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ABSTRACT Several hypovigilance detection systems (HDx) were developed to avoid road-side accidents
due to driver fatigue. They have suffered from several limitations. Notably many of these are focused on
center-head position to define an area of interest (often referred to as PERCLOS (percentage eye closure))
without considering the face occlusion problem, light illumination, and suffer poor response time. These HDx
systems mostly depend on image processing, vision-based, and multisensor-based features. To address these
problems, the author utilized vision, sensors, environmental, and vehicular-based features that integrated
together by fusion to predict multistage of HDx. Lately, few studies have utilized the combination of
multimodal features and deep learning (DL) architectures. Those multimodal-based features (M-HDx) were
feasible to predict stages of driver fatigue (multi-stage). However, there is a need to critically measure the
performance of these M-HDx by carrying out a comparative analysis to recognize multi-stage of fatigue
in terms of hardware-based benchmarks. Moreover, it is important to evaluate the M-HDx systems using
different features-set with respect to traditional and advanced machine learning techniques. Therefore,
the primary aim of this work is in algorithm and feature modeling, then compare the advantages and
differences with other work. In this paper, a different study is conducted compare to state-of-the-art survey
articles by statistically measuring the performance. After experiments on M-HDx systems, this paper
concludes that there is still a research gap to real-time development of multistage M-HDx systems. In the
end, the paper summarizes the directions, challenges, and applications in the development of HDx systems
to assist other researchers for further research.

INDEX TERMS Computer vision, driver hypovigilance, driver distraction, deep learning, hybrid learning
models, multimodal features, machine learning, multisensor fusion, transfer learning.

I. INTRODUCTION

Fatigue and loss of vigilance (hypovigilance) among the
drivers are very common problems. This problem assumes
even acute significance for long-haul logistics drivers. These
risks can potentially translate into hazardous accident situa-
tions. During the last few years, researchers have developed
many hardware and software-based techniques to avoid such
risks [1]. In particular, an effort has been to develop tech-
niques for automated monitoring of the drivers’ activities.
These systems have the ability to provide intelligent feedback
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and generate alert messages to the drivers for recognition the
uncontrollable situations. According to a report published by
World Health Organization (WHO) [2], more than 1 million
people lose their lives due to traffic accidents, and approxi-
mately 50 million more get injured causing severe disabilities.
In particular, more than seven thousand death and thirty-eight
thousand injuries are recorded due to road accidents every
year in Kingdome of Saudi Arabia (KSA). The development
of real-time driver fatigue detection and prediction system is
a challenging task related to computer vision technologies.
In such systems, detection of low vigilance and high fatigue
level results in the generation of alerts and warnings to the
driver about his/her poor state of driving through an alarm.
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As a result, the development of this driver drowsiness system
is critical for detecting the drivers’ ability of perception,
recognition, and vehicle control during roadside driving.

Most of the existing real-time hypovigilance detection sys-
tems (HDx) techniques have a poor response time as men-
tioned in the literature [3]. This calls for a need to develop
such systems that respond effectively in less amount of time.
Another characteristic of the desired technique should be its
non-intrusive nature making it independent of any specific
hardware on the driver’s body. One such project to be cited
is by MIT researchers named Smart Car [4]. This system
however is intrusive as the driver needs to wear and use
a wristband on the arm or wrist to calculate and measure
the heart rate. Some other methods use the eyes and gaze
movements of drivers that are installed on the helmet or by
using special lenses. Though useful yet the intrusive nature
of these types makes these practically unacceptable by many
communities.

Hypovigilance detection systems (HDx) systems were
developed in the past to detect driver drowsiness or inatten-
tion [5] under the state of drowsiness. To measure the drivers’
state, in this case, several authors such as CogBeacon-
ML [124], BROOK-DenseNet [126], Ford-dataset [74], and
Riani-M-HDx [128] utilized different measures as shown
in Figure 1. The past HDX developed systems were based
on the integration of PERCLOS (percentage eye closure)
and multisensor fusion approaches [6] to detect and predict
driver drowsiness. Those systems were based on advanced
image processing, signal processing, and machine learning
techniques to define PERCLOS measures. Health measures
and vitals such as EEG and/or heart rate monitoring systems
can also be used to detect driver fatigue [7], [8]. Some other
systems use non-visual features based on driver physiological
measures and vehicle parameters. In the case of physiologi-
cal parameter measurements, the researchers predict driver
fatigue based on different parameters such as steering-wheel,
acceleration pedal, and speed. In practice, those approaches
were mostly dependent on the road-shape, way of driving,
and performance of the vehicle. The author utilized electroen-
cephalograph (EEG), electrocardiogram (ECG), electroocu-
lography (EOG), and surface electromyogram (EMG) [9]
sensors to predict driver fatigue. Yet, these techniques depen-
dent on contactable sensors, which lessen user experience and
increase hardware cost. On the other hand, it might increase
the effectiveness of HDx systems.

Driver hypovigilance [10], [11] can be determined by
applying a combination of the following measures. Vehicle-
dependent measures are determined by monitoring the devi-
ation of the lane direction, the rotation of the steering wheel,
the acceleration pedal strength, etc. If the calculated metrics
go beyond a small scale, so the hypo-surveillance risk of
the driver is very high. The physiological measures are also
used to determine fatigue state using medical vitals such
as ECG, EMG, and EEG. Any visible distortion in these
vitals can signal a change in the driver’s state which should
generate an alarm. Several studies have been published on
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FIGURE 1. A visual example of state-of-the-art Hypovigilance prediction
to measure any one of the following measures or by a combination of
these measures using multimodal features.

the identification of driver drowsiness or the detection of
driver inattention by a physiological signal. Driver activity
such as yawning, eye closing, eye blinking, head location, etc.
is tracked by a vision-based camera and the device warns the
driver if hypovigilance is observed. A visual example of these
different measures is displayed in Figure 1.

The development of the HDx system is very critical due
to many factors such as specific machine-learning methods,
inadequate parameter settings that result in a false nega-
tive and false positive. In such systems, the prediction of
driver’s drowsiness or fatigue level using different vision
and multisensor-based features [14], [15] does not achieve
absolute accuracy. Combining multiple modalities can be a
possible solution to resolve some of these constraints [16].
Modality fusion can be applied to achieve that which is
characterized as the incorporation and combination of various
types of data, which are collected from a subject. Modality
fusion [17] may be done at any level of data processing,
such as sensor-level, feature-level, or decision-level fusion.
In practice, many researchers have been utilizing feature-
level fusion techniques to implement HDx systems in a real-
time environment. In feature-level fusion, in the first step,
different features from different modalities are merged into
a unique vector in an early and late binding fashion. It has
been shown that integrating different modalities [18] at the
feature-level is an efficient way to create a model for driver
HDX detection. One of the main challenges facing effective
modality fusion is the criteria for combination or convergence
of modalities at the stage of fusion (sensor, feature, score,
or decision). So far, feature-level fusion has been commonly
used to test the stress levels and fatigue of drivers. Hence,
it is desirable to develop an approach that integrates different
modalities together to design a more effective and robust
hypovigilance prediction system in the form of multistage
output. In this paper, our focus has been exactly on the same
concern as shown in Figure 2.

Various methodological techniques for the development
of HDx systems have been described and discussed in this
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FIGURE 2. A visual example of state-of-the-art Hypovigilance prediction to measure any one of the following measures or by a

combination of these measures using multimodal features.

paper. We have compared the efficiency and performance of
these techniques against the technique proposed by authors
in [127]. In that paper, we describe the implementation of
an IoT-based architecture for detecting driver drowsiness
through mobile, energy computing in 5G and cloud-based
environments. The comparison carried out in this paper high-
lights the need to integrate modern innovations in the domain
of image processing, machine learning, and intelligence algo-
rithms for multimodal and deep-learning-based computing.
Although, several survey articles [12] have been written to
address the same issue. However, it is apparent that none of
these studies carried out a methodological comparison in the
domain of deep-learning and multimodal features-learning.
In arecent survey article, the different papers were described
to detect real-time driver drowsiness [ 13] without the compar-
ison involving multimodal and deep learning architectures.
Therefore, in this paper, we reviewed recognize methods
for detection of driver fatigue based on vision-based and
multisensor-based features.

A. MAJOR CONTRIBUTIONS

The paper’s primary work is in algorithm and feature model-
ing, then compare the advantages and differences with other
work. This section briefly described the main contributions
of this article that are described as follows.

1) Different machine learning algorithms are evaluated on
hardware-based benchmarks (CPU and GPU).

2) Methodological reviews have been carried out to
highlight recent trends for the development of
hypovigilance detection (HDx) systems based on
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vision-based (V-HDX), sensor-based (S-HDX), and
multimodal-based (M-HDX) hypovigilance detection
systems.

3) Comparison of different unimodal and multimodal fea-
tures by using various machine learning algorithms and
state-of-the-art HDx systems have been performed.

4) Online data sources along with parameters are also pro-
vided to assist other researchers in training the network.

5) Current and future directions for the development of the
HDx system are also provided in this paper to continue
further research in this domain.

6) Explain the importance of multimodal-features-based
driver fatigue recognition system in the deep-learning
context, which is a new review article in this domain.

7) State-of-the-art comparisons have been performed on
recent four multimodal-based HDX systems to further
discuss challenges in this domain.

B. PAPER ORGANIZATION

The remaining organization of this paper is as follows.
In Section II, the research protocol is described that con-
sists of research questions, comparisons to other survey
articles, and selection of papers for this review article.
A study of recent trends in the state-of-the-art in the field of
machine and deep learnings for detection of driver’s fatigue
based on vision-based (V-HDX), sensor-based (S-HDX),
and multimodal-based (M-HDX) driver fatigue is detailed
described in section III. Section IV describes different deep-
learning-based models used in the past. In section V, we have
performed different experiments on selected datasets and
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HDx systems based on different statistical metrics. Those
results highlight merits, demerits, and limitations about dif-
ferent parameter settings and environments to develop HDx
systems in real-time. Also, this section highlights the recent
datasets used in the past. In addition, the discussion about
obtained results is detailed described in section VI. Besides,
this section also presents the current limitation and future
directions in this domain to assist other researchers. In addi-
tion, this section also describes the challenges and future
directions to help other researchers so that they can develop
HDx systems up-to-the-mark. Finally, this paper concludes in
section VII.

Il. RESEARCH PROTOCOL

The research protocol defined the detailed layout, the method
that is a plan to use in the review. The protocol also defined
the rules and instruction for conducting a survey on the exist-
ing work on recent state-of-the-art hypo-vigilance detection
systems (HDx) which offers assistance to research beginners
in this domain. And, also provide enough information regard-
ing traditional machine learning and deep learning-based
approaches in the development of HDx systems through
multi-modal features as shown in Figure 3. The survey also
assists the user in regards to performance comparison of tra-
ditional and deep learning-based HDx systems, the impact of
deep learning and multimodal technologies, the kind of deep
model are already implemented, and how the performance of
the HDx systems can be improved? Moreover, the survey also
provides help regarding the cost, data analysis and manage-
ment, achieved result and also find the challenges related to
both traditional and deep learning-based HDx systems.

A. RESEACH QUESTIONS

The fundamental core of the study of either the literature
review or project is the research questions. This describes
the methodological starting point of scientific study in all
disciplines. Table 1 reveal the research queries linked with
the HDx systems trait, the motivation and linked to a different
section of the paper.

B. COMPARISONS WITH SURVEY ARTICLES

We have done extensive studies in terms of methodologi-
cal comparisons of different features and machine-learning
algorithms compare to state-of-the-art survey articles in this
domain. Table 2 shows the difference between our study and
existing surveyed articles.

