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ABSTRACT It is very important to implement the fault diagnosis technology in industrial processes to
make the process more reliable. In this paper, an improved particle filter (PF) method based on a modified
beetle swarm antennae search (BSAS) algorithm is proposed and verified in a doubly fed induction generator
(DFIG) fault diagnosis application. Firstly, the search strategy of BSAS is improved to ensure its global
search ability. Secondly, it is introduced to the traditional PF algorithm to improve the particle diversity
and impoverishment drawbacks. Finally, the fault diagnosis algorithm is verified by combining the DFIG
state spacemodel. The simulation experimental of fault detection and isolation results show that the proposed
method is simple and effective, and it can effectively monitor the occurrence of faults. For the fault diagnostic
application, the method proposed in this paper could be implemented in other model based processes,
including chemical process, biochemical wastewater treatment process, etc.

INDEX TERMS Fault diagnosis, detection and isolation, particle filter (PF), beetle swarm antennae search
(BSAS) algorithm, doubly fed induction generator (DFIG).

I. INTRODUCTION
Wind energy, a clean and renewable energy, is the fastest-
growing energy source in the world in the last decades, which
is considered as an effective way to face and solve the world
energy problem [1]. 2018 is a good year for wind energy
with 51.3 GW newly added capacity worldwide, including
46.8 GW of onshore wind power and 4.5 GW of offshore
wind power. Up to 2018, 591.1 GW of wind power has been
installed globally, including 23.1 GW offshore installation,
which is accounting for 4% of the total installation.

Global wind report 2018 published byGlobalWind Energy
Council (GWEC), indicates that there would be more than
360 GWnew installations and nearly 1000 GWof total instal-
lations worldwide by 2023 [2] shown in Figure 1. A report
from the International Renewable Energy Agency (IRENA)
shows that wind power could cover more than one-third of
global power needs (35%) by 2050, becoming the world’s
foremost generation source [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Mark Kok Yew Ng .

FIGURE 1. 2019-2023 annual forecast of new installed capacity globally.
(All the data are collected from Global Wind Report 2018, published by
GWEC in April 2019.)

Most wind turbines (WTs) are usually installed in remote
areas, e.g. mountainous, countryside, and offshore regions,
where the working environment is very harsh. The doubly
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fed induction generator (DFIG)-based wind turbine is the
key device in wind power generation systems, whose basic
functionality is to transfer the wind power into the mechani-
cal power on the rotor shaft. However, with the continuous
growth of wind turbine capacity, WT system structure is
becoming increasingly complex, and the coupling between
different components is more closely. Because of the tem-
perature variation, material corrosion, mechanical stress, and
voltage stress, etc., faults could occur unexpectedly at any
components of wind turbine systems. It’s needless to say
that even a small fault may cause a big fault, because all
the mechanisms in the system are reacted in chain. That is,
a small fault may spread into a catastrophic big fault, causing
wind turbine outage, or even directly leading to wind turbine
damage, resulting in huge economic losses. Faults in the
generator and drive train (includes gear box, main shafts, and
bearings) are the most crucial and widely observed failures,
which dominate over 60% of the downtime in wind turbine
systems [4] in some power plants located in Sweden, Finland,
and Germany during 1997-2005, and it is similar to the other
countries in the world. Therefore, having a reliable fault
diagnosis and fault tolerant control (FTC) scheme is crucial
to improve the reliability of wind turbines and reduce expen-
sive repair costs, especially for the offshore wind generators
because they are not easily accessible.

Scholars and researchers worldwide have done many
researches and applications of the fault diagnostic methods
for key parts of wind power generation system, such as
gearbox, generator, and other components [5]–[9], based on
the three main categories of fault diagnosis: i) signal-based
approach, ii) knowledge-based approach and iii) model-based
approach. The first two approaches are still commonly used
techniques in practice, and the last one has its advantages and
should definitely be implemented for practice using in the
future.

