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ABSTRACT Deep learning algorithms have seen acute growth of interest in their applications throughout
several fields of interest in the last decade, withmedical hyperspectral imaging being a particularly promising
domain. So far, to the best of our knowledge, there is no review paper that discusses the implementation of
deep learning for medical hyperspectral imaging, which is what this work aims to accomplish by examining
publications that currently utilize deep learning to perform effective analysis of medical hyperspectral
imagery. This paper discusses deep learning concepts that are relevant and applicable to medical hyper-
spectral imaging analysis, several of which have been implemented since the boom in deep learning. This
will comprise of reviewing the use of deep learning for classification, segmentation, and detection in order
to investigate the analysis of medical hyperspectral imaging. Lastly, we discuss the current and future
challenges pertaining to this discipline and the possible efforts to overcome such trials.

INDEX TERMS Deep learning, neural networks, machine learning, medical image analysis, medical
hyperspectral imaging.

I. INTRODUCTION
Medical imaging refers to images used to aid in clinical
work relative to the human body such as surgical procedures,
diagnoses for impeding diseases, or simply to analyze and
study body functions and is primarily based on radiological
research. For the last couple of decades in particular, mod-
ern imaging techniques such as X-rays, magnetic resonance
imaging (MRI), and ultrasound have had significant impacts
on not onlymedical symptoms analysis but also on the spawn-
ing of more imaging techniques for improvised examina-
tion. Computed tomography (CT) scan, for example, is an
X-ray procedure that displays the cross-sectional image of
the body, which now also helps to assess brain or head-related
injuries [1]. Another circumstance in which X-rays have been
influential for further progress in research and application is
mammography, in which a low energy x-ray photon beam is
implemented to diagnose breast cancer, which is presently a
commonmedical problemworldwide [2]. These implementa-
tions of X-rays are part of practices known as computer-aided
diagnosis (CAD), which is a methodology used to assist
clinical procedure to perform diagnosis [3]. More than often
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for medical imaging, image fusion is utilized, in which the
final output image consists of more meaningful information
and is obtained from multiple input images [4]. An emerging
imaging method in the discipline of biomedicine is Tera-
hertz (THz) imaging, which is currently working to overcome
its limitations with the aid of nanotechnology by finding its
roots in the highly promising medical imaging methodology
and becoming safer than traditional methodologies [5]. The
primary goals for any effort to obtain medical images for
diagnosis is via a non-invasive and inexpensive methodology.

Hyperspectral imaging (HSI) is a developing imaging
technique amid the medical imaging modality and offers a
noninvasive disease diagnosis in majority of cases. HSI com-
prises of various images aligned in adjacent narrow wave-
lengths or spectral bands (often in the range of hundreds)
and recreates a reflectance spectrum of all the pixels in the
band [6]. This is done by separating light using a spectral
separator consisting of bandpass filter(s) and accumulating it
on a focal plane detector (typically a complementary metal
oxide semiconductor (CMOS) sensor) to form the image.
This provides a method to perform medical image diag-
nosis which is relatively safer when radiation is consid-
ered, provides real-time images, and also provides a greater
bandwidth resolution with which to perform diagnosis [7].
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Hyperspectral imaging has traditionally been used for remote
sensing [8], [9], agriculture [10], food safety& quality assess-
ment [11], [12], image enhancement [13], disaster monitor-
ing [14], [15], feature extraction [16], classification [17],
object detection [18]–[20], and recently even for conservation
of art [21]. For medical imaging, it is principally obtained by
targeting tissue samples by transmission of light and used to
diagnose and detect various types of cancers [7] and other
medical applications. With cancer being the second lead-
ing cause of death in the US, this significantly impacts the
medical society and its research to eliminate cancer. Medical
Hyperspectral Imaging (MHSI) has previously aided in suc-
cessfully distinguishing between tumors and normal tissues
from a rat breast tumor model, providing a clear indication
of how influential MHSI can be for future research on breast
cancer [22]. It has also proven its significance in detection of
cancerous tissue cell detection from normal tissue specimen
for neck and head cancer [23]. Gastric cancer is one of the
leading causes of cancer-related deaths in the world, and its
future diagnosis will also be significantly simplified thanks to
MHSI [24]. All these MHSI applications for several medical
diagnoses have led to the development of multiple algorithms
to more accurately and efficiently classify the cancerous
tissues from a sample [25], which further instigates on the
different techniques for the processing and analysis of MHSI.