C. PAPERS QUALITY EVALUATION

The visual, non-visual, and multimodal features with
machine-learning and deep-learning architectures keywords
are used to search papers. In general, the standard is con-
sidered after defining the research question and before the
research process is performed out. Here, for instance, irrele-
vant papers and out of concerned papers were denied. If the
large field of study relates to our subject, we would con-
sider the research. Published research manuscripts from top
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FIGURE 3. An overview of historical figure to show the technological
evolution in the development of hypovigilance detection systems (HDx)
related to different features and machine-learning techniques.

Journals (SCI and ESCI) and Top conferences must always
be acknowledged. However, old studies and research which
do not fulfill our goal must be exempted.

IIl. RECENT TRENDS OF HYPOVIGILANCE DETECTION
SYSTEMS
Detection of driver drowsiness and fatigue has been an area of
research for scientists for a while now. In the early research,
the steering motion of automobiles was regarded as an indica-
tion of hypovigilance [6], [8]. More recently, techniques have
used face detection and recording for this purpose. Besides,
some methods require working with health vitals such as
brain waves and heart rate to equate them with states of sleepi-
ness [9]-[11]. They combined vision-based methods with
multisensor-based methods to define multimodal features for
the detection of hypovigilance. Some authors used physio-
logical measurements [12] that can be extracted by using
different sensors to account for heart rate, skin conductance,
and respiration rate to detect hypovigilance (HDx) of drivers.
Orientation-based fatigue detection methods detect and
verify the position of the eyes. The methods used different
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TABLE 1. Summary of research questions and motivations involves in this study.

S. Research Questions Motivations
No.
RQ1  What type of research is being done for recognition of single-state driver fatigue using deep learning ~ To know more about recent studies related to binary decision (Fatigue or normal),

architectures?

which are being conducted in this domain.

RQ2 What type of research is being done for recognition of multi-state driver fatigue using deep learning To know about recent popular multi-stage driver fatigue’s prediction systems.
architectures?

RQ3 What are the visual features utilized to detect driver fatigue? To know about in-depth visual-related features utilized in the past.

RQ4  What are the non-visual features utilized to detect driver fatigue? To know about in-depth non-visual-related features utilized in the past.

RQ5 What are the multi-modal features used in the past to detect fatigue? To understand the needs of combining visual and non-visual features to ensemble as
multimodal features for the development of DFD systems.

RQ6  What are the main datasets being used by state-of-the-art studies? To know about the availability of datasets for testing and training.

RQ7  What is the data size available to facilitate the latest machine-learning architectures? To study and know about the size of dataset is really mattered in case of using latest
approaches.

RQ8  What are traditional-machine algorithms used in the past? To understand bout the different traditional classifier used in the past.

RQ9  What are the main performance measures used for the validating of results? To know about the statistical metrics used in the past.

RQ10 What are the different state-of-the-art multimodal-based systems are available? To know about existing multimodal-based DFD systems.

RQ11  What is the role of deep learning architectures? To study various latest-machine-learning including deep-learning approaches.

RQ12 What is the importance of transfer learning (TL) in multimodal DFD system? To know about usage of TL algorithm for the development of DFD system.

RQ13  What is the role of features involved in the detection of driver fatigue? Try to understand existing features set used by different systems.

RQ14 What is the importance of multimodal features in deep-learning architectures? To know about the pros and cons about the multimodal-features used in the past.

RQ15 What is the best features combination and deep-learning architectures? To know about the latest trends in features and deep-learning models.

RQ16 What is the importance of selecting of benchmark for experiments? To understand the importance about hardware benchmark for DFD systems.

RQ17 What are the current limitations and future directions of the detection of driver fatigue? To identify research-gap for the better development of the DFD systems.

TABLE 2. Summary of existing survey papers on hypo-vigilance detection systems.

No. Related Survey Reviewed Research Questions

articles Upto

RQ1 RQ2 RQ3 RQ4 RQ5 RQ6 RQ7 RQO8 RQ9 RQ10 RQ11 RQI12 RQ13 RQ14 RQ15 RQ16 RQ17

1 Kaplan et al [6] 2014 v v v v v
2 Mathews et al [1] 2017 v v v
3 Ramzan et al [11] 2018 v v v v v v v v
4 Khan et al [12] 2018 v v v v v v
5 Sikander et al [13] 2018 v v v v v v v
6 Rastgoo et al [14] 2018 v v v v v
7 Elassad et al [157] 2019 v v v v v v
8 Némcova et al [16] 2019 v v v v v v v v
9 Abbas et al [127] 2020 v v v v v v v v v v v
10 Watling et al [156] 2020 v v v v v v
11 Our Review Article 2021 v v v v v v v v v v v v v v v v v

techniques such as template matching and appearance-based
functionality to detect the state. Nevertheless, these dis-
tinctive methods faced problems because of the errors that
are generating from the signal disambiguation. These also
faced problems due to lack of facial detection [14] resulting
from abrupt gestures, and the discomfort due to constant
hardware application. Medical signals such as electroen-
cephalography (EEG) and electrocardiogram (ECG) [15]
have also been used and analyzed to differentiate between
the sleepiness and alertness states of the drivers. As a result,
some authors suggested integrating vision-based methods
with multisensor-based [16] techniques to extract multi-
modal features. Wu et al. [17] studied methods adopted
to detect the alertness of drivers and categorized them
into methods related to the condition of drivers. One
category involved metrics such as eyelid motions and per-
centage of eye closing, whereas another category com-
prised of methods related to the efficiency of drivers, such
as vehicle distance and lane detection and multi-modal
methods that incorporated these approaches. Using a sin-
gle camera or multiple cameras and several sensors were
used in the past to detect the hypovigilance state of the
drivers.
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The major limitation of this type of system is their inability
for early and accurate detection [18]. It is needed to detect
early if the warning occurs at the initial stages. Literature
is replete with various parameters and measures that can be
used to detect driver fatigue. We need to use a combination
of these measures as a single measure or different parameters
may not be able to detect fatigue [19] in terms of multi-stage.
If the driver used glasses or hide their face then eyes or facial
features cannot be detected easily. Therefore, more than one
measure or parameter can be suitable for this type of system
to detect driver fatigue.

A comprehensive literature review suggested that the
authors are deploying a combination of techniques instead
of using a single machine learning technique to optimize the
performance. To achieve this goal, some recent studies [107]
have employed hybrid solutions to enhance the accuracy of
the fatigue detection system. The system employed various
vehicle parameters such as speed, acceleration, vehicle lane
position, steering angle, braking. These features were then
combined with facial features to predict driver drowsiness.
Research shows that these hybrid systems are providing more
accurate results with the increase of computational time.
Several studies also used deep-learning models to classify
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driver fatigue. The above-mentioned parameters are the main
parameters of fatigue detection due to their ability to monitor
variation. There can be environmental factors that may yield
inaccurate data for these parameters. The lighting conditions
may fluctuate because of diverse weather conditions. Simi-
larly, sometimes it can be day or night. The background of
the driver also affects these types of systems. Another factor
that affects such type of system is the vibration of the car to
collect visual data.

Researchers are constantly working on the development of
HDx systems based on multimodal features instead of a sin-
gle modality to overcome the above-mentioned limitations.
By monitoring the heart rate of drivers [19] with a wearable
tracker or extracting their facial expressions with an RGB
camera, driving fatigue can be observed more effectively and
robustly. However, such systems can present the problem of
intrusiveness and result in inconvenience. The application
of an RGB camera on the other hand can be affected again
by light and other such factors. Also, the temporal details
of fatigue characteristics and the relationship between the
characteristics can’t be neglected if we rely completely on
such approaches. To approximate the detection of the driver’s
fatigue condition, these fusion methods need to be combined
with transient fatigue features into the classifier’s input vec-
tor. It is therefore required that we obtain features over a
regular period-of-time to recognize multilevel (drowsy, alert,
very alert, very drowsy or normal) driver drowsiness state.
While the methods described above are encouraging, further
challenges must be considered as mentioned in Table 3,
Table 4, and Table 5. According to these tables, it is needed
to design a new multimodal fusion-based approach to develop
an HDx system so that the maximum performance level may
be achieved.

The precision of fatigue detection may be significantly
improved by integrating physical characteristics and vehic-
ular features to detect fatigue. A technique that incorpo-
rates both driver characteristics and vehicle characteristics
were proposed by Cheng et al. [20]. Parameters selected for
fatigue identification included PERCLOS, blink rate, maxi-
mum time eyes are near, non-steering percentage, percentage
of on-center driving, standard steering wheel angle deviation,
and standard lane direction deviation. In the trial, 20 partici-
pants took part. To fuse data from both the driver and the car,
the authors developed a model based on a multisource data
fusion approach. A self-adaptive dynamic recognition model
was introduced in a more recent study [21] that used the most
powerful features for feature fusion to detect fatigue. These
included physical characteristics as well as vehicle charac-
teristics. The features were based on visual measurements of
the driver as well as the actions of the car. This technique
achieves an accuracy of 90.8 percent by using only the vehicle
action features. The accuracy of technique with only facial
features was measured at 91.6 percent accuracy. The fusion
of all fatigue features produced an accuracy of 92.1 percent
while accuracy of 93.8 percent was achieved when using only
the most powerful features.
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Apart from the detection of drowsiness, another challenge
is to forecast deficiency of the operating status of a car
driver [22]. In that paper, the authors investigated if it is
feasible or not to use the standard sources of knowledge to
detect drowsiness for a certain degree of drowsiness. The
authors developed the HDx based on the behavioral, vehicu-
lar, and psychological factors to define multimodal features.
For defining the behavioral features, the author used head
and eyelid movements (blink duration, frequency, and PER-
CLOS) whereas to extract psychological features, they used
variability of heart rate, respiration rate. Besides, the authors
used speed, steering wheel angle, and position on the lane
to measure the vehicular features. Two intelligent models
were created to measure drowsiness and the time required to
achieve a certain rate of drowsiness. With behavioral metrics
and extra knowledge, the best result in both identification
and prediction is obtained. Since they used multimodal fea-
tures and obtained higher results of prediction compared to
other approaches. Based on this point, we have method-
ological reviewed many papers in terms of vision-based,
multisensor-based, and multimodal-based features. These
technical details are presented in the upcoming sections.
In this section, we will review state-of-the-art hypovigilance
detection (HDx) systems. These HDx systems are broadly
categorized into vision-based (V-HDx), multisensor-based
(S-HDx), and multimodal-based (M-HDX) Systems.

A. VISION-BASED (V-HDx) SYSTEMS

Much research has gone into the development of vision-
based hypovigilance detection (V-HDXx) systems to diagnose
drowsiness in drivers by analyzing driver behaviors. The
main parameters for identifying drowsiness are the eye state,
eye blinking level, mouth state, and yawning frequency of
a driver [39]. The important parameter for the diagnosis of
driver drowsiness is eye closure length. The V-HDx Systems
that use this tool normally measure eye states and the location
of the iris over a particular period to approximate the extent of
eye blinking and the length of eye closure. PERCLOS (Per-
centage of eye closure) is a consistent and accurate measure
for assessing the driver’s alertness level [12], [49]-[51] for
such devices. Eye condition research typically makes use of
the PERCLOS measure as a drowsiness measure reaching
80% of the time for eyes closed [52], [53]. Generally, if the
driver is sleepy, the time of eye closing will increase and
the value of PERCLOS is greater than a driver’s waking
times.

