
quency, each sensor node is capable of controlling the trans-
mission power in such a way that the received power level,
PR, at the sink must be constant regardless of the locations of
the sensor nodes [38].

FIGURE 2. Illustration of events that happen in a time domain such as packet generation, back-off, packet transmission, and packet arrival.
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FIGURE 3. A data gathering star network topology.

IV. PROPOSED SCHEME
Where only one data packet arrives at the beginning of a given
slot of the sink the transmission is considered successful.
Otherwise, reception of more than one data packet at the
beginning of same time slot is considered a collision.

After reception of data packets, the sink responds by broad-
casting ACK or NACK at the beginning of the next slot
depending on whether the data packet transmission was suc-
cessful or not; thus, the corresponding sender node decides
to move forward to the next data packet transmission or
to retransmit the failed data packet. Unlike ACK, NACK

contains the received power level, denoted by nPR, where n
is the number of collided packets.

Fig. 4 illustrates an associated event in which the (n+1)-th
packet of Nodei denoted by Di(n+ 1) and (m+ 1)-th packet
of Nodej denoted by Dj(m+ 1) collide at the (k + 25)-th slot
of the sink. Since the number of packets received by the sink
at the (k + 25)-th slot is 2, at the beginning of the (k + 26)-th
slot, a NACK is broadcast that contains the twice received
power level, 2PR. This 2PR value informs the Nodei and
Nodej that two data packets collided at the sink; based on this
information, both nodes will perform back-off and retransmit
the collided data packets at a later time. As the proposed
system works in a full duplex mode, a separate downlink
channel is used for broadcasting the ACK or NACK.

The decision to select a back-off value before the trans-
mission of generated data packets or to retransmit the
collided data packets is made by sensor nodes using the
Q-learning technique. Each sensor node operates as an agent
of Q-learning andmanages aQ table. Initially, all theQ values
are set to 0 but are updated according to the obtained reward
after sensor nodes take an action. In general, the following
equation is considered for updating Q values:

Q(st+1, at )

= Q(st , at )+ α[rt + θ max
a
Q(st+1, a)− Q(st , at )], (1)

where Q(st , at ) is the current Q value obtained when action
at is performed in state st . The maximum possible Q value is
found by the agent in the next state st+1, given that at is taken,
reward rt is obtained, and the current Q value get updated.

FIGURE 4. Packet collision and NACK broadcasting with received power level.
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The discount factor, θ , which ranges between 0 and 1, gives
more weight to either immediate rewards (if θ < 1) or future
rewards (if θ > 0), whereas, the learning rate, α, which also
ranges between 0 and 1, is used to tune the learning speed.

In the proposed protocol, action is defined as the decision
made by each sensor node for selecting the back-off value
denoted as B. The value of Bwill be in the range [Bmin,Bmax].
where Bmin and Bmax represent the minimum and maximum
back-off values, respectively. State is defined as the receiver
of data packets.

In the deployed single-hop network, only one receiver
exists, i.e., the sink. Since the sink is the sole data packet
receiver, the applied Q-learning technique is basically a
single-state Q-learning technique.

In single-state Q-learning, only the immediate reward is
considered because there is no new or future state and,
accordingly, no future reward . Differing from the update rule
shown in (1), the following expression is used in the proposed
protocol for the update of Q values [11]:

Qt+1(a) = Qt (a)+ α(rt − Qt (a)), (2)

whereQt (a) andQt+1(a) denote the current and newQ values
at time steps t and t + 1, respectively.
The reward is themain element that controls the decrement

or increment of the Q values and determine not only the
behavior but also the performance of the system. After an
action is performed, a sensor node transmits a data packet to
the sink and receives a certain amount of reward consequent
to the performed action. The reward settings differ depending
on whether a collision occurred or not at the sink. If data
packet reception is acknowledged by the sink, then the posi-
tive earned reward denoted by rsuc is defined as follows:

rsuc = β1 × r1 + β2 × r2 + β3 × r3, (3)

where r1, r2, and r3 are the fixed reward factor, back-
off-related reward factor, and success-related reward factor,
respectively. β1, β2, and β3 are the respective related weights
of the reward factors. The reward factors are given as follows:

r1 = −1, (4)

r2 = 1−
B

Bmax
, (5)

r3 = 10. (6)

The fixed reward factor r1 represents the giving of punish-
ment to the sensor nodes as energy is consumed when packet
transmission occurs. The back-off-related reward factor r2
depends on the performed action B. A higher value of B
introduces high idle time and delay in the network, which
is responsible for the degradation of channel utilization.
Therefore, a lower value of B is desirable that provides
higher rewards for successful data packet transmission. r3, the
success-related reward factor, is given when ACK broadcast-
ing is received by sensor nodes.