Artificial Intelligence, and its most common subset known
as Machine Learning (ML), is a highly popular approach to
process hyperspectral images and extract meaningful data
from it. ML algorithms make use of data and statistical
models to learn and identify patterns to complete specific
tasks and make decisions with or without human supervision.
Several such ML algorithms are utilized when examination
of hyperspectral images is considered and consequently in
identifying and classifying differences in a tissue specimen
when studying MHSI. While ML algorithms can be rudi-
mentarily divided into supervised and unsupervised learning
models, the algorithms are prone to develop into increasingly
complex models as we delve further into Deep Learning (DL)
[26], a branch of ML that is influenced by the structure
and function of the human brain. In supervised learning,
the model is fashioned from a dataset containing a number of
input features and outputs, or labels. This model is formed by
finding the optimal model parameters from a training sample
of the dataset, which is subsequently used to predict the
outcome based on the minimized cost function. Unsupervised
learning processes data without any particular structure and is
trained to find patterns and typically create groupings based
on clusters.

Traditional ML algorithms typically used for MHSI appli-
cations lean towards classification models for identifica-
tion and diagnosis, which also includes k-nearest neighbors
(kNN) [27], linear discriminant analysis (LDA) [28], and
support vector machines (SVM) [29]–[31], with the latter
being themost prominently applied.WithML already heavily
facilitating the processing of MHSI, the next logical step is
to apply deep learning to achieve a more cost-effective and

more accurate prediction model, thereby providing a more
comprehensive diagnosis to this pertaining medical issue.
Deep learning in general has started taking off extraordinarily
as early as 2012 [32], [33], and deep learning for MHSI
has been no different in this regard. This subset of ML has
already proven to outperform traditional ML techniques in
the principle of head and neck surgery [34] and looks promis-
ing for MHSI in a broader aspect. Deep learning has also
been applied for classification of a previously listed exam-
ple related to head and neck cancer and shows significant
improvement in accuracy over SVM and kNN [35].

Our end goal from this paper will be to highlight the key
DL methods being used for MHSI and the challenges for
successful application of DL in MHSI. This is because the
DL methods to be implemented for MHSI in the coming
decade will have a significant implication for future stud-
ies in several key areas of the medical discipline, including
cancer research. The rest of the survey will be discussed as
follows: Section 2 will introduce the fundamentals of DL
methods that are currently being used as well as several
emerging algorithms. Section 3 will discuss which DL meth-
ods are presently implemented for MHSI as well as addi-
tional algorithms that could be applied in the coming decade.
Section 4 will ultimately discuss the current challenges faced
by DL for MHSI.

As previously mentioned, the trend in research for DL
methods being used for MHSI has seen a sudden surge since
as recently as 2012. This can easily be traced back to the Ima-
geNet Large Scale Visual Recognition Challenge (ILSVRC)
that was conducted in 2012, in which a deep learning method,
which we will discuss later in Section 2, broke prior records
by providing accuracy results close to 41%better than the best
previous attempt [36]. Since then, more and more researchers
have explored DL methodologies in a wide array of disci-
plines. Our survey covers papers published that specifically
target the confrontation of medical hyperspectral imaging
with deep learning techniques. For papers to be considered
valid for our purpose, we examined keywords and selected the
papers from only major publishers comprising of IEEE, Else-
vier, Springer, SPIE, MDPI, International Journal of Biomed-
ical Imaging, Journal of Biomedical Optics, and a handful of
small publishers in some scenarios via Google Scholar as well
as the publisher’s respective search engines, with the latest
being published in December 2020.While numerous publica-
tions are already present for deep learning being implemented
for medical image analysis, with our topic of discussion being
so highly specific, we cross-checked all sections within the
publications that matched the subject matter of deep learn-
ing being implemented for medical hyperspectral imaging to
verify papers for this survey. For certain situations in which
published work corresponded with multiple papers, we only
considered papers with greater significance in regard to their
contributions. The goal for these papers being included in
this survey, as mentioned earlier, encompassed the benefits
of deep learning methodologies, how they are contributing
towards medical hyperspectral imaging, and the challenges
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being faced for effectively applying these deep learning tech-
niques to medical hyperspectral imaging. Fig. 1 provides a
summary of the number of most relevant papers published
throughout the specified range of years.

FIGURE 1. Chart representing the number of relevant papers published in
the past years. The bars depict the quantity of papers published spread
apart evenly for every two consecutive years for each category of DL
methodology.

II. DEEP LEARNING METHODS
Machine Learning methodologies are typically divided
into either supervised or unsupervised learning algorithms.
A learning algorithm that makes use of a dataset comprising
of a set of input features and an output label to obtain a pre-
dicting model is known as a supervised learning algorithm.
The output label in the dataset for supervised learning can be
categorized as either classification or regression. A classifica-
tion problem categorizes the output into discrete values such
as type A and type B. A regression problem provides the out-
put as a continuous value, which could represent a real value
such as dollars or a more symbolic numerical value, such
as a normalization of a different number. The learning part
in supervised learning refers to finding the optimal weights
or parameters that minimize the cost (or loss) function. This
would mean that no further loss can be achieved and that the
weights cannot be further improvised, which results in the
best-fit model with the given inputs, bias, and learning rate.
After successfully creating the model, a portion of the data is
used to test the accuracy and/or the efficiency of the model.
This is simply done by comparing the output from the model
against the actual value from the dataset. While this is also
implemented in the process of minimizing the cost function,
the goal of testing the model is to perceive the vulnerability
of the model.