In these techniques, the eye area including the pupil region
needs to be separated to measure PERCLOS. Limitations
of these techniques include improper lighting conditions,
face occlusion, and sunglasses are main of them. To solve
these issues, some V-HDx systems use IR (Infrared) cam-
eras [24], [49], [54], [55]. The most useful V-HDx methods
that focused on visual characteristics are explained in detail
in the following paragraphs and compared in Table 3. In the
past, the authors utilized different strategies for the detection
of drowsiness based on V-HDx approaches. To classify these
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TABLE 3. Summary of state-of-the-art vision-based hypovigilance (V-HDx) systems using visual features and machine learning algorithms.

Ref. Techniques Classifiers/ Features Implementation Detection Critical Problems
[23]  Window Growing, PERCLOS HOSVD Pentium Core i7 .73 GHz CPU, Two . En.v1ronment C.ondltlons, Sunglasses,
Cameras, LED High Complexity
Intel Pentium-M processor running at .
. . PCA, LDA, . Environment Parameters and
[24] Eye detecting and tracking d kurtosis, SVM 1.60 GHz with - Sunl
Sparseness, an urtosis, 500 MB RAM unglasses
[25] Haar face detector SVM Pavilion DV6, CORE I5 2.4 CPU, RAM . Varying lighting Conditions and
4GB Sunglasses
26] blinking measurement and CAMSHIFT, Haar wavelets, Ir;teclePenﬁllimrI{Eual;Core CPU Computational Expensive,
the 3Dhead pose estimation Hough Transform, SVM gf;, 135&/1;31 é OSISS\M Environment Parameters
Pyramid transform domain (PLBP) Varying lighting Conditions and Head
(7] .nd Multi-Block Histogram LBP (BHLBP) '™ and MLP N/A Position
[28]  to detect human faces and eye regions AdaBoost and Contour Circle NA 91.5% Head positions and face occlusion.
[29]  Face, head and eye regions detected Haar-.hke features and adaptive Intel Core2 Dou 2.66 GHz and 2 GB . Con.\putahonal Expensive,
boosting method RAM Environment Parameters
Decisions Tree C5.0, KNN, Pentium 4, Difficult to implement, Sunglasses and
(30]  DWTand LBP and SVM 1.6 Ghz with 256 MB RAM - Environment parameters
[31] Slmultane_o us . . cascade regression framework NA - Environment Conditions, Sunglasses
eye detection and eye state estimation
[32] contextual features three separate MCSVM classifiers NA - High Computational cost
3] Geometric features from . marufo?d embedding and linear 2.67GHz Intel(R) Xeon(R) CPU - Con.lputatmnal high cost,
center of the eyes and the nose tip regression Environment parameters, Sunglasses
fatigue related facial action units' (AU)
identification employing a photometric o Environment parameters and Face
(341 stereo (PS) testbed for 3D AU deep neural networks NA 95% occlusion
reconstruction
[35] Multilayer CNN model SoftMax classifier NA 73.06% Head position and Sunglasses
[36] Vul)la and Iones method and corner points K-Means clustering, eye template NA - Environment parameters and
Shi-Tomasi detector sunglasses
Drivers’ fati lik ion of
d:svl.lerres b?it;il'lrf St::c’l ]ae ‘ri\‘j]r:ahg:’x? e Multiple Convolutional Neural Environment parameters, head
371 video ir’na eslvs:i,thoutye vl\:i . i’\ tLe%r Networks with Kernelized NA 95% 0:iltion and f]:ce occlusi(,m
>0 Images, |t equipping Correlation Filters (MCNN-KCF) P
bodies with any devices
38] infrared imaging Gabor filter with eye-validation process and CPU: i5; memory: 4GB . Environment parameters and
template matching AdaBoost sunglasses
[39]  PERCLOS Features estimation PCA and SVM In.th 280GHz ,CPU - Sunglasses, Head position
(single core) with 4 GB
40 Multilayer CNN model SVM NA 73.06% Head position and Sunglasses
y P 8
Sensitivity:
o .
[41] PERCLOS Features SYM NA 9558(@ énd Environment P.arameters, sunglasses
specificity: and head position
100%
[42] Kalman filter and Image Processing SVM and RBF NA Environment p varameters, sunglasses
and head position
[43]  Motion-based blink detection RNN model NA %co;uracy : Environment parameters
lo
[44]  Fatigue facial expression recognition SVM with Boost-LBP features NA 85.5% Environment parameters and
Sunglasses
[45] recognize the face and then detecting the PERCLOS measure and YawDD 80°% Face occlusion and Sunglasses but
eye in every frame video dataset N light illumination problem resolve
[46] compgter-wswn—based driver fatigue CNN NA 91% Environment .p.arameters, sunglasses
detection systems and head position
[47]  Detection of driver fatigue. MTCNN NA 97.06% Environment parameters, sunglasses
and head position
Hand gestures, facial expressions AlexNet, VGG-FaceNet, Intel Core i5 processor with 2.4 GHz Environment parameters, sunglasses
[48] & ’ P ' FlowImageNet and ResNet, which ~ CPU along with 8 GB RAM with 85% P , SUng
behavioral features and head movements X . and head position
use RGB videos of drivers python
[49] Vision-based driver fatigue recognition Features extraction (DCT, PCA) NA NA Environment parameters, sunglasses
System and classification (KNN,SVM) and head position
150] Eyes, mouth and head motions used to hierarchical temporal Deep Belief MATLAB implementation using a 84.80% Environment parameters, sunglasses
.82%

detect fatigue

Network (HTDBN)

Core i5, 3.1GHz PC with 16GB RAM

and face occlusion

LHOSVD: Higher order Singular value decomposition, MTCNN: multi-task cascaded convolutional neural networks, PCA: Principle component analysis, LDA: Linear discriminate

analysis, SVM: Support vector machine, MLP: Multilayer Perceptron, KNN: K Nearest Neighbor MCSVM: separate multiclass support vector machine, ANNSs: artificial
neural networks, CNN: Convolutional neural network, RBF: Radial Basis kernel function, RNN: Recurrent Neural Network, PSO: particle swarm optimization DWT:

Discrete Wavelet Transform, LBP: Local binary pattern, contextual features: continuous driving time, sleep duration time, and current time PERCLOS: Percentage eye
openness tracking.
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states, the author used many machine learning approaches
(traditional and latest technologies such as deep learning).

In various research and engineering areas, artificial neural
networks (ANNSs) have been used [27]. The fuzzy inference
method (FIS) [50] is another method that is used in the past
for the development of V-HDx systems. The support vector
machine (SVM) was used [12] which is based on the method-
ology of statistical learning and can be used for the classifi-
cation of patterns and the inference of nonlinear interactions
between variables. The SVM method’s learning methodology
makes it appropriate to test humans’ cognitive states. SVMs
can produce both linear and nonlinear models and the nonlin-
ear models can be calculated as accurately as linear models.
AdaBoost uses boosting algorithm [51] for pattern recogni-
tion. Its benefits include high performance in detection, quick
process time for identification, and the potential expansion
of recognition functionality. Also, Bayesian networks (BNs)
classifiers are applied to the simulation of human behavior
and have been used to diagnose inattention [52]. Despite these
benefits, it takes considerable computing capacity and a vast
volume of training data to construct a right and reliable BN
model.

Another new development that has been to borrow from
the field of speech processing and language technology tech-
niques focused on hidden Markov models (HMMs) [53].
In [53], the authors built an HMM to predict route schemes
using vehicle speed, steering-wheel angle, and braking force.
To detect visual features from the driver’s face, some authors
suggested a single vision-based camera but some other
authors used multiple cameras to effectively detect multiview
features. Researchers in [23] propose a hybrid visual frame-
work focused on driver’s eye recognition for tracking driver’s
drowsiness. Using two cameras working in the visible and
close infra-red spectra respectively, safe operation in-car con-
ditions and processing in every day and night conditions were
accomplished. A cascade of two classifiers conducts image
recognition in both of these spectra. The exact description of
the eye state in [24] is a criterion for the avoidance of car
crashes due to driver sleepiness. These researches highlighted
that previous classification approaches are susceptible to eye
localization errors and visual obstructions.

In [25], another approach was presented combining image
processing and machine learning techniques to detect driver
drowsiness. The authors used Haar cascade classifier with
SVM to recognize the current state of the eyes whether it is
open or closed. In [26], a multilevel fusion system was devel-
oped through the measurement of eye blinking and 3D head
pose estimation. They estimated the head rotation in the three
directions by using only three interest points onto the driver’s
face. This system was evaluated by both DEAP and Mira-
clHB databases. Whereas in paper [27], the authors used two
descriptors namely Pyramid transform domain (PLBP) and
Multi-Block Histogram LBP (BHLBP) with SVM to detect
only human eyes in grayscale images. In [28], an Adaboost
and Contour Circle (ACC) algorithm was developed for rec-
ognizing whether eyes are in an open state or closed state.
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In [29], the driver monitoring system for hypovigilance
(fatigue and distraction) was developed based on the symp-
toms associated with the facial and eye regions. A fuzzy
expert system (FIS) was used to combine the symptoms
to estimate the level of driver hypovigilance. In [30], and
Intelligent Drowsy Eye Detection, using an Image Mining
(IDEDIM) system was developed. The authors have used a
cascaded regression in [31], different visual features were
used jointly to estimate the eye orientation and likelihood
of openness. This paper describes three of the most power-
ful contextual attributes, i.e., continuous driving time, sleep
length time, and current time, by using a multi-class SVM
classifier to enable the real-time (online) identification of the
exhaustion condition. As in [33], only three facial keypoints
were used by the authors on a compilation of geometric
features, namely the middle of the eyes, the corner of the
mouth, and the tip of the nose.

In [34], a new V-HDx method was developed to incor-
porate machine vision for intelligent transportation through
deep learning (DL) architecture and action units (AUs). They
achieved a significant (95%) improvement in terms of accu-
racy compared to others. In that study, the author demon-
strated an innovative driver fatigue detection method based
on fatigue-related facial action units’ (AU) identification.
Whereas in [35], given an RGB input video of a car, a DL
architecture is referred to as a deep drowsiness detection
(DDD) network for learning successful features and detecting
drowsiness. Experimental findings reveal that on the NTHU-
drowsy driver detection benchmark dataset, DDD achieves
73.06 percent detection precision. Eye detection is a very
fascinating area of study that verifies eye detection in [36].
In [37], a modern method called DriveCare was proposed
which uses video clips to assess the exhaustion condition of
the drivers, such as the length of eye closing, blinking, and
yawning. To enhance the tracking precision, Multiple Con-
volutional Neural Networks with kernelized correlation fil-
ters (MCNN-KCF) were used. Different experimental results
found that about 95 percent accuracy was reached by Drive-
Care. In [38], the authors initially use infrared imagery to
capture the image of a vehicle at night and then created an
algorithm to detect the face of the driver. Later, a modern
eye-detection algorithm was applied to combine a Gabor filter
with a similar prototype to find the location of the corners of
the eye and introduce an eye-validation process thus improv-
ing the precision of the rate of detection. As the third step,
to match the eyelid curve, they used a spline feature. This
device has been checked with more than 200 faces on the
IMM Face Database, as well as in a real-time simulation.

In [39], researchers proposed a vision-based fatigue warn-
ing system for the control of bus drivers. The system con-
sists of head-shoulder detection units, face detection, eye
detection, an estimate of eye openness, fusion, estimation of
eyelid closure percentage (PERCLOS) sleepiness scale, and
classification of fatigue level. To approximate the eye state
based on adaptive convergence on the multimodal detections
on both eyes, a fusion algorithm was integrated. The facial
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markings on the observed face are pointed later in [40] and the
eye aspect ratio, mouth opening ratio, and nose length ratio
are consequently measured and the drowsiness length ratio
is calculated based on their values. Deep learning algorithms
were introduced in an offline way as well. Via SVM-based
classification, a sensitivity of 95.58 percent and accuracy
of 100 percent have been achieved. In [41], a template match-
ing method for feature extraction was also extended to the
kinematics of gait cycles segmented by our stepwise search-
based segmentation algorithm with the SVM model for
classification. The findings of fatigue identification through
data from 20 recruited participants showed an accuracy of
90 percent.