In model-based approaches, an accurate mathematical
model is required to represent the system. Such a model runs
in parallel to the system and is supplied with the same input
signals. In an ideal situation, the model variables can well
track the real system variables in the absence of fault and
present an obvious derivation when a fault occurs.

This derivation is measured in terms of a residual, which is
obtained by subtracting the measured system variables with
their estimates provided by the model. The residual contains
important information with respect to the fault. The fault
detection and diagnosis can be then achieved by observing
and analyzing this residual. A schematic description of the
model-based fault detection and diagnosis (FDD) scheme is
given in Figure 2, which is accomplished by two steps: the
residual generation and residual evaluation [10], [11].

In this paper, an improved particle filter algorithm is pro-
posed for the DFIG fault diagnosis based on the state space
DFIG system model. Dynamic adaptive inertia weight is
employed to improve the global search capability of the beetle
swarm antennae search (BSAS) algorithm, which is used
to optimize the resampling process of the typical particle

FIGURE 2. Schematic description of the model-based FDD.

filter algorithm in avoiding the particle degeneracy with the
iterations going on.

II. MATERIALS AND METHODS
A. BASIC THEORY OF PARTICLE FILTER
Particle filter (PF) has been proved that it is an effective
method to do the state estimation works based on the state
space system model [12]–[15], which uses a set of weighted
particles (as well as statistical samples) to approximate the
posterior probability density function, and implements recur-
sive Bayesian estimation to estimate the system state by
nonparametric Monte Carlo method [16].

According to the sequential importance resampling (SIR)
algorithm [14], [17], [18], which is commonly believed as the
original PF algorithm, the classical process of state estimation
can be summarized as follows:

Assume that the state space model of a nonlinear system is
represented as Equations (1) and (2):

xk = f (xk−1, uk ) (1)

yk = g(xk , vk ) (2)

where in state Equation (1) and observation Equation (2), f
and g represent two nonlinear functions; xk and yk are the
state and observation vector of the system at time k (assuming
xk obeys the first-order Markov process with the prior initial
probability density p(x0)); uk and vk are the system state
noise and observation noise respectively, which are random
variables independent from the system state, and independent
of each other as well.
Step 1. Prediction: N particles are extracted from the tran-

sition probability density of the system states (p(xk |xk−1)).

xk (i) ∼ p(xk |xk−1(i)), i = 1, 2, · · · ,N (3)

Step 2. Update: use Equation (4) to update the sample
weights and use Equation (5) to normalize them.

w∗k (i) = w∗k−1(i)p(yk |xk (i)) (4)

wk (i) =
w∗k (i)
N∑
i=1

w∗k (i)

(5)
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where, p(yk |xk ) is the observed likelihood probability density
of the system states.
Step 3. Estimation: use Equation (6) to estimate the value

x̂k of xk . The least mean square error estimation is performed
here.

x̂k =
N∑
i=1

wk (i)xk (i) (6)

Step 4. Resampling: perform a multinomial resampling to
get a number of N new particles with equal weights. After
the resampling process, the particles with small weights are
knocked out, and many new particles (which can be consid-
ered as offspring) will be obtained from the particles (which
can be considered as parents) with big weights.

Compared with the traditional filtering methods, particle
filter (PF) has the advantages of simple principle and appli-
cable to a wide environment [19]. It has become an effective
method to study optimal estimation problems of non-linear
and non-Gaussian dynamic systems, and has been widely
used in the fields of machine vision, navigation, parameter
estimation, target tracking, state monitoring, and fault diag-
nosis, etc. [20]–[23].

Everything has two sides, on the one hand, the resampling
process can solve the problem of particle degeneracy with
new particles produced. However, on the other hand, resam-
pling brings a new problem caused by the mechanism of the
resampling procedure, in which only the particles with big
weights will be selected as copy samples and the particles
with small weights are going to be eliminated [24]. This is
called particle impoverishment. To deal with this issue, many
improvements have been applied to perfect the PF algorithm
[25]–[27].