An unsupervised learning algorithm is used to figure out
the underlying structure of a dataset, which does not consist of
a definite output. The algorithm does this by either clustering
the output into categories or by finding the associative prop-
erties among the input parameters. Since the initial weights

and parameters are selected ambiguously, the resulting out-
put is not always similar every time, as a different model
is obtained during every training process. In the following
sections, we will delve upon various deep learning methods,
which are built upon the aforementioned-ML fundamentals.

A. SUPERVISED LEARNING METHODS
1) NEURAL NETWORKS
Neural Networks are a category of learning algorithms built
upon the idea and structure of a human brain, as the name
suggests, and it lays the foundation for the majority of the
deep learning methods. A neural network contains layers of
neurons (known as a perceptron) as the base unit, which com-
prises of an activation number and other sets of parameters,
such as weights W and bias b. This can be simplified to an
activation function, which can be expressed as

a(1) = σ (Wa(0) + b), (1)

where a(0) represents the initial activation numbers, or the
input features, and a(1) refers to the activation numbers for
the next layer. The σ refers to the transfer function, which is
traditionally denoted as either a sigmoid function or a step
function. To form a fully constructed layer at each interval,
we obtain the dot product between the weight vector and
the input features vector. This represents a single layer of
neurons, which has a simple feedforward mechanism, i.e.
the neuron takes in a single input, performs the operation
on it, and then passes it on to the next layer. A multi-layer
perceptron (MLP) consists of two or more layers of neurons
or perceptrons, which are also known as hidden layers. All
of these layers from MLP combine together to form the basis
of what is more commonly known as a Deep Neural Network
(DNN).While there are different additional DNN techniques,
on which we will be expanding next, MLP is one of the most
basic DNN architectures. Fig. 2 (a) and (b) depict simple and
deep neural network architectures, respectively.

FIGURE 2. Visual representation of (a) simple neural network: a machine
learning algorithm modeled from the biological neural network of a
human brain, (b) deep neural network: a neural network comprising of
more than one hidden layer of neurons for its architecture.

2) CONVOLUTIONAL NEURAL NETWORKS
Convolution Neural Network (CNN) is an exceedingly pop-
ular deep learning algorithm that is used to classify an input
image by recognizing patterns and features in order to differ-
entiate between objects. In fact, one of the earliest perceptron
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FIGURE 3. Convolutional Neural Network (CNN): a deep learning
architecture containing several convolutional and pooling layers, which
are then connected at the output. This output in turn is used to classify
the input image provided. CNN has proven to be exceeding popular in
computer vision and visual image analysis as of late due to its high
accuracy and precision.

concepts in 1957was designedwith the purpose of classifying
the input image as man or woman [37]. The weights in a CNN
architecture are designed to perform convolution operations
on the input image rather than the features. In a convolution
layer, the spatial structure is preserved along with any tem-
poral dependencies with the usage of filters or kernels. This
means that instead of appropriating a weight for an input
feature via the combined stretched matrix from the input
features, a small filter with appropriate dimensions relative
to the input image is applied to perform the element-wise dot
product between the filter and a chunk of the image otherwise
‘convolved’ in order to obtain the activation. Note that the
depth of the filter shouldmatch the depth of the image tomake
this convolution possible. This process is repeated over all the
spatial locations of the image, thereby providing us with a
final activation map over the spatial region. Fig. 3 represents
the overall process of a CNN and how the final output is
obtained.

CNNs are a predominant part of typical classification
architectures widely used in medical image analysis. One
example for simpler architectures would be LeNet [38],
which was introduced over two decades ago, which despite
being a rather shallow network, displayed the basic concept
of a CNN in a simple and elegant fashion, using the tangent
function as the activation function. Later on, AlexNet [36]
shattered expectations at the ILSVRC in 2012. Bearing sim-
ilar characteristics to LeNet, AlexNet [36] also made use of
kernels with a larger field of layers closer to the input and
smaller kernels closer to the output, with the key difference
being in the assimilation of rectified linear units (ReLU) for
the activation function, which has since become the activation
function of choice for modern CNNs due to higher classifica-
tion accuracy. It can be duly noted that the rise in popularity
of deep learning techniques also coincides after this series of
events.

3) U-net
Segmentation is a popular architecture not only among the
medical image analysis community but also for the field of
computer vision in general. While CNNs classify the pixels
of an image, segmentation provides inference by making
prediction labels for each pixel that facilitates the enclosing of
core object locations, thus separating the image into sections

of fields. While this provides the unfortunate overlap of
neighboring pixels over regions with the same convolutions
being computed multiple times, several solutions have been
proposed to overcome this ordeal, the most prominent of
which is known as a Fully Convolution Network (FCN). The
core idea behind FCN is to take the original CNN with arbi-
trarily sized input images and use the fully connected layer as
convolutions to produce the segmented output. However, this
still results in a degraded feature map due to the propagation
through several pooling layers.