The scientists implemented the first technique in [42]
that senses wink completeness. These blinks vary in speed
and length. However, the Recurrent Neural Network (RNN)
is used as a classifier because of its suitability for
sequence-based features. In [43], it was suggested that a new
modular architecture method for early identification of the
driver fatigue framework be proposed, taking into consid-
eration the optimization of system output by the optimiza-
tion of the particulate swarm (PSO). The findings obtained
in terms of accuracy (90.4 percent), sensitivity (92.6 per-
cent), and specificity are considered in line with the state-
of-the-art (90.7%). In [44], by using the LBP technique,
the authors implemented a fast and robust face detection
algorithm to describe and normalize facial expression images
and then used SVM to detect driver fatigue. A novel com-
puter vision-based technique was developed in [45] to detect
driver sleepiness from a video taken by a camera. The sug-
gested approach was tested based on the YawDD public video
dataset.

A V-HDx system was developed in [46] by detection
of head-shoulder, face detection, eye detection, eye open-
ness estimation, fusion, drowsiness measure percentage of
eyelid closure (PERCLOS) estimation, and fatigue level
classification. Using another approach in [47], the authors
developed multi-task cascaded convolutional neural networks
(MTCNNSs) to detect driver fatigue by using multi-facial
features. In [48], the authors developed a V-HDx system
based on an architecture that detects the sleepiness of drivers.
The authors used RGB videos of drivers as input and help
in detecting drowsiness. They used mainly different transfer
learning algorithms to classify these features into four classes.
In [49], the authors used discrete wavelet transform (DWT)
and entropy analysis to detect face features. Moreover in [50],
the authors developed a V-HDx system based on the hier-
archical temporal Deep Belief Network (HTDBN) method.
In that research, the authors first extracted images of high-
level facial and head features and then used them to identify
symptoms linked to drowsiness. These are used to model and
capture the interactive interactions between the gestures of
the eyes, mouth, and head. In search of broad variations of
driver footage, they also collected a huge detailed data set
comprising different ethnicities, races, lighting conditions,
and driving scenarios.
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Drowsy-Alert, Theta

Drowsy-Alert, Alpha

l II
FIGURE 4. An example of electroencephalogram (EEG) signals [58] across

each spectral band (delta, theta, alpha, beta, and gamma) for two mental
states alert and Drowsy in all subjects with different stages.

B. MULTISENSOR-BASED (S-HDx) SYSTEMS

In comparison to V-HDx systems, the multisensor-based
S-HDx approaches can help to detect driver drowsiness in
multistage phases (drowsy, very drowsy, normal, and extreme
drowsy). S-HDx systems use physiological or non-visual
features to detect drowsiness. S-HDx is broadly classified
into two main groups i.e., driver-based and vehicular-based
hypovigilance detection systems. Driver-based characteris-
tics typically apply to a driver’s brain activity and heart rate,
while vehicle-based characteristics include features such as
brake pressure, vehicle speed variations, wheel angles, etc.
In Table 4, most of the existing S-HDx systems are described
in terms of different parameters.

1) DRIVE-BASED S-HDX SYSTEMS

The physiological analysis of an organism is specifically
influenced by exhaustion and sleepiness leading towards dan-
gerous situations. It was mentioned in [66] that the physiolog-
ical indexes of the state of sleepiness could be differentiated
from the normal state through different sensors. To assess
physiological features, many authors used an individual’s
health measures (either individually or in combination) such
as ECG, EOG, and EEG, etc. Among these methods, the
most promising and feasible approach is based on calculat-
ing the EEG, as seen in Figure 4. The EEG describes the
state of activity in the brain in terms of alert and drowse.
It is stated that the activity of delta and theta waves is
significantly increased and the activity of alpha waves is
marginally increased while in a state of drowsiness [55]. The
EEG is commonly recognized by researchers as a measure of
the transition between various periods of sleep [67]. Many
clinical [55]-[70]. These methods are intrusive because it
becomes mandatory that drivers wear electrode helmets when
driving to add EEG signals to driver HDx identification.
However, some authors used many other sensors that are
also participating in the detection of multistage of driver
drowsiness.

Several studies have used EEG signals to classify driver
drowsiness [55]-[70]. These methods are intrusive because
it becomes mandatory that drivers wear electrode helmets
when driving to add EEG signals to driver HDx identification.
However, some authors used many other sensors that are
also participating in the detection of multistage of driver
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TABLE 4. Summary of state-of-the-art driver's fatigue detection systems using non-visual features and machine learning algorithms.

Pre-

Ref.  Multisensor . Analysis methods Classification Accuracy Limitations
processing
(55] EEG Drowsy or alert DGM-SVM 9110% Two-stage detection and limited application in real-time
Pprocessing.
[56] EEG DWT Multiple entropy features AR 98.3% Two-stage detection
[57] ECG HRV SAE 90% Three-stage detection
[58] EEG Fatigue or Alert Fisher-score Four-Stage level detection
[59] EEG Filtering Fatigue or Alert AlexNet 90% Four-Stage level detection
[60] EEG Filtering Four Entropies SVM 98.75% Two-stage detection
[61] EEG Four Entropies Ensemble Classifier 79.4% Four-Stage level detection
[62] ECG Multi-index fusion of entropies NN Five-Stage level detection
[63] ECG Three-stage drowsiness CNN 98.79% Three-Stage level detection
[64] EEG Filtering energy (a, 3, 0) parameters Three-Stage level detection
[65] EEG - Hierarchical DL Five-Stage level detection

DBN: Dynamic Bayesian network, ANN: Artificial neural network, ET: eye tribe eye tracker (ET), VnV: Visual and non-visual features, AUC: Area under-receiver
operating curve, ACC: Accuracy, QS: (Quantified Self)-auto sensor, LSTM: Long short-term memory, RNN: Recurrent neural network, NA: Not applicable, PCCR:
pupil center corneal reflection, CNN: Convolutional neural network, nV: non-visual features, RF: Random forest, PSO: Particle swarm optimization, ECG:
electroencephalography, EEC: electrocardiography, EOG: electrooculography, SVM: support vector machine, KPCA: kernel principal component analysis

TABLE 5. State-of-the-art multimodal features based Hypovigilance detection (M-HDX) systems.

Cited. Ref.  Features and Parameters Participants Environment  Methods Result
151 EEG, Gyroscope and Vision-based 25 Real-time NN Less than 90% due to use of less dataset for
features training and test.
[191 Heart rate, wearable sensors and 20 Real-time RNN Less than 85% on average.
facial expression
1501 Physical and Vehicular - Eye 20 males and 3 Real-time and DBN Feature fusion provided best result compare to
mouth, females Simulation only visual or non-visual features
Physical and Biological Effect of occlusion
Real time CNN, transfer -
[72] Vision-based, multisensor 25 participants learning and
fine-tuning
[73] Vision-based, mobile sensors 30 Simulator CNN + RNN 85%
EEG, EOG and frequency of eye Simulator SAE 87%
[76] . 25
blinks
71 Eye blink, Cognitive physiological 30 Real-time CNN 90%
features

drowsiness. In practice, the EEG [12] based S-HDx systems
have a temporal resolution of 0.001 s and a spatial resolution
of 20 mm and are commonly used in the area of research
into brain function. A driver’s fatigue can be effectively
detected using the frequency-domain features of EEG data
(e.g., mean frequency, EEG continuum center of gravity, and
energy contents of a, 8, 6, and § bands). Similarly, the time-
domain characteristics of EEG data, such as the standard
deviation, the average value, and the sum of the squares of
the amplitudes, provide useful information on brain function.
Due to its complicated structure, its intrusive nature, and
effect on the efficiency of the driver, these techniques are still
not very feasible for driving in a real environment. In studies
of [67], [68], the authors used heart rate (HR) beats per
minute to detect the sleepy stage. It was noted that there is a
difference in HR at different times such as during long drives
at night when a decrease in HR is reported. Moreover, the
attention, mental behavior, and body energy of a driver also
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factors that affected the HR [69], [70]. Respiration rate (RR)
is also a valuable measure which is the number of exhaled and
inhaled breaths in one minute.

The authors of [77] attempted to create a relation between
somnolence and RR, according to which RR begins to fall
with the initialization of drowsiness and sets in, and continues
to fall before sleep begins. The Figure 6 shows the visual
example of this five-stage based drowsiness detection sys-
tem. The electrooculography (EOG) is another sensor that
offers a calculation of the eye [78] monitoring. The EOG
signals are changed by eye movements, such as eye action and
blinking [60], [79]. In collecting EOG data, the positioning of
EOG electrodes takes on special significance [85, [85]. Addi-
tionally, hypovigilance identification-ion systems focused on
blink activity are highly person-dependent. Such programs do
not work well with people suffering from mental disorders,
since they may do more blinks in wakeful environments or
their eyes can stay open even in sleepy conditions.
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Electromyography (EMG) is another sensor for measuring
and recording the electrical signal produced by the contrac-
tion of the muscle [86]—[88]. The HDx based on EMG data
has been researched by several scholars [§9]-[93]. A change
in the middle-frequency portion towards the lower spectral
band is observed during muscle contraction [94]-[96]. The
Galvanic Skin Response (GSR) is another sensor used to
measure skin conductance [92], [96]-[98]. Electro-Dermal
Activity (EDA) offers a measure of skin conductance that
varies due to sweat gland secretion. This technique, however,
is particularly susceptible to moisture and temperature in the
atmosphere. Also, some authors used Skin Temperature (ST)
to measure the temperature of the surface of the skin. For
example, five degrees of drowsiness are defined in [99] by
measuring the temperature of the nasal skin, the temperature
of the forehead, and the temperature of the muscles.

Compared to visual characteristics (V-HDx) systems, the
physiological properties that are extracted by EEG, ECG,
ST or EOG provide more reliability and precision [51].
A major challenge to these measures however is to design sys-
tems that overcome the intrusive nature of required hardware.
Thus, the use of wireless technology such as Zigbee and Blue-
tooth [52] to calculate physiological signals in a non-intrusive
fashion is a potential way to address this restriction but it can
affect the reliability.

2) VEHICULAR-BASED S-HDX SYSTEMS

Research has been going on to use vehicular-based features
to consider the state of drowsiness of the driver based on
the study of car gestures, such as steering wheel rotation,
lane holding, acceleration pedal movement, and braking,
etc. The steering wheel rotation and the normal deviation
of the lateral/lane direction are the two most widely used
vehicle movement characteristics to identify the degree of
driver drowsiness. The rotation of the steering wheel (SWM)
[53] is measured by a steering angle sensor mounted on the
steering column. Also, for environmental conditions such
as minor road bumps and crosswinds, micro-corrections in
steering are required. With rising drowsiness, drivers prefer
to decrease the number of micro-corrections in the motions of
the steering wheel. Due to its specialized technological needs,
SWM-based systems have limited applicability.