B. IMPROVED BEETLE SWARM ANTENNAE SEARCH
(BSAS) ALGORITHM
1) BSAS ALGORITHM
The beetle swarm antennae search (BSAS) [28] algorithm,
an improved version of the beetle antennae search (BAS)
algorithm [29], is one of the meta-heuristic algorithms for
optimization problems, which is inspired by the searching
behavior of long-horn beetles. The BAS algorithm imitates
the function of antennae and the random walking mechanism
of beetles in nature. The beetle explores the nearby area ran-
domly using both antennae. Each antenna can receive the odor
when it is preying or finding mates. The beetle determines
the walking direction by judging the concentration of odor
received and turns to the higher concentration side for target
searching probability.

However, one beetle walks in one random direction each
step cannot guarantee the search process is orienting the
better value of the objective function. Correspondingly, if we
could employ n beetles to move in n directions, the swarm
beetles would find a better position more possibly. Another
point is we can let the beetle stay at the best position while if
there is no better position found after searching move. That is

to say, there is a small probability that all the beetles will miss
the better position at the current step. Therefore, a probability
constant, belongs to [0, 1], is introduced to measure the
impact of random directions of the swarm beetles. Based on
the above aspects, the basic steps of the BSAS algorithm can
be summarized as follows.
Step 1. Initialize parameters, including initial position

vector x0, sensing range r0 and initial searching step size
s0, number of beetles n, probability ε, total iteration num-
ber T , and establish a fitness function f (x t ) for maxi-
mum or minimum searching results evaluating, where x t =
[x1, x2, . . . , xn]T.
Step 2. Search optimal in variable space according to

xr = xt + r tb

xl = xt − r tb (7)

where, t is the current iteration number; xr and xl are two
positions (or solutions) lying in the right-hand and left-hand
searching space respectively; b is a randomly generated direc-
tion vector for each beetle to do the current search.

Definitely, according to Equation (8), the sensing range r
of antennae corresponding to the exploit ability, which should
be large enough at the beginning to cover an appropriate
searching area to be able to jump out of local minimum and
then attenuate as time elapses to ensure that fine-grained
searches can be performed near the optimal value.

r t = 0.95r t−1 + r0 (8)

where, r0 guarantees the searching area shall not reduce to
zero.
Step 3. Update the positions according to

xt = xt−1 + stb sign (f (xr )− f (xl)) (9)

where, the searching step size st = 0.95st−1 is decreased
while the search progresses, which is larger at the beginning
of the search and the later the smaller; sign(.) is a sign function
returns 1, 0, and −1 based on the difference between f (xr )
and f (xl).

sign(f (xr )− f (xl)) =


+1, f (xr )− f (xl) > 0
0, f (xr )− f (xl) = 0
−1, f (xr )− f (xl) < 0

(10)

Step 4. Calculate the fitness function values and record the
best position for the next step of searching.

Repeat Step 2 to Step 4 until the optimal (maximumormin-
imum) is found or the stop criterion is matched, and finally
output the results.

2) MODIFICATION OF THE SEARCHING STEP SIZE
Clearly, by analyzing the original BAS and BSAS algorithms,
a larger searching size helps the algorithm to jump out of
local optimum status, but it would reduce the precision and
speed of the convergence. On the other hand, it is easy to get
a local optimal with a smaller searching step size. Therefore,
the key point is how to get an appropriate searching step size
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to balance the quality of the solution and the convergence
precision and speed.

According to the current searching progress, that is, the
relationship between the number of iterations and the max-
imum number of iterations, the attenuation of search step st

is performed according to Equation (11).

st =
m
xbest
× exp

(
−ξ ×

(
t
T

)α)
+ smin (11)

where, m belongs to (0,1) is a regulatory factor; xbest is the
recorded optimal position so far, which is updated or kept
after each search step by calculating the fitness of each beetle
(see Step 4 in Section 2.2.1); ξ belongs to [0, 1] is the limiting
factor; t and T are the current and the maximum iteration
number; smin is the minimum search step; α is an integer from
1 to 30, here, α is equal to 25.