U-net architecture [39] provides a solution for this issue
built upon the foundation of the FCN. This architecture con-
sists of the basic FCN supported by an upsampling layer as
opposed to a pooling layer, which concludes in an increase
in resolution for the final output image. It uses stochastic
gradient descent to train the network and calculate the energy
equation with the aid of SoftMax, implemented pixel-wide
across the final feature map in which the Softmax layer is
defined as

pk (x) =
eak (x)∑K
k ′=1 e

ak (x)
, (2)

where ak(x) is the activation function. This is then applied to
an energy equation as

E =
∑

w(x)log(pk(x)(x)), (3)

where w is the weight matrix for the model. This energy
function is, in short, a combination of the Softmax layer over
the final feature map with the cross-entropy loss function.
Fig. 4 shows the basic architecture of U-net.

FIGURE 4. U-net architecture: a deep learning algorithm based upon Fully
Convolutional Network (FCN) that in itself is built upon the foundation of
CNN. A majority of the segmentation techniques involve u-net in one way
or another, with it forming the core component of a proposed model for
segmentation.

4) RECURRENT NEURAL NETWORKS
Recurrent Neural Networks (RNNs) were developed with
the thought of tackling the progression of vectors over time,
which is something CNNs cannot accomplish, as they are
restricted to handling fixed vector sizes to provide fixed-size
outputs. In addition, CNNs operate on a fixed number of
layers. RNNs, by contrast, can have input and output vectors
of varying lengths, which make them invaluable for under-
taking problems in the Natural Language Processing (NLP)

VOLUME 9, 2021 79537



U. Khan et al.: Trends in Deep Learning for Medical Hyperspectral Image Analysis

FIGURE 5. A simple Recurrent Neural Network (RNN): a neural network in
which the previous output is also used as inputs to modify the state of
the hidden layer neuron. RNN has the capability of processing inputs of
varying lengths without change in the model size, which is invaluable for
constantly evolving datasets.

domain [40], as the input matrix in such an application is
constantly evolving. Another way in which the RNNs dif-
fer from traditional CNNs is that they are not feedforward
systems and instead loop the outputs of each hidden layer
back to itself. For a classification problem, the output from
the hidden layer is used as the inputs along with the normal
input for the hidden layer. Fig. 5 shows the comprehensive
visual representation of RNN.

B. UNSUPERVISED LEARNING METHODS
1) AUTO-ENCODERS
Autoencoder is a type of neural network that is primar-
ily trained to provide a learned representation of the input.
In other words, an autoencoder generates a replicate for
the provided input after undergoing a handful of operations.
These operations are performed over a single hidden layer
in which the model ‘encodes’ and then ‘decodes’ the input
to provide the mapped output. Although this process might
seemmeaningless on the surface, this gives us the opportunity
to map how data is projected for a lower dimension. This
is because the hidden layer has the smallest dimension in
this network, and it also encompasses all the information to
reconstruct the output for the same class of input. This is
particularly useful in the case of anomaly detection, in which
the autoencoder is fed the inputs from the same class of
data. Since the mapping features would produce an inco-
herent result with respect to the autoencoder hidden layer,
the anomalies would be discovered easily. Fig. 6 represents
the AEN in its rudimentary form.

2) RESTRICTED BOLTZMANN MACHINES
Restricted BoltzmannMachines (RBMs) are a relatively sim-
pler deep learning system comprising of two layers: input and
hidden. This forms the basis of deep belief networks. The
nodes (neurons) from each layer form inter-layer connections
while ‘restricting’ intra-layer connections, which helps to
derive its name. TheRBMcomprises of bidirectional commu-
nications between layers and is thus a generative model that
uses the hidden layer to fashion new data points. It does so
by defining an energy function for a state of input and visible

FIGURE 6. Comprehensive layout of an autoencoder: a type of neural
network that is used to understand the efficient data coding, which is
particularly useful for dimension reduction for a given dataset.

units of (y,z) as

E (y, z) =
∑

i
aiyi −

∑
j
bjzj −

∑
i

∑
j
yiwi,jzj, (4)

where a and b are the biases,w is the weight matrix, and y and
z are the states for hidden unit j and visible unit i. The pair of
possible hidden and visible vector is computed by finding the
probability as

p(y, z) =
1
z
e−E(y,z), (5)

where z is known as a partition function. The RBMs are
primarily used to pre-train aNN to generate the initial weights
and then are used to form the foundation for other deep
learning methods such as a Deep Belief Network (DBN).
These DBNs are then used for many different applications,
including cybersecurity [41], NLP [42], and of course med-
ical image analysis [43]. Fig. 7 represents a RBM block
diagram.