Now we examine the most recent studies that utilized
these driver’s behavior, physiological and vehicular-based
features to develop HDx systems. The EEG-based sensor
was used in [55] to detect driver drowsiness. A hybrid deep
generic model (DGM)-based support vector machine tech-
nique was developed for this purpose. The experimental
results revealed that with 91.10% of sensitivity and 55.48%
of accuracy. In another work [56], the authors used EEG data
to study the multiple entropy fusion processes and compare
several channel areas. A 98.3% accuracy, a 98.3% sensitivity,
and a 98.2% precision were achieved. On the other hand,
the authors in [57] developed a technique to predict driver
fatigue using ECG as the heart rate variability (HRV) measure
and deep learning model. In another work [58], the authors
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used EEG signals to detect driver behavior using the Fisher
score. In another recent work [59], the author developed
EEG-based systems to detect hypovigilance state along with
pre-processing filtering. They used AlexNet transfer learning
architecture to classify signals as either normal or as a fatigue
condition with an accuracy of 90%. In [60], the authors used
four types of entropies to extract features from EEG signals
and SVM was the classifier to detect the driver stage. The
authors were reported 98.75% of detection accuracy.

The EEG-based framework was developed in [61] to detect
driver drowsiness by using many different entropy metrics
to evaluate EEG signals, including spectral entropy, approxi-
mate entropy, sample entropy, and fuzzy entropy. The aver-
age accuracy of the classification was found to be greater
than 94% by gradient-boosted DT. Authors in [62] collected
the ECG signals were and then applied multi-index fusion
theory to correctly detect the level of fatigue. The ECG
signals were collected in [63] and used with a convolutional
neural network (CNN) model to detect fatigue-level. The
highest 98.79% of detection accuracy was achieved. Like-
wise, in [64], the authors used energy (¢, B, 6) parameters
from EEG signals to study driver fatigue. Hierarchical deep
learning algorithms with EEG signals were also used in [65]
to detect driver fatigue on the publicly available dataset
SEED-VIG. Similarly, in [66], the stack-based autoen-
coder (SAE) was used to detect four fatigue-level by using
EEG signals. In [67], the authors used EEG sensors along
with the features associated with electrocortical activities
and eyeblink recognition analysis. The spectral analysis of
the EEG samples immediately preceding the lane departure
events showed changes in the spectral density.

In [68], the authors used optimization algorithms to detect
the hypovigilance state of the drivers using EEG signals.
It was a combinatorial technique where they used hierarchi-
cal extreme learning-based with particle swarm optimization
known as PSO-H-ELM. To test the performance of PSO-
H-ELM algorithms, they used different multisensor such as
EEG, electrocardiogram (ECG), electrooculography (EOG),
and surface electromyogram (SEMG). On average, the PSO-
H-ELM algorithm achieved 83.12% of detection accuracy.
The authors in [69] detected the drowsiness stage by using
EEG signals with different entropies techniques. In contrast
with these approaches, the authors in [70] suggested using
multiple techniques for monitoring the drowsiness of the
driver. The authors used a low-cost ECG sensor to extract
data on heart rate variability (HRV) for fatigue detection.
In another work [71], the authors used successive driv-
ing levels, heart rate variability (HRV) characteristics and
determined fatigue-level by sample entropy (SampEn) and
reported a high detect rate.

C. MULTIMODAL-BASED (M-HDx) SYSTEMS

In recent studies, the Multimodal-based (M-HDX) Systems
have gained a lot of traction because of their ability to
use deep-learning architectures to recognition driver’s dif-
ferent activities and fatigue at different levels. The features
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FIGURE 5. M-HDX systems are developed based on hybrid features combined by vision-based,

sensors-based and vehicle-based features.
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FIGURE 6. Grand-averaged scalp topographies across [77] each spectral band (delta, theta, alpha, beta, and gamma) for two mental states

(a) and five drowsiness levels.

of M-HDx systems are described in Table 5 and visually
presented in Figure 5. Many authors now use various forms
of data [71], such as driver’s physical conditions, audio and
visual features, vehicle information, etc. To enhance the
system’s generalization ability for the development of HDx
systems, the authors suggested integrating sensor data into
the vision-based models. In recent years, early and late fusion
techniques have been applied to combine multisensor and
vision-based features into a single feature vector known as
multimodal features vector. This integration of sensor data
with vision-based driver detection significantly increases the
overall performance of M-HDx systems. In this section,
we describe some of the current state-of-the-art M-HDx sys-
tems.

A hybrid multimodal NN architecture was developed
in [15] to detect driver drowsiness by integrating EEG
data, Gyroscope data, and vision-based features. In another
work [74], the authors suggested that a multimodal solution
can have functionality that can be more effective in detecting
the level of alertness of the drivers, based on developments
in sensor technology. They developed a multimodal alert-
ness dataset that comprising physiological, environmental,
and vehicular features given by Ford Auto Company. Some
other companies are trying to develop intelligent vehicles
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that used advanced driver assistance systems (ADASs) [75].
In the paper [19], authors suggested that tracking the heart
rate of drivers with a wearable tracker or extracting their
facial expressions with an RGB camera are mostly used in the
past. To overcome the intrusive nature of existing hardware,
they used a single RGB-D camera used to resolve these
issues to derive three fatigue characteristics such as pulse
rate, level of eye-opening, and level of mouth opening. More
significantly, this paper presented a new multimodal recurrent
neural fusion network (MFRNN) that combines the three
features to increase the accuracy of the detection of driver
fatigue. To gain temporal information, a recurrent neural
network (RNN) layer is used in the MFRNN. In particular,
the authors are used different fusion strategies to get effective
fatigue features. The MFRNN model was used to improve the
efficiency of the drowsiness detection system.

In another work, distracted driving [72] was determined
through the vehicle’s driver image that includes the face,
arms, and hands taken from a digital camera. Besides, in this
work, the authors suggested that it is necessary to integrate
a multisensor along with a vision-based camera to define
multimodal features. They mentioned that it helps to improve
the performance of M-HDx. In the first step, vision-based
convolutional neural network (CNN) models were generated
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using transfer learning and fine-tuning approaches. After-
ward, the LSTM-RNN model was built in the second stage by
using sensor and vision-based features together. Whereas in
paper [73], the authors a mixture of camera video records and
sensor data obtained on a cell phone to assess the behavior of
the pilot. Image and sensor data were used together for the
first three actions, and for the last three actions, only image
data was used. Three separate deep learning methods were
used for the classification process: CNN, CNN + RNN, and
CNN + SVM. With 87%, the highest classification rate was
reached by using CNN + RNN.

For the detection of driving fatigue, physiological signals
such as EEG and EOG [76] have been successfully used in
a single modality. A multimodal-based hypovigilance detec-
tion system was developed by integrating partial EEG and
forehead EOG sensors to improve driving fatigue detection.
The researchers found that the main region of the brain is
an important place to detect effective EEG signals that can
easily mix with forehead EOG signals. By experimental find-
ings, they showed that when combined with forehead EOG
to obtain mutual characteristics, the temporal EEG signals
from six-channels provide the best output. Besides, to learn
a better mutual representation, they suggested a novel multi-
modal fusion approach using the deep stack-based autoen-
coder (SAE) model. They measured useful components of
the three characteristics when they already have saccade,
blink, and fixation (the length of blink or saccade). Although
some characteristics display an insignificant association with
fatigue states, they did not use them in all. Afterward, they
used EOG to reflect the forehead EOG rather than the con-
ventional EOG. To monitor precise eye movement data, a new
method was used by using eye-tracking of glasses and new
PERCLOS measured is computed from Eq. (1) and Eq. (2) as
follows:

ES,sr = blink + Wy CLOST .Interval(n) €))]
Inval(n) = blink + saccade + fixation + PES,s; (2)

This work introduces mEBAL [77] a multimodal database
for the identification of eye blinks and the measurement of
attention levels. The frequency of eye blink is related to cog-
nitive function, and automated eye blink detectors have been
suggested for several tasks, including estimating the level
of attention, evaluating neurodegenerative disorders, identi-
fying deceit, detecting drive exhaustion, or anti-spoofing of
the face. The mEBAL dataset was created to help the other
researchers effectively train the network for recognition of
the hypovigilance stage based on multimodal features. The
multimodal features were extracted using several experiments
through vision-based cameras (both NIR and RGB) and EEG
sensors. In total, the authors provided almost 6,000 sam-
ples from 38 different persons when they are engaged with
e-learning tasks. This preliminary study was also included
eye blink detection using CNN and persons’ attention level
was estimated based on their eye blink frequency. The overall
system diagram of the mEBAL system is visually represented
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FIGURE 7. An example of mEBAL [77] dataset, which was collected in a
constrained environment, but it is rich in pose, illumination changes, and
other naturally-occurring factors.

no-Blink
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in Figure 7. Surface electromyography (sSEMG), electroen-
cephalography (EEG), interface pressure of the seat, blood
pressure, heart rate, and level of oxygen saturation data was
collected as multimodal features in this paper [78].

Twenty male participants volunteered to conduct 60 min-
utes of driving on a static simulator in this study. In the back
and shoulder muscle classes, findings from sEMG showed
substantial physical exhaustion (r < 0.05). The EEG showed
substantial (r < 0.05) increases in alpha and theta activity
and significant decreases in monotonous driving beta activity.
Another M-HDx system was developed in [79] by using
physiological signals such as ECG, galvanic skin response,
and respiration were recorded in real-world drive environ-
ments from 14 drives performed in a specified direction.
Features from time, spectral and wavelet multi-fusion were
widely extracted. Afterward, the prediction was performed
based on sparse Bayesian learning (SBL) and principal com-
ponent analysis (PCA) to look for the optimal feature sets.
Average accuracy of 89% was achieved. In another study,
the authors [80] used EEG, EOG, and ECG measurements
for real-time mental fatigue detection. By using SVM, the
authors achieved classification scores ranging from 80 =+
3 percent with a 4-s time window to 94 £ 2 percent with
a 30-s time window. Similarly, in [81], the 68 electrodes of
EEG/ECG/EOG and 8 channels of fNIRS data were simulta-
neously collected to develop an M-HDx system.

The EEG and EOG signals were used in the paper of [82] to
detect the hypovigilance state of the drivers. The authors used
the PERCLOS index, which is collected from eye monitoring
glasses as a surveillance annotation. Then a novel electrode
placement is identified for forehead EOG to enhance the
feasibility and wearability. Similarly, in [83], a new multi-
modal architecture for the Electroencephalogram and Elec-
trooculogram in-vehicle vigilance calculation was developed.
A deep Long Short-Term Memory (LSTM) network was used
to develop the HDx system. Also, in this research [84], they

VOLUME 9, 2021



Q. Abbas, A. Alsheddy: Methodological Review on Prediction of Multi-Stage HDx

IEEE Access

proposed a Multimodal deep learning-based method (LSTM)
that recognizes both visual and physiological changes in
drowsiness. The combination of EEG and EOG signals was
used in [85] to detect the hypovigilance state of the drivers
and applied in SEED-VIG publicly available dataset.

The authors used 58 driver’s multimodal data to test the
HDx system in the paper of [86]. In that research, they
used blink rate and posture information to form multimodal
features. They achieved very impressive results to detect all
stages of drowsiness (F1-score 53.6%, root mean square error
0.620). Whereas in [87], the authors used multimodal-based
physiological signals to assess the alertness level of drivers.
In [88], the authors used CNN and DRL models to detect
driver fatigue based on EEG signals. Although in [89],
the authors used 8 participants for collecting data from the
motion signals (accelerometer and gyroscope), electrocardio-
gram (ECG), galvanic skin response, and CAN-Bus signals.
Those signals are combined into a single multimodal fea-
ture vector to enhance the accuracy of the m-HDx system.
To reduce the feature space, the authors have also contributed
towards an optimal selection of multimodal features.