C. BSAS-BASED PF ALGORITHM
Asmentioned before, particle degeneracy and particle impov-
erishment are the drawbacks of the traditional PF, which
would affect the state estimation accuracy in the filtering pro-
cess. In this paper, a modified BSAS algorithm is introduced
into PF to overcome the particle impoverishment caused by
the resampling process. The main idea is to use the global
optimal information to guide the movement of overall parti-
cles. We define the global optimal information β as follows:

βi = e−d
2
i (12)

where, di represents the Euclidian distance between the posi-
tion of the ith beetle and the best position. Clearly, the larger
di is, the smaller βi is. As seen from PF algorithm theory, par-
ticles in the high probability density (HPD) region would help
to perform high accuracy estimation. Therefore, if new par-
ticles are not obtained by resampling, how to place or move
most of the existing particles into the HPD region is the key
direction of performance improvement research. In that way,
the global optimal information β could be used as a guide
for particle movement. A particle with a larger βi means it is
located in or close to the HPD region, and its displacement
distance should be shorter, vice versa.

Hence, the beetles (now they are particles) take the move
action according to Equation (13), which guarantees the par-
ticles in the low probability density (LPD) region are adjusted
to the high probability density (HPD) region, and thus,
the particle diversity and impoverishment are also improved.

x ik = x ik + βi(xbest − x
i
k )+ δ(rand −

1
2
) (13)

where, δ = 0.4 is a disturbance factor, and rand is a random
number that belongs to [0, 1].

Theoretically, firstly, because there is only one global opti-
mal value of BSAS optimization, particle i in particle filter
only needs to compare with the global optimal value, which
avoids the high-order interactive operation and repeated cal-
culation of attraction between particles. The computational
complexity in this stage can be reduced from the original

O(N 2) to O(N ), thus ensuring the real-time performance of
the filtering algorithm. Secondly, by using the global optimal
value to do information exchange with particle i is essen-
tially to use the global optimal value to guide the overall
movement of the beetle swarm (or particles), which can
significantly improve the global optimization ability of the
BSAS optimization part, and thus can significantly reduce the
probability of local extremum. Finally, the improved idea can
make the filtering algorithm find a better value with fewer
iterations and particle numbers. On the other hand, it reduces
the computational complexity of particle filter and makes it
easier to implement in engineering application.

The main steps of the improved BSAS-based PF are shown
as bellows:
Step 1. Extract n particles (beetles) according to the pre-

dicting Equation (3) from the transition probability density;
Step 2. Use the modified BSAS algorithm to find the

best position (the particle with the best fitness according to
Equation (14));

min
i
E(zk,new − zik,predicted)

2 (14)

where, zk,new is the latest observation value and zk,predicted is
the predicted observation value of the filter respectively.
Step 3. Calculate the global optimal information according

to Equation (12);
Step 4.Move the particles toward the best position accord-

ing to Equation (13);
Step 5. Update the sample weights and normalizing them

according to Equation (4) and Equation (5);
Step 6. State estimating according to Equation (6), based

on the least mean square error.

D. DFIG MODELLING
A state space model is needed to filtering state estimation
work here. The simplified ideal state space model of DFIG
used in this paper is derived from the physical model [30],
[31] of DFIG based on the voltage equations of the stator
and rotor. Assumed that: i) the stator and rotor windings
are symmetrical and symmetrically fed; ii) Saturation of the
inductances, iron losses, skin effect, and bearing friction is
neglected; and iii) The winding resistance is considered to be
constant. See more information in Rothenhagen and Fuchs
[30].