3) GENERATIVE ADVERSARIAL NETWORKS (GANs)
GANs, used widely in image, video, and audio generative
scenarios [44], are a generative architecture (as the name
suggests) based largely on probability-related setups for unla-
beled datasets, which provide a better substitute to maximum
likelihood estimators. A GAN architecture pits two neural
networks against one another, with the purpose of generating
synthetic labels that are comparable to actual data. In each
iteration run, the two neural networks keep improving repeat-
edly at the required task. This procedure continues until the
output from the generator resembles the actual sample data
as closely as possible.

The generator network and the discriminator network com-
peting against each other, as displayed in Fig. 8, can be
considered the two supposed neural networks that highlight
the concept of GAN as an example. The example can be
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FIGURE 7. RBM block diagram: A stochastic neural network that uses
bidirectional layers (and consequently generative), comprising of hidden
layers (h1, h2, & h3) and input layer x to effectively learn probability
distributions for the given set of inputs.

FIGURE 8. Generative Adversarial Network block diagram: an architecture
that pits two networks against each other, which is used to eventually
learn the patterns of the input data in order to produce an output as
closely as possible to an actual sample of the input.

considered as a min-max situation, in which the function V
(D,G) can be described as

minGmaxDV (D,G)=Ex∼Pdata(x)[log(D(x))]

+Ez∼Pdata(z)[log (1−D(G(z)))]. (6)

III. DL METHODS FOR MHSI
A. CLASSIFICATION
Classification for pathological images has been one of the ear-
liest fields of not just MHSI but medical analysis in general,
in which deep learning techniques have been a significant
influence. Typical procedures for processing the MHSI using
classification include applications such as cell classification
[45] in order to identify and classify cancerous cells. This is
also sometimes synonymous with detection techniques on the
surface, in which the architecture is designed to detect traces
of cancer from samples, as opposed to just classifying the
cells themselves, which we will discuss in the next section.
Classification techniques forMHSI oftenmake use of transfer
learning, which has proven to be quite useful in these sce-
narios. MHSI typically utilize small datasets comprising of
medical diagnosis images (typically hundreds or thousands),
as opposed to the field of computer vision in which the
datasets could consist of millions of sample images, which
is one of the reasons why transfer learning has been feasible
for this discipline. A generalized process for the classification
process for cancerous cells is displayed in Fig. 9.

Transfer learning is fundamentally the use of a pre-trained
network to classify input images from testing samples, and

FIGURE 9. Visual representation of classification of a cancerous tissue
sample.

as mentioned earlier, the smaller datasets allow greater prac-
ticality and ease of use, as opposed to training the network
to obtain new input features every time for virtually similar
input image datasets. The implementation of deep learning
for MHSI took some time to catch on when compared to deep
learning used in other areas of research. Earlier implemen-
tations of deep learning in MHSI began with classification
of benign & malignant tissues or cell samples using ANNs,
typically MLPs [7]. A particular study that explores HSI for
characterizing kidney stones [46] made use of Principal Com-
ponent Analysis (PCA) to determine appropriate variables or
features to be extracted and used for a simple ANN model
comprising of a hidden layer with four nodes, which was used
to classify the type of kidney stone from the HSI, whereas
a similar approach was also undertaken to classify different
cancer types [47] [48]. There have been situations in which
ANNs provided inferior results, which in turn highlights the
problems related to deep learning, namely the absence of
larger datasets. This particular study assessed the perfor-
mance between four supervised algorithms that pitted ANN
against random forest, SVM, and k-nearest neighbors [49].
The paper utilized a three-stage framework, with the first
stage implementing pre-processing on the input data of onco-
logic esophageal resectates in order to tackle the class imbal-
ance in the output labels. The second stage of the framework
implemented the different classifiers and eventually found
that from the 11 patient samples analyzed, SVM produced the
best results, although they did remark that a larger training
dataset may lead to better performance in general. Another
such paper which was utilizing several classifiers as part of
the proposed framework found that ANN underperformed
when compared to SVM and random forest (RF) [50].