On the other hand, if a collision occurs at the sink, a nega-
tive earned reward denoted by rcol is defined as follows:

rcol = γ1 × r1 − γ2 × r2 + γ3 × r∗3 − γ4 × r4, (7)

where γ1, γ2, γ3, and γ4 are the respective reward weight
terms. r1 and r2 reward factors are the same in both the rsuc
and rcol . The other two reward factors, r∗3 and r4, are the
collision related reward factor r∗3 , which is awarded when
NACK broadcasting is received by sensor nodes, and the
related reward factor r4 is the received power level. They can
be defined as

r∗3 = −10, (8)

r4 = nPR. (9)

Based on the obtained reward, theQ values of sensor nodes
are updated. Sensor nodes use these updatedQ values tomake
the decision of selecting B values. Suppose that, at time step
t + 1, the reward is rsuc, the following equation would then
be used for the calculation of the Bt+1 value:

bBt+1e =



eBte − ((Qt+1(a)− Qt (a))× bBte) ,
if Qt (a) ≥ 0,Qt+1(a) > 0

bBte + ((Qt+1(a)− Qt (a))× bBte) ,
if Qt (a) < 0,Qt+1(a) < 0

bBte −
((

Qt+1(a)− Qt (a)
2

)
× bBte

)
,

otherwise

(10)

The following equation is applied for rcol when calculating
the Bt+1 value:

bBt+1e =



bBte + ((Qt (a)− Qt+1(a))× bBte) ,
if Qt (a) > 0,Qt+1(a) > 0

bBte − ((Qt+1(a)− Qt (a))× bBte) ,
if Qt (a) ≤ 0,Qt+1(a) < 0

bBte +
((

Qt (a)− Qt+1(a)
2

)
× bBte

)
,

otherwise

(11)

where b·e denotes rounding. Qt (a) and Qt+1(a) represents Q
value at time step t and t + 1, respectively. Bt is the back-off
value at time step t .
Initially, whenQ values are set to 0, the sensor nodes select

B values randomly from the range of [Bmin,Bmax]. Later on,
the B values are calculated using (10) or (11) based on the
success or collision of a packet. A simple example of how
the Q values of sensor nodes help to select B values after
receiving a broadcast from the sink is given below and illus-
trated in Fig. 5. Suppose that, at the beginning of the process
when all Q values are 0, Nodei randomly chooses a B value
of 25 and transmits the Di(n)-th data packet after back-off at
the known transmission time. The transmission is successful
and the earned reward is positive for Nodei. Now, according
to equation (2), theQ value ofNodei is updated and the newQ
value is 0.253. To simplify the calculation, it is assumed that
β1 = 0.1, β1 = 0.7, β3 = 0.2, α = 0.1, and Bmax = 256.
The new B value for Nodei is now 19 according to (10).
Based on this obtained B value, Nodei performs back-off and
transmits the Di(n+ 1)-th data packet, but this time collision
occurs at the sink with the Dj(m+1)-th data packet of Nodej.
Again, the Q value of Nodei is updated. This time the earned
reward is negative for Nodei and the new Q value according
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FIGURE 5. Operation of the proposed scheme.

the (2) becomes −0.30. Here, γ1, γ2, γ3, and γ4 are assumed
to be 0.05, 0.05, 0.45, and 0.45, respectively, with the same
values of α and Bmax as previously mentioned. Based on (11),
the new B value forNodei is now 24.Nodei performs back-off
according to this obtainedB value and retransmits the collided
Di(n+1)-th data packet. If the same packet of Nodei exceeds
the limit for the maximum number of packet retransmissions,
it will be discarded. As with Nodei, Nodej also performs
back-off according to its updated Q value and retransmits the
collided Dj(m + 1)-th data packet after selecting B with the
aim of achieving successful packet retransmission.

V. SIMULATION MODEL AND RESULTS
To evaluate the proposed protocol, we provide simulation
results obtained using MATLAB-(R2020a). In the simula-
tion, 20 sensor nodes were randomly deployed within the
transmission range of the sink. The traffic generated by each
sensor node followed a Poisson distribution with the rate
of 0.05–0.15 [packets/s]. To show the effectiveness of the pro-
posed protocol, more simulations were performed by setting
the generated traffic load as 0.1 [packets/s] where the number
of sensor nodes are varied from 10 to 30. As the proposed pro-
tocol is a learning-based protocol, therefore, it is beneficial to
perform the simulation to show how the performance of the
proposed protocol varies over simulation time. In this regard,
the proposed protocol is simulated by fixing the traffic gener-
ation rate and the number of nodes as 0.125[packets/s] and 18,
respectively. Throp’s underwater acoustic channel model was
considered to characterize the underwater model [39]. For
RX/TX power and data rate, a Teledyne Benthos ATM-903
commercial underwater modem was considered [40].