In this paper, we consider that i) the DFIG operates at a
fixed-speed and ii) the rotor voltages from the rotor-side con-
vertor as control signals to regulate the wind turbine genera-
tor, while the stator voltages from the three-phase grid are as
external known-inputs. Currents in the winding both in stator
and rotor, which are supposed to be measured, determine the
generated power. The model of DFIG is transformed in d-q
reference frame, in which, the d-axis is chosen to coincide
with stator phase r-axis at t = 0 and the q-axis leads the
d-axis by 90 degrees in the direction of rotation. Equation
(15) shows the generalized description. Where, the vector
x(t) = [ISdISqIRd IRq]T is the stator and rotor currents are
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defined as states, and u(t) = [URdURq]T is the rotor voltages
are defined as control inputs.{

ẋ(t) = Ax(t)+ Bu(t)+ Ds(t)
y(t) = Cx(t)+ Ff (t)

(15)

In which, s(t) = [USdUSq]T is the stator voltages are
defined as external known-inputs; y(t) = [y0 y1 y2 y3]T is
the output vector; f (t) = [f0 f1 f2 f3]T is the fault vector; and

A =



−
RS
σLS

ωRL2mnp
σLSLR

LmRR
σLSLR

ωRLmnp
σLS

−
ωRL2mnp
σLSLR

−
RS
σLS

−
ωRLmnp
σLS

LmRR
σLSLR

LmRS
σLSLR

−
ωRLmnp
σLR

−
RR
σLR

−
ωRnp
σ

ωRLmnp
σLR

LmRS
σLSLR

ωRnp
σ

−
RR
σLR


(16)

where in Equations (16) to (18), RS = 0.0071 � and RR =
0.005 � represent the stator and rotor per phase resistance
respectively; LS = 0.171 H and LR = 0.159 H represent
the cyclic stator and rotor inductances respectively; Constant
ωR is the mechanical rotor frequency (speed); np = 2 is the
number of pole pairs. The mutual inductance is written as Lm
equals to 2.9 H and σ is defined by Equations (20).

B =


−

Lm
σLSLR

0
0 −

Lm
σLSLR

1
σLR

0
0 1

σLR

 (17)

D =


1
σLS

0
0 1

σLS
−

Lm
σLSLR

0
0 −

Lm
σLSLR

 (18)

C = F =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (19)

σ = 1− L2mL
−1
S L−1R (20)

Equation (19) means that all currents are measurable as
assumed and the faults are settable. Definitions of the four
elements (f0 to f3) in the fault vector F are as follows: f0
represents normal (fault-free status); f1 to f3 represent man-
made fault status. Respectively, f1 stands for a short circuit
fault shown in Equation (21), f2 stands for a bias fault shown
in Equation (22), and f3 stands for a gain fault shown in
Equation (23), where µ is a degree factor.

RRf = (1− µ)RR, 0 < µ < 1 (21)

IRf = IR + 2 (22)

IRf = 2IR (23)

Since the PF algorithm operates in discrete time, the con-
tinuous dynamical system presented previously in Equa-
tion (15) needs to be discretized, which is shown as follows:{

xk+1 = Adxk + Bduk + Ddsk
yk = Cdxk + Fd fk

(24)

where, the coefficients of the matrices depend on the sam-
pling time, therefore, they are not given in this paper. The dis-
crete mathematical model of DFIG, shown in Equation (24),
enables its integration with the filtering algorithms discussed
in Section 2.3.

III. RESULTS AND DISCUSSIONS
A. PERFORMANCE VERIFY OF THE MODIFIED BSAS
OPTIMIZATION ALGORITHM
In this section, we will test the optimization performance of
the modified BSAS algorithm to verify the convergence and
optimization effect of the algorithm. Stronger optimization
ability promises the algorithm can search for the optimal
particles when applied to improve particle filter. Testing the
newly modified BSAS optimization algorithm based on three
selected standard functions shown in Equations (25), (26),
and (27).

fSchaffer(x1, x2) = 0.5−
sin2(x21 − x

2
2 )− 0.5

[1+ 0.001(x21 + x
2
2 )]

2
(25)

fMichalewicz(x1, x2) = −
2∑
i=1

sin(xi)(sin(ix2i /π ))
20 (26)

fStep(x1, x2) =
2∑
i=1

(|xi + 0.5|)2 (27)

Schaffer function (Equation (25)) fSchaffer has a global
maximum value of 1 at (x1, x2) = (0, 0) on the squared search
domain xi belongs to [−10, 10] for both i = 1, and i = 2.
Michalewicz function (Equation (26)) fMichalewicz has a

global minimum value of −1.8013 at (x1, x2) = (2.20, 1.57)
on the hypercube xi belongs to [0, 5] for both i = 1, and i = 2.
Step function (Equation (27)) fStep has a global minimum

value of 0 at (x1, x2) = (−0.5,−0.5) on the squared search
domain xi belongs to [−5, 5] for both i = 1, and i = 2.
All the three functions pose a risk for optimization algo-

rithms, particularly hillclimbing algorithms, to be trapped
in one of its many local minima. All the results are shown
in Figures 3 to 8.