In more recent years, however, CNNs have become the
prevalent choice for the task of tissue/cell classification. For
instance, one paper used PCA for transfer learning for CNNs
with kernel fusion [51] to complete the task of classifica-
tion in MHSI. This publication made use of the Gabor ker-
nel (which is implemented to obtain spatial features) and
the CNN kernel to improvise conventional CNN execution
for MHSI classification, with the proposed model showing
improved performance. CNN has also been implemented to
classify blood cell MHSI in a similar fashion [45], [52], [53],
where increased pixel size for the MHSI produced better
results with respect to classification accuracy, thus further
proving the potential for CNN in MHSI. While all three
papers implement pixel-patch input approaches with varying
numbers of samples, the proposed two-channel end-to-end
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framework [53] provides better results when compared to
the combination of modulated Gabor and CNN [52] and the
novel CNN implementation [45]. Another publication stud-
ies the classification of blood stains from similar appearing
objects such as synthetic blood, and tomato concentrate from
a forensic sciences point of view [54]. This study tested
several standard DL classifiers such as MLP, RNN and CNN
(1D, 2D & 3D) with HSI image dataset feeding whole image
inputs to the models, with results indicating that 3D CNN
outperformed the other algorithms. The CNN model showed
promising prospects using spectral patches as an input while
also classifying head and neck cancer [35], including even
an animal model in a similar setting [55]. One particular
paper also proposed a RNN-CNN combined approach for
the same domain that performed better than the other CNNs
benchmarked in their study [56]. A proposed CNN model
also produced successful results by utilizing patches of fea-
ture maps for classification of oral cancer diagnosis [57],
the performance of which was verified by implementing
the same dataset for SVM and DBN. Hybrid CNN models
were also observed for classification in MHSI. One particular
study used a combination of 2D-3D CNN framework with a
patch-based approach for the input to aid brain tumor resec-
tion which delivered an overall mean accuracy of 80% [58].
Another publication made use of a similar hybrid model in
which pixel patches are fed from the HSI data cube into the
model for classification, producing a mean accuracy of 82%.
The majority of the proposed CNN models discussed in this
section all build upon the traditional architecture for CNN,
which better suits the requirements for the medical diagnosis
under examination.

B. DETECTION
Detection techniques in general refer to object detection for
a given input image. For MHSI, detection techniques are
habitually used for the purpose of detection of malignant can-
cerous samples, although they are also used for reconstruc-
tion of tissue samples. This process is displayed in Fig. 10.
While ANN has been used to detect such cancerous samples
[59], the majority of detection techniques implemented for
MHSI use CNNs for classification of the pixels of the image,
which is then used to detect the malign cancer cells/tissues
[60], [61]. Both of the aforementioned papers use a simple
CNN with spectral signatures as an input to detect head and
neck cancer, with one building models from scratch [60] and
the other utilizing a pre-trained CNN model [61]. From this,
after the pixel-wide classification is obtained from CNNs,
it can also be considered as object classification, which is
then used for post-processing to detect the presence of cancer
or other purposes for the given input sample. One similar
study implemented a CNN-based model to reconstruct tissue
surface using an endoscopic probe, which displayed potential
for practical applications [62]. One study also applied FCN to
investigate tissue surface samples using an endoscopic probe
in a similar fashion [63]. Another similar study applied dense

FIGURE 10. Standard workflow for cancer detection using deep learning
on medical image analysis.

local features (DELF) architecture which also utilizes FCN
in its structure for its feature detection and extraction [64].

In recent years, CNNhas been particularly useful forMHSI
in head and neck squamous cell carcinoma detection [65],
[66], although AEN has also been applied for a similar sce-
nario [67]. For the CNN implementations in head and neck
cancer detection, one paper implemented an inception-v4
based CNN architecture [65], whereas the other publication
utilized an inception-v1 CNN architecture in tandem with a
modifiedHELICoiD andCNNclassifier [66], with the former
paper producing better results. Another such paper studied the
application of CNN in similar domains [68], [69], with the
former using 2D-CNN and the latter applying Dense-Blocks
in its CNN model, which are part of densely connected
neural networks (DenseNet). Application of 2D-CNN was
also observed for detection of breast cancer cells detection
which also displayed promising results [70]. Implementation
of CNN was also observed for aiding brain tumor resection
surgeries in real-time amongst the considered papers [71]
and similarly towards determining skin cancer detection [72].
Such publications heavily suggest that although CNN is
finely suited for classification techniques, as discussed in
a prior subsection, it also possesses a potential for detec-
tion techniques that support a promising outlook for future
research of detection techniques in MHSI.

C. SEGMENTATION
Segmentation provides outlines for certain parts of images
that dictate the position, volume, and size of the relative
objects in an image, as discussed in Section 2 of this study. For
medical image diagnosis, this is particularly useful, as it could
clearly outline certain organs as well as other noteworthy
parts of a medical image. This is significant for medical diag-
nosis in which brain, liver, or other important organs need to
be distinguished from a medical image. While segmentation
has been extensively used for medical diagnosis over the
years [73], [74], in the case of MHSI, we could only find a
handful of notable papers that used a segmentation technique.