TABLE 1. Simulation parameters.

The proposed protocol was compared with MACA-U [22],
EIED and UW-ALOHA-Q [16]. MACA-U is a collision
avoidance underwater MAC protocol in which RTS-CTS
control packets are exchanged before the transmission of data
packets to mitigate data packet collision at the receiver. EIED
is a random back-off algorithm. To lower collision prob-
ability at the receiver, EIED increases the back-off value
of a sensor node by a back-off factor κi if a data packet
transmitted from that sensor node is involved in a collision;
otherwise, the back-off value is reduced by back-off fac-
tor κd after a successful data packet transmission, where
κi = κd = 2. UW-ALOHA-Q is a learning-based underwater
MAC protocol adopted from terrestrial ALOHA-Q protocol
where Q-learning technique is implemented in repeating
frame structure to achieve collision free scheduling by finding
an optimal data packet transmission time slot in each frame.
Three improvements, namely, asynchronous operation,
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refinement of the frame length and uniform random back-off
is incorporated in UW-ALOHA-Q to address the key limita-
tions of underwater environment.

Three performance metrics, i.e., energy efficiency, latency,
and channel utilization, were considered for performance
evaluation.

First, energy efficiency is defined as,

ε =
N × Ld
εc

[bits/j] (12)

where Ld is the data packet size, N is the number of data
packets received successfully by the sink, and εc is the total
energy consumption for the duration over which the network
was active.

Second, latency, τ , is defined as the average time interval
between the generation of the data packet and successful
delivery of that generated data packet at the sink. It is obtained
as follows:

τ =

N∑
K=1

(Ta,k − Tg,k )

N
[s] (13)

where Tg,k is the generation time of the k-th generated data
packet, Ta,k is the successful arrival time of the k-th generated
data packet at the sink.

Finally, channel utilization, η, is defined as the ratio of the
duration of successfully received data packets at the sink to
the total simulation time and is defined as follows:

η =
N × Tdata
Tslot × Nslot

(14)

where, Tdata is the data packet duration, Tslot is the slot dura-
tion, Nslot is the number of slots during the total simulation
time. Discarded data packets are not considered in this case.

Fig. 6 shows the energy efficiency for various average traf-
fic loads. A downward performancewas exhibited when aver-
age traffic load for the proposed, EIED and MACA-U pro-
tocols increased while the performance of UW-ALOHA-Q

FIGURE 6. Energy efficiency versus average traffic load.

being saturated. UW-ALOHA-Q shows the highest energy
efficiency as, in part, the number of collisions is greatly
reduced because each node learns to determine the time-slot
that has a low collision probability and, in part, because the
time-slot duration is set to the maximum round trip time.
However, it causes unavoidable long delay and subsequently
poor channel utilization. On the other hand, for the proposed
protocol and the remaining two comparison protocols the
downward performance is observed with the increment of
traffic load as collision occurs at the sink more frequently
when the number of data packet transmission increases. The
proposed protocol shows a higher energy efficiency com-
pared with theMACA-U and EIED because more rewards are
obtained as a result of increasing data packet transmission,
which helps the sensor nodes to learn the back-off value for
reducing data packet collision at the sink. In EIED, more col-
lisions are introduced at the sink compared with the proposed
protocol because, based on the received ACK or NACK,
sensor nodes simply increase or decrease back-off values
exponentially while ignoring how many packets have col-
lided. MACA-U shows the lowest energy efficiency among
the four protocols, which may be attributed to sensor nodes
exchanging control packets before data packet transmis-
sion or to the propagation delay. Because of the propaga-
tion delay, there remains a possibility that control packets
will collide in the process of handshaking. Both of these
reasons can account for high energy consumption in the
network.

Fig. 7 shows the energy efficiency for various numbers
of nodes, which decreased with increasing node number.
This occurs because, with an increasing number of sensor
nodes, the sink faces a greater number of collisions. Conse-
quently, data packet retransmission occurs more frequently
in the network and energy consumption therefore increases.
Greater energy consumption is an indication of lower energy
efficiency. The energy efficiency of the proposed protocol is
close to that of UW-ALOHA-Q’s for the reasons mentioned

FIGURE 7. Energy efficiency versus number of nodes.
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in Fig.6. For EIED and MACA-U, the trend illustrated
in Fig. 6 is responsible for the poor performance compared
with the proposed protocol and UW-ALOHA-Q.

FIGURE 8. Latency versus average traffic load.