Result figures illustrate that the newly improved opti-
mization algorithm has good performance in finding the
optimal results based on the challenge test functions ver-
ifying. As seen from the figures, it always can get the
maximum or minimum value of the three test functions.
This also provides a reliable basis for the algorithm in
the process of subsequent optimization of the particle
filter.
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FIGURE 3. Optimizing iterative process of the Schaffer function.

FIGURE 4. Optimization results of the Schaffer function. (The optimal
solution is shown in the large orange dot at (0, 0)).

FIGURE 5. Optimizing iterative process of the Michalewicz function.

B. STATE ESTIMATION EXPERIMENT OF THE MODIFIED
BSAS BASED PF ALGORITHM
Based on the above performance results of the modified
BSAS optimization algorithm in optimal searching tests, fur-
ther tests on state estimation of the improved particle filter
algorithm (BSAS-based PF) are conducted in this section.
The followed system model (28) is widely used in the evalu-
ation of PF-based estimation methods in econometrics. It has
the characteristics of high nonlinearity and double peaks. It is
difficult for traditional filtering methods to achieve effective

FIGURE 6. Optimization results of the Michalewicz function. (The optimal
solution is shown in the large orange dot at (2.2016, 1.5708)).

FIGURE 7. Optimizing iterative process of the Step function.

FIGURE 8. Optimization results of the Step function. (The optimal
solution is shown in the large orange dot at (−0.4994, −0.5011)).

state tracking.xk+1 =
xk
2 +

25xk
1+x2k
+ 8 cos 1.2k + nk

yk =
x2k
20 + vk

(28)

where, nk and vk are independent noises.
Seen from the compared results shown in Figure 9, BAPF

and GRPF perform well at the estimating work, they all can
track the state dynamics in the simulation process, because
they can also inhibit particle degradation based on their own
improvement principles. However, in the simulation study,
the BSAS-based PF algorithm always has the best perfor-
mance in most cases and it can track the state more accurately
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FIGURE 9. Compared results of state estimation when the number of
particles is 100. (BAPF: particle filter based on bat algorithm [32]; GRPF:
genetic resampling particle filter [33]; PF: particle filter [14]; BSAS PF:
BSAS-based PF algorithm proposed in this work).

FIGURE 10. Compared results of the distribution of all the 100 particles
at time k = 45.

TABLE 1. RMSE error of the four algorithms.

than them. That is, after the optimization of the particles’
positions, more particles have been moved to the high like-
lihood region, which is helpful for getting better results in the
state estimation work, and avoiding the particle degeneracy
with the iterations going on.

Figure 10 shows the compared results of the distribution
of all the 100 particles at time k = 45. BSAS-based PF
can keep most of the particles around the real state of the
system. Besides, there are still some of the particles that are
away from the real state at the current time, this distribution
appearance can assure the estimation accuracy of the filter
at the next time step once the system has a jump. Actually,
BSAS-based PF performance a good estimation result, shown
in Figure 9, even the system state jumped a lot at each time
step, while the other compared algorithms have not so widely
distributed particles.

FIGURE 11. Fault diagnosis implementation based on particle filter.