For detecting the drowsy state in humans, a multimodal
method was studied in paper [90]. Video information and
multisensor signals, for analysis, are two modalities consid-
ered. Visual data conveys a great deal of human alertness.
For analysis and detection, the exact indicators from the
video information need to be identified and captured. The
multisensor signal indicating alertness of the human brain is
an EEG signal. For the detection of a human being’s drowsi-
ness state, physical and mental alertness were analyzed.
For drowsiness detection of humans in real-time, a frame-
work was proposed. In [91], a methodology was developed
based on the eye patterns of people, which monitored by
video streams for the detection of drowsiness. In that study,
the authors utilized data from the vision-based camera and
sensor-based EOG signals. Whereas in [125], the authors
developed Face2Multi-modal dataset based on In-vehicle
multi-modal data. Especially in that paper, the authors inves-
tigated the drivers’ estimates of heart rate, skin conductance,
and vehicle speed to determine multimodal features. Those
multimodal features are presented in the Face2Multi-modal
open-source link. They believe that Face2Multi-modal offers
a dataset that is already recorded the physiological sta-
tus and vehicle status of drivers. This initiative serves as
the building block for many current or future customized
designs of drivers. More details and updates about the
project are available online at Face2Multi-modal, available at
https://github.com/unnc-ucc/Face2Multimodal/. To estimate
the multi-modal states [126] of the driver (skin conduc-
tance and heart rates) and driving status (speed) through
their facial expressions, the authors presented an in-vehicle
real-time system. They used DenseNet as the model archi-
tecture for each type of data flow. Training information
includes heart rates (per minute), skin conductance (uS), and
velocity (km\h). The procedure for training is operated by
PyTorch. Further training is work-in-progress, and we are
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optimistic that the accuracy can be improved by comprehen-
sive hyperparameter modification.

D. AVAILABLE DATA SOURCES

Different HDXs have utilized different data sources which
are either freely available online or exist as private datasets.
These datasets are used to extract both visual and non-visual
features. Tables 4, 5, and 6 show some of the online data
sets used by researchers to extract vision-based, multisensor-
based, and multimodal-based features, respectively for train-
ing and testing of the machine learning classifier. The
application of datasets used can be seen as Ultra-RLDD
used in [112], NTHU-DDD in [50], MultiPIE in [113],
3MDAD in [114] as shown in Figure 8, MiraclHB in [26],
BU-3DFE in [115] and AUC-DD in [116]. These datasets are
based on computer vision technology to define visual features
for driver fatigue. It can be noted from Figures 4 and 5, that we
have a dataset of RGB images with 65-landmark points which
can be used to train the network classifier for defining the
features. To develop a robust HDXs system, it requires that
those online and private data sources should be used to train
the machine learning algorithms for the selection of effective
visual-features. Even though, it is also required to train the
classifier for recognition of driver fatigue in the smartphone
or cloud computing-based platforms.

To develop hybrid HDX systems, several researchers are
also using visual-features and various EEG-based biosensors
to predict drowsiness. In practice, EEG signals are sometimes
used to detect drowsiness, with three main building blocks.
Several online data sources (see Table 8) are also available
online to test and train the machine learning algorithms.
A visual example of EEG spectrogram images visual with
drowsiness and alert is displayed in Figure 5. In the past, most
studies developed based on EEG biosensors that datasets are
available online such as Min et al s’ Fatigue-EEG [117],
Cao et al s” Fatigue-Multi-channel [118], [119] EEG, and G.
Cattan et al s> EEG-Alphawave [120].

One important dataset is mEBAL [77] contains a database
of multiple types of blink detection and attention level mea-
surement. The mEBAL dataset is used to train the network for
defining effective visual and non-visual features of drivers.
In this dataset, there are different parameters are measured
and suggested for some functions including attention level,
analysis of neuro-related diseases, detection of deception,
fatigue, or coping with anti-fraud. mEBAL dataset devel-
ops preliminary data based on sensory input detection and
calibration of camera sampling. In particular, three differ-
ent sensors are monitored simultaneously such as Infrared
Cameras (NIR) and RGB face-to-face capture and Electroen-
cephalography (EEG) band for capturing user cognitive func-
tion and blinking events.

The mEBAL has a total of 3,000 blinking samples from
both eyes received by 1 RGB camera and 2 NIR cameras.
Each sample consists of 19 frames (around 600 ms.) with a
total of 342,000 images (3,000 x 19 x 2 x 3). Factors such
as user status and light changes were considered at the time of
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TABLE 6. Online state-of-the-art vision-based benchmark datasets to extract visual features that can be used to train and test the network.

Cited Data Source Features Link URL

[112] Ultra-RLDD dataset Video-30 hours, 3-featues: alertness, low vigilance, and drowsiness, frame rate:30fps, participant: 60 http://vIm1.uta.edu/~athitsos/projects/drowsiness/

[50] NTHU-DDD Dataset 36 subjects, video: 9 and V2 hours, 5-different classes, http://cv.cs.nthu.edu.tw/php/callforpaper/datasets/DDD/

[113] MultiPIE different subjects, poses, illumination, occlusions, 68-landmark points https://i})ug.doc.ic.ac.uk/resources/facial-point-
annotations/

B Kaggle-distracted 22,424 images of size (480 x 680), 10 classes https://www kaggle.com/c/state-farm-distracted-driver-

drivers detection

[114] 3MDAD 60-subjects, 16-different actions https://sites.google.com/site/benkhalifaanouar1/6-
datasets#h.nzos3chrzmb2

[26] MiraclHB AVI format with a resolution of 640 x 480 and frequency 30 fps, 12: subjects http://www.belhassen-akrout.com/

100: subjects with 2500 facial expression models http://www.cs.binghamton.edu/~lijun/Research/3DFE/3

[115] BU-3DFE )
DFE_Analysis.html

[116] AUC-DD 44 (15/29) https://heshameragi.github.io/distraction_detection

TABLE 7. Online multisensor-based benchmark datasets that are available to train and test the network by using EEG sensors data.

Cited Data Source  Features Link URL Format
. . 12-subjects, 40-channel https://figshare.com/articles/dataset/ .ent
[117] Min et al Fatigue-EEG the_original_EEG_data_for_driver_fatigue_detection /5202739/1
Fatigue- 27-subjects, 32-channels . ) . . ) ) . set
[118,119] Cao et al Multi EEGLab software https://figshare.com/articles/Multi-channel_EEG_recordings_during_a_sustained-
' N bl EEG S0 attention_driving._task/6427334/2
12 . t t EEG- 20-subj 16-ch: 1. . t
Ll 0] G. Cattan & Althawave 0-subjects, 16-channels https://zenodo.org/record/2348892# X4bfptAzaM9 ma

TABLE 8. Online Multimodal-based datasets are available to train and test the network by using EEG sensors data.

Cited Data Source

Features

Link URL

[77] R Daza et al mEBAL
[74] Abouelenien et

Ford-dataset
al

[82] Zheng et al SEED-VIG

[122] Massoz et al DROZY

[123] Ortega et al dBehaviourMD

21124] Papakostas et CogBeacon
Face2Multi-

[125] Huang et al modal
BROOK-

[126] Peng et al DenseNet

3,000 blink samples from both eyes acquired with 1 RGB and 2 NIR cameras with EEG sensors

Physiological, environmental, and vehicular modalities.

Twenty and ten subjects participated in the simulated and real-world driving environment experiments

EEG and EOG during the experiments

Face/Head

Physiological

41 hours of RGB, depth and IR videos

from 3 cameras capturing face, body and hands of 37 dri
76 sessions collected from 19 male and female EEG funci
cognitive fatigue

The estimations of Heart Rate, Skin Conductance, and Vehicle Speed of the drivers used.

Heart Rate (minute), Skin Behavior (US), Speed (km\h)

https://github.com/BiDAlab/mEBAL
https://www.kaggle.com/c/stayalert/data

http://bemi.sjtu.edu.cn/~seed/seed-
vig.html

http://www.drozy.ulg.ac.be/

https://dmd.vicomtech.org/

ivers

tionality, facial keypoints, real-time self-reports on https://github.com
/MikeMpapa
/CogBeacon-MultiModal_
Dataset_for_Cognitive_Fatigue
https://github.com/unnc-
ucc/Face2Multimodal/

https://github.com/unnc-ucc/BROOK

acquisition to mimic real-life e-learning situations. The 11 out
of 38 students used glasses. A visual example of the mEBAL

multimodal-based dataset

is displayed in Figure 7. Several

other important Multimodal-features based datasets that can
be used as training models are described in Table 7. From
this table, we have also visually displayed the most utilized
multimodal datasets to develop M-HDX.

IV. TYPES OF DEEP LEARNING MODELS FOR HDx
In this section, we have described Deep-learning architec-
tures (DLAs) with special emphasis on modern machine

learning algorithms. For

detection of driver drowsiness,

several studies reported that the DLAs based algorithms
achieved high accuracy [127], [128] with the reason to iden-
tify suitability for other authors. In this section, we described
concepts, architectures, and techniques commonly uti-
lized to detect driver drowsiness through visual features.
Deep learning algorithms are recent techniques utilized for
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FIGURE 8. An example of 3MDAD (Multimodal Multiview and
Multispectral Driver Action Dataset) data set to predict and detect driver
fatigue in case of real-time environment.

the detection of driver fatigue in the case of real-time [95],
[971, [129]-[131]. Those DLAs methods were applied for
pattern recognition and feature learning on mainly video
frames. There are several variants of DLAs that have been
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used in state-of-the-art systems for the detection of driver
fatigue. Those DLAs systems are described and compared
in Table 4. Based on the aim of DLAS, we have divided them
into sub-categories for helping potential readers. Deep learn-
ing models for classification include Convolutional Neural
Networks (CNN) [124], [129]-[131], Recurrent Neural Net-
works (RNN) [97], [95], [132], Stack-based Autoencoders
(SAEs) [133], [134], Restricted Boltzmann Machine (RBM)
and Deep Belief networks (DBN). For feature engineer-
ing, SAEs, RNN, and CNN are applied in the earlier
driver fatigue systems but failed to classify data. However,
RBM and DBN are the best deep learning algorithms for
data representation but these algorithms did not test in the
past driver fatigue detection systems. For our comparative
analysis, we have selected CNN, RNN-LSTM, stack-based
autoencoders (SAEs), and pre-train transfer learning models.
Compare to these DL models, the transfer learning (TL)
[135]-[141] algorithms are used.

V. METHODOLOGICAL COMPARISIONS

As a contribution of this work, the authors have com-
pared the current leading research in the domain of driver
fatigue through visual-based features techniques. Predic-
tion of these features was performed by model-based, rule-
based, supervised, and non-supervised and deep-learning
algorithms (DLAs) in the past systems. In this paper, we have
focused on DLAs, which were applied in the past to predict
driver drowsiness instead of conventional machine learning
techniques. As discussed earlier, to detect real-time driver
fatigue, there is a dire need to develop an HDx system. Several
traditional (MLP, SVM, or Boosting) and advanced deep
learning algorithms [82], [89]-[128] (CNN, RNN, or DBN)
are often used to develop a hypovigilance monitoring sys-
tem. Compare to traditional-machine learning approaches,
there is the latest trend toward the utilization of multilayer
deep-learning algorithms (DLAs). These DLAs algorithms
have reported very encouraging performance in a wide range
of applications in particular detection of driver drowsiness.
Moreover, the parameter setting and selection of layers are
the most important factors in terms of DLASs in the case of
detection of real-time driver fatigue.