One of these papers implemented a dense-FCN (FCN
being the foundation for U-net [39]) in segmentation for
the purpose of retinal image analysis [75]. Fig. 11 depicts a
simple graphical representation of FCN for image segmenta-
tion. With the usage of k-means clustering on the input data,
the study was able to lessen the complexity in order to aid
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FIGURE 11. Classical representation of an FCN for the purposes of
segmentation.

the segmentation process and ultimately complete validation
against alternate approaches involving other ML algorithms
such as SVM and random forest. Its findings suggest that
spectral data may provide the opportunity for improvised
segmentation results for optic disc and macula segmenta-
tion, which is important for retinal imaging analysis, thereby
prompting the urge for further research for segmentation
techniques for MHSI. Another such study implemented a
deformable U-net (dU-Net) to aid sickle cell disease diagno-
sis by segmenting red blood cells [76]. The proposed model
replaces the convolution layers in U-net with deformable con-
volution to better tackle the shape transformation in objects
from the raw images fed into the model. The results obtained
from the experimental design in the paper displayed bet-
ter performance than U-net and other segmentation models,
which showcases the prowess of research in segmentation
techniques. One additional study made use of a dual-stream
U-net variant for tongue tumor detection, with each part of
the architecture accepting a certain spectral range of the input,
which takes in image patches [77]. The results obtained from
experimental procedures observed the fact that although the
proposed model was not the best performer, it was signifi-
cantly close to the best accuracy produced by another variant.

D. OTHER
DL applications of MHSI go beyond the normal implemen-
tation of traditional domains of machine learning. This can
be observed in a handful of papers considered in this study.
For example, one study utilized GAN with the aid of an
autoencoder using MATLAB ML tools in order to determine
the tissue oxygen saturation using hyperspectral input data,
the results of which are useful for the detection of ischaemia,
a fatal disease that affects the blood supply to different organs
of the body, particularly the heart muscles [78].

Another similar case in which blood oxygenation is deter-
mined using MATLAB tools was discussed in a 2017 study
[79]. In this circumstance, the NN fitting tool was used to
retrieve the parameters necessary to determine the oxygen
saturation levels. In another 2017 study, GAN was employed
again to assist in the task of staining lung histology imaging,
which was then used to further study the necessary tissue
samples [80]. One particular study also made use of GAN
to synthesize MHSI from clinical RGB images [81]. The
generator in this architecture of conditional GAN (cGAN) is a

modified U-net CNN and the produced HSI is validated using
established metrics for single-band real HSI. Lastly, one sim-
ilar study implements deep convolutional GAN (DCGAN)
to generate MHSI relative to skin cancer [82]. This model
uses two 3D-convolution layers and one convolution layer
which accepts all dimensions in its generator, and the results
as discussed in the study look similar to the measured data
with the exception of one particular spectral band.

Overall, these studies suggest a broader field of applica-
tions of DL for MHSI in the near future. Tables 1 and 2 below
consist of the relevant publications we obtained for this paper.
Table 1 details the titles of the papers and the category of DL
to which the paper pertains, while Table 2 lists the application
area of each paper.

IV. CHALLENGES IN AND FUTURE OF DL MHSI
The boom in deep learning research following the ILSVRC
in 2012 has had substantial effects on a variety of disciplines
[33], particularly in medical image analysis and diagnosis,
as evident from the surge in papers published [88], [89].
While some domains in the medical community have already
felt the impact of the applications of deep learning tech-
niques, particularly the domain of radiology, which poses the
risk of decline for the profession of practicing radiologists
[90], MHSI has yet to experience a similar fate. This may
simply be due to the lack of broader researchers of MHSI
in general. However, examining the trend observed in the
number of publications for deep learning implemented in
MHSI, there may be a similar outcome over the coming years.
With the unprecedented advancement in general medical
image analysis seeming to reach an impasse, as deep learning
methodologies augment and improvise efficiency with more
accurate results [33], the MHSI profession is also likely to be
impacted. Besides, further research for MHSI would focus
on unsupervised deep learning algorithm development which
has been also a challenging problem.

With such deep-rooted research in deep learning tech-
niques, it is clearly evident that no one technique trumps all
others, as the needs and requirements vary from one situation
to another. However, CNNs appear to be the prevalent choice,
as the bulk of publications considered in this paper utilize it
in some way or another. Meanwhile, there are still variants of
architectures of CNNs implemented for a particular circum-
stance, such as in [35] and [66]. Although both investigate the
same subject of neck and head cancer, they each use different
approaches to tackle the challenge using CNNs. Issues for
deep learning for MHSI also stem from several existing DL
woes, one of which relates to the broader problems for clas-
sification and detection, particularly imbalance of classifica-
tion for the purpose of object detection. The detection systems
first perform a pixel-wide classification, as discussed in the
earlier section, which typically causes the class imbalance
to be biased towards non-object classes during the training
process, which is easier to discern amongst the samples and
may cause distortion in the overall detection process.
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TABLE 1. Papers using deep learning techniques for MHSI. TABLE 1. (Continued.) Papers using deep learning techniques for MHSI.
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TABLE 1. (Continued.) Papers using deep learning techniques for MHSI.