To verify the estimation accuracy of the four algorithms,
more simulation results were obtained based on different
particle numbers (N ) and different noise variance (Q) as
shown in Table 1. The estimation accuracy of the algorithm
is evaluated by the root mean squared error (RMSE) which is
defined as shown in Equation (29):

RMSE =

√√√√ 1
T

T∑
t=1

(xt − x̂t )2 (29)

where, T , equals to 60, is the iterative step number.
As shown in Table 1, the more the number of particles is,

the better accuracy all the methods can achieve. Especially,
it is interesting that GRPF performs better than BAPF when
the number of particles is small, but as the number of particles
increases, BAPF will perform better than GRPF conversely.
On the whole, the modified BSAS-based PF shows the best
performance regardless of the change of particle size or the
noise variance among all the four methods in our testing
experiments. It also shows that the improvement of PF algo-
rithm in this paper is effective and significant.

C. FAULT DIAGNOSIS OF DFIG SYSTEM
Based on the model presented in Section 2, we incorporated
the modified BSAS-based PF for the fault diagnosing work
in DFIG-based wind turbine system.

The main implementation process of the fault diagnosis
method based on particle filter includes the following three
parts: fault model building, residual generation, and fault
diagnosis (fault detection and isolation), which are shown
in Figure 11. The fault diagnosis model set is established
under the frame of the particle filter, including a normal
state model (M0) and several fault state models (M1 to Mj).
All fault state models are designed reasonably according to
the equipment operation and fault mechanism and they are
configured with an independent particle filter respectively to
match the normal model and the fault model. Accordingly,
each filter will match a set of specific fault modes to track the
possible fault behavior mode of the system.
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FIGURE 12. MAR and FAR with different thresholds.

Residualsmentioned in Figure 2 can be used as an indicator
to detect faults, because the generated residuals are close to
zero when the behavior of the monitored system is normal.
On the contrary, when a fault occurs, the residuals will rise
significantly away from zero, which indicates that the system
state is distinguishable from the normal one. In the fault diag-
nosis implementation process shown in Figure 11, residuals
are generated based on Equation (30).

r ik = yk − ŷik (30)

where, r ik is the residual of the ith model at time k , which is
the difference between the observed output and the predicted
output. Its value reflects the inconsistency between the actual
operation status of the target system and the theoretical opera-
tion status of the mathematical model simulation. In general,
we need to set a reasonable threshold and compare with it
to determine whether or not the fault occurs and what fault
occurs. Therefore, the fault can be observed and isolated by
analyzing the residual.

1) FAULT THRESHOLD SELECTION
Firstly, the experiment of fault threshold selection is carried
out to determine the threshold of residuals used in fault
detection and isolation.

In this paper, the selection of fault threshold is determined
by two important indexes, which are missing alarm rate
(MAR) and false alarm rate (FAR) shown in Equations (31)
and (32).MAR refers to the system is in fault but not detected;
FAR refers to the system is normal but detected as failure.
A fault diagnosis method should minimize both theMAR and
the FAR as much as possible based on the consideration of
performance balance.

MAR =
NFN

NF
× 100% (31)

FAR =
NNF

NN
× 100% (32)

where, NFN is the number of faults identified as normal, NNF
is the number of normal identified as fault, NF is the number
of faults, NN is the number of normal.
Figure 12 shows the results of MAR and FAR of fault

f3 under different thresholds. It can be seen that they show

FIGURE 13. Rotor current short-circuit fault (f1), where, µ = 0.5.

FIGURE 14. Rotor current gain fault (f3).

FIGURE 15. Fault detection results of f1.

different trends with different thresholds. If the threshold
setting becomes large, the FAR will increase while the MAR
will decrease; vice versa. The experimental results show that
when the threshold value is 10, the MAR and the FAR are
the best balance points, both of them are 9.12%. Therefore,
the fault threshold value shall be set to 10 for the better
comprehensive performance of the method.

2) FAULT DETECTION
Take the short-circuit fault (f1) and sensor constant gain fault
(f3) as examples to test the fault detection performance of the
improved BSAS-based PF.