To implement a real-time HDx system, the researchers
have been using a set of rules or models to classify driver
states during driving in different conditions. In brief, those
systems are presented in Tables 3, 4, and 5 in the case of
visual features, sensor-based features, and multimodal-based
features, respectively. While reviewing these features, it was
noticed that the multimodal and deep-learning (DLAs) in
combination achieved higher performance compared to other
approaches. Compare to simple DLASs, the authors are also
combining different DL As with traditional machine learning
algorithms to develop a hybrid classifier. There is no trend
observed in the past about transfer learning algorithms to
develop HDx systems that are also considered in this paper to
test the performance. The researchers have also utilized dif-
ferent variants of deep learning algorithms such as CNN and
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RNN models. Those models are compared in Table 8 in terms
of different architectures and accuracy. Though the parameter
setting of CNN and RNN required a big training dataset and
time complexity is the biggest thread for classification tasks.

Table 8 represents various hybrid and latest DLAs algo-
rithms along with their detection accuracy which is not up-
to-the-mark if we considered different parameters such as
face occlusions, camera position, and type of sensors. In a
real-time HDs system, there are certain limitations and prob-
lems of those models that are described in the upcoming sec-
tions. One of the main issues to set up parameters for DLAs
is required very specialized knowledge about the model. For
example, we have mentioned some parameters in Table 8
for the CNN model that is mostly utilized in the past to
detect driver drowsiness as a feature selector and recognizer.
It was observed that the main focus of researchers was on
the design of assistant programs and aim to help drivers find
their distraction time and create a warning alarm. Such hybrid
or multimodal systems are providing a solid and reliable
solution for predicting driver drowsiness. To increase the
durability of the multimodal systems (M-HDx), it is possible
to give weight to each sensor after training the mechanical
separation. On these networks, the choice of machine learning
algorithms is also an important task. The time and difficulty
of the space always play a tradeoff for the deployment of these
programs to monitor driver negligence.

Since several recent studies focused on the use of in-depth
(DLAs) learning methods with multimodal features to
develop an M-HDx system without understanding the prac-
tical analysis of this topic. In this paper, we have focused
on overcoming this shortcoming. We have examined the
impact of the construction of deep structures based on the
discovery of driver fatigue. In particular, we are interested in
studying the structural properties of driver fatigue in terms of
visual and non-visual characteristics. Recently the detection
of driver fatigue using in-depth learning algorithms has been
greatly improved and in-depth by the number of layers and the
number of processing units per layer to keep performance up-
to-the-mark through the latest advances in computer vision
systems. However, it is important to notice that the deep archi-
tectures are required to be as powerful as their calculation
capabilities for real-time driver fatigue recognition. In this
article, the data sets used in the past and some HDx systems
are compared in different scenarios. As a contribution of this
work, the authors have compared the current leading research
in the domain of driver fatigue through visual-based features
techniques. Prediction of these features was performed by
model-based, rule-based, supervised, and non-supervised and
deep-learning algorithms (DLAS) in the past systems.

In this paper, we have focused on DLAs, which were
applied in the past to predict driver drowsiness instead
of conventional machine learning techniques. As discussed
earlier, to detect real-time driver fatigue, there is a dire
need to develop an HDx system. Several traditional (MLP,
SVM, or Boosting) and advanced deep learning algo-
rithms [82], [89]-[128] (CNN, RNN, or DBN) are often
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used to develop a hypovigilance monitoring system. Com-
pare to traditional-machine learning approaches, there is the
latest trend toward the utilization of multilayer deep-learning
algorithms (DLAs). These DLAs algorithms have reported
very encouraging performance in a wide range of applica-
tions in particular detection of driver drowsiness. Moreover,
the parameter setting and selection of layers are the most
important factors in terms of DLAs in the case of detection
of real-time driver fatigue.

To implement a real-time HDx system, the researchers
have been using a set of rules or models to classify
driver states during driving in different conditions. In brief,
those systems are presented in Table 3, Table 4, and
Table 5 in case of visual features, sensor-based features, and
multimodal-based features. While reviewing these features,
it was noticed that the multimodal and deep-learning (DLAs)
in combination achieved higher performance compared to
other approaches. Compare to simple DLAs, the authors
are also combining different DL As with traditional machine
learning algorithms to develop a hybrid classifier. There is no
trend observed in the past about transfer learning algorithms
to develop HDx systems that are also considered in this paper
to test the performance. The researchers have also utilized dif-
ferent variants of deep learning algorithms such as CNN and
RNN models. Those models are compared in Table 8 in terms
of different architectures and accuracy. Though the parameter
setting of CNN and RNN required a big training dataset
and time complexity is the biggest thread for classification
tasks.

A. SELECTIVE M-HDx SYSTEMS

To assess the performance of current state-of-the-art m-HDX
systems, a qualitative comparative analysis is performed in
this paper. Results of that comparison are presented here by
using different datasets and environment scenarios. To per-
form statistical comparisons, we have fixed binary, ternary,
and five stages of driver drowsiness in a real-time and sim-
ulator environment. In all these multistage, we considered
the various parameters such as accuracy, sensitivity, speci-
ficity, reliability, F1-score, and area under the receiver oper-
ating curve (AUC). The testing environment contains face
occlusion including sunglasses and night-time driving con-
ditions. In general, visual, vehicular, and non-visual features
are extracted in this comparison study to detect affective
performance by using various machine learning and deep
learning algorithms for predicting driver drowsiness. We have
selected some recent papers to complete the state-of-the-art
comparisons such as on CogBeacon-ML [124], BROOK-
DenseNet [126], Ford-dataset [74], and Riani-M-HDx [128]
systems on the real-time datasets. Those m-HDX systems
were selected due to easy integration to a real-time system
and focused on multimodal datasets. Those m-HDX systems
have been briefly explained in the previous sections. The
real-time processing on multisensor, vehicular, and environ-
ment parameters considered as compare to loT-based archi-
tecture [126].
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CogBeacon-ML [124] is a multimodal dataset designed
to target the effects of cognitive fatigue in human perfor-
mance. This dataset can be easily used to train the network
for the prediction of real-time drive fatigue because the
CogBeacon-ML system is developed based on multimodal
features This dataset consists of 76 sessions obtained from 19
male and female participants conducting various variations of
the Wisconsin Card Sorting Test (WCST), a common exper-
imental and clinical psychological cognitive test designed to
examine cognitive versatility, reasoning, and cognitive func-
tioning aspects. During each session, the EEG functionality
of the user, facial keypoints, real-time self-reports on cogni-
tive exhaustion, and detailed success measurements obtained
during the cognitive task are documented and thoroughly
annotated (success rate, response time, number of errors,
etc.). Also, there is an open-source machine learning anal-
ysis that can be used to predict cognitive fatigue by using
multimodal features. Compare to facial points, the authors
used mainly to detect cognitive fatigue by using EEG sensors
at different sampling frequency rates. Afterward, they calcu-
lated the absolute band power for a given frequency range as
the logarithm of the sum of the Power Spectral Density of the
EEG data over that frequency range by using Eq. (3).

_ 1y 12
EEG(#) = log min > IG( 3)

i=1

The FFT of the raw EEG signal G is where I and n are
the minimum and maximum frequencies of the frequency
band x, and @ is the five-frequency band. The relative fre-
quency bands (R): y, B, «, 6 and § at sampling frequency
of 10 Hz are measured during each task. They also reported
differences in the movement of the face to capture behavioral
changes, capturing a set of 68 facial keypoints and four
corners for bounding boxes, with a webcam mounted at a
frame rate of 2 FPS on the top of the screen. The basic tech-
nique was applied by using Regression tree to classify facial
keypoints.

The BROOK-DenseNet [126] is another platform that used
M-HDx architecture by using BROOK multimodal dataset.
The new version of BROOK consists of 34 passengers, driv-
ing respectively in automatic and manual modes for about
20 minutes. Their facial videos, multi-modal details, and
driving status were protected by BROOK. In this BROOK
dataset, the experiment included three driving conditions.
Driving data was registered during the statistical analysis.
The participants were asked to fill out a questionnaire on the
cognitive facets of their experience during each driving ses-
sion, including an appraisal of perceived confidence, relax-
ation, and situational awareness. For each driver, the analysis
lasted roughly one hour. The BROOK dataset now consists
of 11 data dimensions, including Facial Video, Vehicle Speed,
Vehicle Acceleration, Vehicle Coordinate, Vehicle Ahead
Size, Steering Wheel Coordinates, Throttle Status, Brake
Status, Heart Rate, Eye Monitoring, and Skin Conductance.
The visual example of BROOK data is displayed in Figure 9.
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FIGURE 9. A visual example of Brook [126] data set to predict and detect
driver fatigue in case of real-time environment.

In BROOK-DenseNet, the authors developed DenseNet-
BC-100 [126] convolutional neural network architecture for
detection of driver drowsiness stage. The Brook Feature
defined driving Status such as Vehicle Speed, Vehicle Accel-
erations, Vehicle Coordinate, Distance Ahead, Brake status,
Heart rate, skin conductance, eye tracking. Those features are
recorded in different sessions. Heart rates (per minute), skin
conductance (uS), rpm, and training data are included (km\h)
in this dataset. The procedure for training is operated by
PyTorch. They also used an optimization technique to adjust
hyperparameter that would enhance the accuracy of further
training work-in-progress. In all, the 320,000 frames/images
are used in the ready-to-train BROOK, and they have divided
the training, test, and validation data sets into a ratio of 8:1:1.
The BROOK-DenseNet was trained on an NVIDIA GeForce
GTX 1660 GPU and specifics of the DenseNet architecture
are given as follows. The author used many configurations
based on DenseNet’s recommendations. The model involves
Depth/Layers 100 of Growth Rate, 12 of dense Blocks, Batch
Size of 128, and Initial Learning Rate of 0.1 along with
Testing Epochs of 50. The initial learning rate for our case
is set at 0.1, which is separated by 10 at 50 percent and
75 percent of the cumulative number of training cycles.

Ford company provided another multimodal dataset [74]
(Ford-dataset) for the training set, validation set, and test
of different modalities such as physiological, environmental,
and vehicular. They have been used a simulator to collect
data from driving sessions. They used 100 drivers of dif-
ferent ages and genders and sequential measurements were
collected every 100 milliseconds during the two minutes
trial. There were 8 physiological features, 11 environmen-
tal features, and 11 vehicular features that were the feature
distribution across the three modalities. For the training set,
the cumulative number of instances was 604,329 (previously
separate training and validation) and 120,840 for the test
set, from 469 training, 31 validation, and 100 field trials.
Warning and drowsy instances may be placed within the same
prosecution. Visualization of this multimodal dataset with
three characteristics. We made two interesting observations
before processing the results. First, of all the cases in the
training and test sets, there was one physiological feature and
two vehicular features which had a value of zero. Thus, these
three characteristics were eliminated, namely P8, V7, and V9,
resulting in a final set of 7 physiological, 11 environmental,
and 9 vehicular characteristics. The Ford-dataset mainly con-
tains the “Phys + Env 4 Veh” features to fused different
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FIGURE 10. An example of DROZY data set to predict and detect driver
fatigue in case of real-time environment.

modalities for selecting all 27 features in total. The author
used Naive Bayes classifier to predict driver drowsiness based
on these 27 features.