Given the large amount of untapped potential in deep
learning research for MHSI, the key challenge at this time is
the uncertainty regarding which DL algorithms should be and
can be thoroughly explored and whether the predicted results
can be explainable. For instance, we found that classification
in MHSI applications has been primarily limited primarily to
CNNs [35], [45], [57], thus leaving other methods such as
DBNs to be uncharted territory. Detection, on the other hand,
mostly consisted of CNNs [60], [62], [65] as well as some
instances of FCN [63], while rare cases of utilizing FCN for
MHSI segmentation [75]. In the latter two cases, the most
logical step forward would be full implementation of the
U-net architecture, given its roots in FCN and its success with
other medical imaging applications in segmenting features
and improving the accuracy of medical diagnoses [91]. This
would help to serve as a proficient step forward in advancing
the arsenal of deep learning available for MHSI.

Further exploration of other deep learning algorithms in
this area, however, is currently limited to another signifi-
cant challenge, the availability of large, relevant datasets.
As detailed later in Appendix B, several of the datasets
used in the literature obtained from on-site medical samples

TABLE 2. Deep learning methodologies used in MHSI and their
applications.

and procedures [35], [61] as well as direct experimentation
via imaging systems [53], [62]. While this method of data
collection can be useful for researchers who are working
directly with medical personnel, this provides a substantial
bottleneck for anyone in academic, industrial, or government
backgrounds that are not closely linked to the medical field,
thereby limiting the scope of researchers, data scientists, and
engineers who can provide the potential expertise and inno-
vation needed to bring a greater breadth and deeper expertise
of deep learningmethods to the table. Overall, only one easily
accessible repository was utilized by researchers that we
found [57]. Thus, in order to expand the deep learning tools
available for medical hyperspectral imaging, the medical
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TABLE 2. (Continued.) Deep learning methodologies used in MHSI and
their applications.

field will need to further engage in the mindset of making
MHSI data available through repositories that balance ease of
access with sufficient compliance with all needed regulatory
requirements.

TABLE 2. (Continued.) Deep learning methodologies used in MHSI and
their applications.

V. CONCLUSION
Despite the boom in deep learning, its rigorous applications
in medical image analysis, and the benefit of hyperspec-
tral imaging for medical analysis, there have not yet been
any papers published that review the publications dedicated
towards the implementation of deep learning for medical
hyperspectral image analysis. In this paper, we discussed the
deep learning techniques for medical hyperspectral imaging
and relevant papers published relative to the topic within
the year range of 2012-2020. In short, similar to the trend
observed for deep learning since the iconic ILSVRC 2012,
there was a definite boost in research and papers published for
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FIGURE 12. Sample dataset from BioGPS repository: collection of genome
signatures of ovarian tissue that can be utilized to identify ovarian cancer
associated fibroblasts (CAFs) gene signatures [92].

deep learning for MHSI and medical image analysis in gen-
eral. We also discussed the different methodologies discussed
in all the papers we found as well as what the future in DL
for MHSI may look like. The trend for the majority of papers
implementing DL for MHSI seems to be paved by the use of
CNNs to classify blood cells/tissue samples in order to aid
cancer detection and analysis. We could only find one paper
that discussed the use of FCN for segmentation rationales of
retinal imaging. Lastly, there were also isolated uses of GAN
and MATLAB tools to determine tissue oxygenation levels
that could potentially be used for detecting ischaemia (disease
directly dependent on blood supply to vital organs) or even in
staining of lung histology imaging.

APPENDIX A
SEARCH CRITERIA
Google Scholar was implemented to find the relative pub-
lications considered for this paper. The key search words
included during our search are ‘‘deep learning’’ and ‘‘medical
hyperspectral imaging’’; we found that word searches for
topics such as specific techniques yielded more inaccurate
results relative to our purpose. We selected the most relevant
papers from a certain range of search results. In addition
to Google Scholar, we also searched for the same search
words on the publisher’s own search engines for the papers
considered for this article, which resulted in the discovery of
papers that previously did not appear in Google Scholar.

APPENDIX B
DATASETS
The majority of datasets utilized by the publications were
obtained either directly through experimentation using var-
ious imaging systems or via contribution from hospitals,
laboratories, or clinical storage. Some examples of testing
systems implemented include CRI Maestro for vivo imaging
system [67], and more commonly used Liquid Crystal Tun-
able Filters (LCTF) [51]–[53], [78], and Hybrid Endoscopic
Apparatus (ICL SLHSI) [62]. Several papers also used actual
medical samples, such as patients undergoing surgical cancer
resection [35], [61] and other contributions of local patient
samples from hospitals, medical centers, and laboratories.

The only largely available repository in use by a paper was
BioGPS UCI repository [57]. Fig. 12 shows a small sample
representation of a dataset from this repository.

APPENDIX C
SOFTWARE
Many software packages were implemented across all the
publications discussed in this paper, the majority of which
implemented Tensorflow (wherever stated). Tensorflow is
an open-source machine learning platform based on Python,
which is supported by its vast number of libraries, tools, and
community resources. The complete list of software packages
and libraries along with the papers utilizing them can be
found below-
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