Fig. 8 shows the latency for various average traffic loads,
which increased for all four protocols with increments of
average traffic load. An increase in average traffic load indi-
cates a greater number of data packet retransmissions due
to a higher number of collisions at the sink; consequently,
high latency is introduced into the network. Among the
four schemes, MACA-U shows the highest latency. This is
due to the handshaking procedure between the sender and
receiver that takes place before data packet transmission,
which causes a significant amount of waiting time. It is also
due to the additional collisions induced by control pack-
ets during the handshaking. Where control packet collision
occurs, the whole handshaking process starts again from
the beginning, which introduces an indicative delay in the
network. UW-ALOHA-Q shows higher latency compared to
the proposed protocol and EIED due to two reasons. The first
one is the large frame duration that introduces high idle time.
The second one is the increase in the number of buffered
data packets that are queued for transmission as the traffic
load increases. Additionally, as total elimination of collisions
is impossible, a certain number of retransmissions exist that
increase network latency. The proposed protocol and EIED
perform data packet transmission without applying the hand-
shaking technique; thus, the latency of each protocol is much
lower than that of MACA-U. As shown in Fig. 8, the lowest
latency was achieved by the proposed protocol. This can be
explained by the sensor nodes using Q values for the adjust-
ment of back-off values, which results in a lower number of
data packet retransmissions.

Fig. 9 shows the latency for various numbers of nodes,
which increased with the increment of node numbers in the
network. As shown, this latency trend was apparent for all
four protocols. Generally, more nodes lead to more collisions
at the sink, which increases the average delay. The proposed
protocol has the lowest average latency, for reasons illustrated

FIGURE 9. Latency versus number of nodes.

in Fig. 8. For the other three protocols, UW-ALOHA-Q,
MACA-U and EIED, Fig. 8 also shows why their perfor-
mance is poor compared with that of the proposed protocol.

Fig. 10 shows channel utilization, which increased as traf-
fic load increased up to a certain point and then subsequently
decreased for the proposed protocol, EIED and MACA-U.
This is a general feature of channel utilization versus traffic
load for contention-based protocols because, beyond a cer-
tain threshold, packet collisions become the dominant factor
that determines channel utilization rather than traffic load,
which proportionally increases channel utilizationwhere traf-
fic load is lower. In case of UW-ALOHA-Q, channel uti-
lization increased and then saturated. Fig. 10 shows that
the proposed protocol has the highest channel utilization,
which reflects the ability of the Q-learning technique to select
back-off values that reduce collision at the sink and thereby
mitigate the average delay of the network compared with
UW-ALOHA-Q, EIED and MACA-U. MACA-U had the
lowest channel utilization because it performs handshaking

FIGURE 10. Channel utilization versus average traffic load.
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to avoid possible collisions; handshaking introduces a signif-
icant amount of latency into the network. UW-ALOHA-Q has
lower channel utilization compared to the proposed protocol
and EIED because it has higher transmission delay due to the
large frame duration. However, with incremental increases in
average traffic load, the channel utilization of EIED decreases
more rapidly than that of the proposed protocol because more
retransmissions are performed in EIED. The advantage of
fewer retransmissions in the proposed protocol arises from
the adjustment of back-off based Q-learning.

FIGURE 11. Channel utilization versus number of nodes.

Fig. 11 shows the channel utilization for various numbers
of nodes in the network. Among the four protocols, the pro-
posed protocol had the highest channel utilization for the
same reasons described in relation to Fig. 10.

Fig.12 demonstrates the performances of the protocols
over the simulation period. It can be seen that the proposed
protocol and UW-ALOHA-Q show some variations while
EIED is almost steady. This is because both the proposed
protocol and UW-ALOHA-Q have a learning process, while

FIGURE 12. Channel utilization versus simulation time.

FIGURE 13. Energy efficiency versus simulation time.

EIED does not, resulting in a relatively steady-state perfor-
mance. Moreover, the reasons behind the proposed protocol’s
better performance compared to the other two protocols are
already described in Fig.10.

Fig.13 follows the same description as given for
Fig.12 except for the fact that in case of energy efficiency,
UW-ALOHA-Q shows better performance for the same rea-
sons described in Fig.6.

VI. CONCLUSION
Herein, a contention-based underwater MAC protocol was
proposed in which a single-state Q-learning technique was
integrated to optimize the back-off slots to reduce collision
probability at the sink in underwater acoustic sensor net-
works. Through subsequent trial-and-error learning, the pro-
posed protocol permitted sensor nodes to intelligently predict
the number off backed-off slots that were needed to mitigate
collision probability.

Through extensive simulations, the performance of the
proposed protocol was compared with the UW-ALOHA-
Q, MACA-U and EIED protocols in terms of energy effi-
ciency, latency, and channel utilization. Moreover, the pro-
posed protocol outperformed the UW-ALOHA-Q protocol
in single-hop networking in terms of latency and channel
utilization where for MACA-U and EIED, the proposed pro-
tocol outperformed in terms of energy efficiency, latency and
channel utilization.

In future works, a multi-state Q-learning will be investi-
gated to improve underwater contention-based MAC proto-
cols in multi-hop networks.
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