Figure 13 shows the appearance of the man-made rotor
current fault (f1) that occurs between the time periods 0.3s
to 0.6s in three phase a− b− c coordinate. Figure 14 shows
the appearance of the man-made rotor current fault (f3) starts
from the time point 0.3s in three phase a− b− c coordinate.
The fault detection result of the short-circuit fault f1 based

on the new improved algorithm is shown in Figure 15. The
red dotted line is a fault threshold value.
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FIGURE 16. Fault detection results of f3.

FIGURE 17. Residuals of the fault isolation simulation.

It can be seen from the figure that after a slight delay
at 0.3 seconds, the residual rises sharply beyond the fault
threshold, indicating that the system has a fault from this
time on. This is consistent with the fault time we set. The
result shows that the BSAS-PF algorithm can be used to
detect a sudden change of the system state, quickly and
accurately. Then, the residual value has been fluctuating over
the threshold value for a while, which means that the system
is staying in fault or the fault is not eliminated. When the
fault is eliminated at 0.6 seconds, the system state changes
suddenly again, and the residual value also changes immedi-
ately. Finally, the residual value tends to the normal range
with the fault elimination. In case of two abrupt changes
in the system, the BSAS-PF algorithm can track the faults
timely and accurately, which verifies the effectiveness of the
algorithm applied to the fault detection of the system.

The fault detection result of the gain fault f3 based on the
new improved algorithm is shown in Figure 16.

It can be seen from the figure that, at 0.3 seconds, with the
occurrence of the manual setting gain fault, the system state
changes abruptly, and the residual changes immediately too,
which exceeds the fault threshold a lot. The system fault is
detected. Different from the short-circuit fault f1, after the
gain fault f3 occurs, the residual always fluctuates in the
range beyond the threshold value, and does not recover to
the fault threshold line, indicating that the current sensor
is continuously in constant gain fault, which is completely
consistent with the fault setting we made.

3) FAULT ISOLATION
After the fault is detected, all the particle filters are started
to isolate the fault. Figure 17 is the result of all fault modes

by running the particle filters. It can be seen that residuals
of fault modes M2 (bias fault f2) and M3 (gain fault f3) are
relatively large, while residuals of M1 (short-circuit fault f1)
is the smallest. Hence, fault mode M1 is determined that the
system is in short-circuit fault f1. The isolation process of
other fault modes is similar to M1.

Moreover, from all the results, high accuracy of state esti-
mation ability can ensure the diagnosis efficiency. That is to
say, if the estimation accuracy is poor, the residuals generated
by the diagnosis system will be largely changed dynamically,
which could lead to a false alarm of the fault when the
DFIG system running in normal. Based on a proper threshold,
the false-alarm rate can be reduced. However, it is difficult to
setup a threshold properly, because there are many reasons
(e.g. system noise, measurement error) that shall affect the
values of residuals in fault diagnosis practicing. Therefore,
an adaptive threshold shall be introduced into practicing of
fault diagnosis system in the future study.

IV. CONCLUSION
Wind power systems are usually installed in remote areas
with few people tread, it is necessary to develop a remote
monitoring system and a reliable fault diagnosis algorithm
to monitor important components and equipment in wind
turbine systems. For DFIG fault diagnosis application in wind
turbine systems, we have developed a modified BSAS-based
particle filter algorithm.

i) We improved the optimal search performance of the
beetle swarm antennae search (BSAS) algorithm based on
an adaptively search step size. It shows good results in the
optimization of three typical test functions.

ii) We introduced the improved BSAS algorithm to the
traditional particle filter (PF) to overcome the drawbacks of
particle diversity and impoverishment caused by the resam-
pling process. Particles are moved to close to the high like-
lihood region by attraction, which can ensure the diversity
of particles, reduce the degradation degree of particles and
effectively improve the estimation accuracy. BSAS-based PF
is verified by a state tracking simulation study. Results show
that it has a better state estimating accuracy compared with
PF, BAPF and GRPF methods.

iii) Based on the good state estimation ability, the BSAS-
based PF is used to perform the fault diagnosis in a DFIG
system. It can detect faults rapidly and accurately based on
residual values, as well as in fault isolation. The proposed
fault diagnostic method has an important theoretical signifi-
cance and engineering application value.
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