Riani-M-HDx [128] provided another dataset to use mul-
timodal features by using action units (AUs), which were
extracted from the facial deformation of drivers. They built an
M-HDx system based on the OpenFace platform to identify
18 different AUs. In practice, the OpenFace framework is
provided the best visual features to detect the driver’s yawn.
In the Riani-M-HDx dataset, the authors used four physio-
logical sensors to extract statistical features. The final feature
collection consisted of a total of 77 physiological character-
istics, including 50 features of Blood Volume Pulse (BVP),
7 features of Skin Conductance (SC), 9 features of Respi-
ration Rate (RR), 7 features of Skin Temperature (ST) and
4 features derived from the combined BVP and RR sensors,
such as the mean and max-min heart rate differential, which is
a measure of the variability of breath to heart rate. These all
features were concatenated these new measurements into a
new vector of 308 measurements after measuring the limit,
mean, minimum, and standard deviations to produce four
distinct vectors. They used a decision tree classifier (DT) to
detect driver drowsiness.

A DROZY dataset as shown in Figure 10 is also provided
to train and test the M-HDx system. However, we did not use
it for comparisons because it does not come with source code
to analyze the data. In contrast of this, we used both software
and data sources of the same time flow are consolidated in
this comparison study as displayed in Figure 11. To perform
comparisons, we have used all these four data sources with
comparisons to our IMSIU-DFD system [127] and results
are reported in the upcoming sections. Major components
and devices used to compare state-of-the-art hybrid systems
by using IMAM University driver’s simulator environment
(IMSIU-DFD) [127] are represented in Table 9.

B. EXPERIMENTAL SETUP

To assess the performance of current state-of-the-art m-HDX
systems, a qualitative comparative analysis is performed in
this paper. Results of that comparison are presented here by
using different datasets and environment scenarios. To per-
form statistical comparisons, we have fixed binary, ternary,
and five stages of driver drowsiness in real-time and simu-
lator environments. In these multistage, we considered the
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TABLE 9. Performance comparisons of state-of-the-art driver fatigue detection based on visual-features and deep learning algorithms.

Cited Deep learning models i:::;::zure Dataset Environment Accuracy
[148] MLP + CNN 3 CNN layers NTHU Real-time 80%

[149] CNN 4 CNN Layers Simulator 97%

[150] CNN 5 CNN layers DROZY Real-time -

[112] RNN 6 CNN layers NTHU-DDD Simulator --

[151] CNN 4 CNN layers CEW Real-time 92.5%
[152] CNN + Fuzzy logic 3 CNN layers - Simulator -

[153] CNN 6 CNN layers CEW and ZJU Real-time 94.9%
[154] CNN + RNN-LSTM 5CNN and 6 RNN - Simulator -

[155] CNN + RNN-LSTM 6 CNN and 4 RNN -- Real-time --

CNN: Convolutional neural network, RBF: Radial Basis kernel function, RNN: Recurrent

~N
¢ Behavioural Features
¢ Psychological Features
CogBeacon- ygpesi s Logic Regression
ML
¢ Behavioural Features )
¢ Vehicular Features
BROOK- ¢ Pychological Features
1)\ e Classifier: DenseNet-BC-100 )
e Environmental Features )
¢ Vehicular Features
¢ Pychological Features
Ford-Dataset ¢ Classifier: Naive Bayes )
¢ Behavioural Features
¢ Pychological Features
¢ Classifier: Decision Tree (DT)
_J
)
e Behavioural Features
¢ Pychological Features
¢ Classifier: CNN + RNN-LSTM
_J

FIGURE 11. A visual example of four different datasets and software to
perform comparisons, where CogBeacon-ML [124],

BROOK-DenseNet [126], Ford-dataset [74], Riani-HDx [128] and
IMISU-DFD [127].

various parameters such as accuracy, sensitivity, specificity,
reliability, F1-score, and area under the receiver operating
curve (AUC). The testing environment contains face occlu-
sion including sunglasses and night-time driving conditions.
In general, visual, vehicular, and non-visual features are
extracted in this comparison study to detect affective perfor-
mance by using various machine learning and deep learning
algorithms for predicting driver drowsiness.

We have selected some recent papers with bench-
marks to complete the state-of-the-art comparisons such
as on CogBeacon-ML [124], BROOK-DenseNet [126],
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TABLE 10. Major components and devices used to compare
state-of-the-art hybrid systems by using IMAM university driver's
simulator environment (IMSIU-DFD) [127].

Hardware
CPU

Parameters setup
Single core hyper threaded Xeon Processors
@2.3Ghz (1 core, 2 threads)

Screen Resolution 1280 X 960

RAM ~12.6 GB

Network Ethernet Network Driver

Hard Disk 100 GB

GPU xTesla K80, having 2496 CUDA cores,
12GB GDDR5 VRAM

Arduino Microcontroller: ATmega 328, Operating
Voltage: 5V

Sensors ECG, EEG, Skin Conductance for Arduino

EEG Sensors Neurosky Mindwave EEG

ECG Sensors Heart Rate variability (HRV)

Platform Google Colab

Camera Microsoft Kinect camera

Ford-dataset [74], and Riani-M-HDx [128] systems on
the real-time datasets. Those m-HDX systems (as shown
in Figure 11) were selected due to easy integration to a
real-time system and focused on multimodal datasets. Those
m-HDX systems have been explained in the previous sec-
tions. The real-time processing on multisensor, vehicular,
and environment parameters was considered as compare to
IoT-based architecture [126].

C. STATISTICAL METRICS FOR ASSESSMENTS

To evaluate the performance of HDx systems, we have used
several statistical metrics to check the effectiveness of the
classifier with respect to the dataset and environmental set-
tings. In these comparisons, we have also used AUC curve
to show the impact of different classification algorithms. The
statistical metrics for evaluating the framework performance
is measured as follows:

1) Accuracy (ACC) is the first measure that is used to
determine the type of HDx system and is calculated by
the following equation.

B TP + TN
" TP+ TN + FP+ FN

ACC
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2) Specificity (SP) is the second statistical measure that
is used to precisely identify the authentic the results
of m-HDx system and is measured by the following
equation.

b TN
"IN + FP

3) Sensitivity (SE) is the third statistical measure that is
used to take into account the capacity of a classification
model to correctly recognize the fatigue stage and is
measured by the following equation.

TP
E=_——
TP + FN

4) Precision (PR) is the fourth statistical measure that is
used to define an approximate value of the two measure
values and is calculated by the following equation.

TP
R= ———
TP + FP
5) Matthews’s correlation coefficient (MCC) is the fifth
statistical measure that is used to define the superiority
of classification technique and is calculated by the
following equation.

McCC

. TP x TN — FP x FN

- /(TP + FP) (TP + FN)(TN + FP)(IN + FN)
6) Fl1Score (F1) is the seventh statistical measure that is

used to quantify the accuracy of a test and is formulated
by the following equation.

PR x SP
X—
PR + SP

where the approximate positive cases that are positive are TP.
The expected negative case, which is negative, is TN. The
expected negative cases which are currently positive are FN.
These instances are referred to as errors of form. The FP
parameter is the positive cases expected, which are in the true
negative. These instances are referred to as error category one.
Where the true positive rate (TPR) indicates the right number
of decisions to identify the class. The overall accuracy of
detection (ACC) for detecting HDx systems is calculated
based on average. The performance of different HDx systems
is evaluated by the estimators of precision (PR), sensitivity
(SE), and specificity (SP). To compute these estimators, true
positive rate (TPR), true negative rate (TNR), false positive
rate (FPR), and false negative rate (FNR) should be first
measured. For the multi-class classification, we divided the
comparison results into two major steps. First, we did com-
parisons based on the 2-class (binary), 3-class (ternary) and
5-classes based classification problems as describe in Table 8.
The final estimators are calculated by taking the average
results among all these experiments.

F1=2
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TABLE 11. Comparisons results based on binary, ternary and FIVE-STAGE
multistage based HDx systems.

Classifiers Definition of Class
Binary Class (2- DRW: Drowsy, ALT: ALERT (With/without
classes) distraction)

DRW: Drowsy, ALT: ALERT, Dist: Distracted
(drowsiness with distraction + alertness with
distraction)

V: Very alert (without distraction), F: Fairly alert
(drowsiness with distraction), N: Neither alert or
drowsy, M: Moderate Drowsy, E: Extremely
drowsy

Ternary Classes
(3-classes)

Five Classes (5-
classes)

D. EXPERIMENTAL ANALYSIS
Extracted from physiological cues, the feature set can contain
redundant information (features that are unable to be dis-
tinguished between alertness and drowsiness), which, when
added directly to the classifier, may lead to output loss.
Therefore, prior to the classification stage, all the feature
sets were subjected to a feature selection process. We have
used paired t-test to classify only the statistically relevant
traits (p < 0.05) that can distinguish between all participants
between the warning and drowsy states. Before carrying out
the t-test, we verified that the data were naturally distributed
by means of the Kolmogorov-Smirnov test [41], as this is a
requirement before the applying t-test. Various EEG-based
systems for detecting drowsiness have been developed by
using multisensor. The EEG signals are also used for the
detection of drowsiness in this paper, with three key building
blocks forming the HDX system. The proposed building
blocks use both raw EEG signals and their corresponding
spectrographs. In the first building block, while kurtosis.
The energy distribution and zero-crossing distribution
properties are measured from the raw EEG signals. The
EEG spectrograph images are used that are extracted spec-
tral entropy and instantaneous frequency characteristics.
To extract non-visual features, the deep feature extraction
is used directly on EEG spectrograph images in the second
building block using pre-trained RNN-LSTM model. In the
third building block, the discrete wavelet transform (DWT)
technique is used to decompose EEG signals into similar
sub-bands. Instantaneous frequencies of the sub-bands are
the spectrogram representations of the sub-bands and the
collected statistical characteristics, such as mean and stan-
dard deviation of the instantaneous frequencies of the sub-
bands. For the purposes of classification, each function group
from each building block is fed to a long-short term mem-
ory (LSTM) network. Afterwards, ECG data channel was
used to get time series of human heart variability to mea-
sure the movements of human body that were considered as
statistical samplings. Then the distribution of those values
in these samplings was analyzed by calculation of mean,
standard deviation, skewness, and kurtosis. These measures
very obtained through IMSIU-DFD [127] M-HDx system,
which is used as base system to test and compare. Mostly,
we have implemented behavioral and physiological features
to develop this IMSIU-DFD system but to perform other
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FIGURE 12. A training and validation accuracy graphs are represented where Figures (a) CogBeacon-ML [124], (b) BROOK-DenseNet [126],

(c) Ford-dataset [74] and (d) Riani-HDx [128] by using 10 epochs.

comparisons based on environmental and vehicular, we have
mounted a camera and utilized USB (OBD scan) to capture
real-time vehicular data from Toyota RAV4, 2013 model.

By incorporating the different elements, multimodal clas-
sification was carried out. There were four different methods
were used in two stages. Firstly, by concatenating the features
obtained from the visual and physiological sources, we con-
ducted an early modality fusion to create a single feature
vector, which was then used for classification. The fused
decision is computed by using Eq. (4) based on multistage
classification problem.

multiStage_HDxl’2’3’4’5

= Major_Vote(max (Behav (.))
n
- min(ln(Phych)) + Environment + Vehicular) (4)
n

where the parameter n is the number of features that are
extracted from each different modality, is the function to
indicate visual-features from the driver, and shows physi-
ological features of the drivers. Also, the majority voting
scheme is used to predict the state of driver drowsiness. Also,
the environmental and vehicular features are integrated to
compare the performance with other state-of-the-art M-HDx
systems. To evaluate the performance, we used four different
M-HDx systems such as CogBeacon-ML [124], BROOK-
DenseNet [126], Ford-dataset [74], and Riani-HDx [128].
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By using 10 epochs, the training and validation accuracies are
also computed. A visual representation of training and valida-
tion accuracy graphs are represented in Figure 12 where Fig-
ures (a) CogBeacon-ML [124], (b) BROOK-DenseNet [126],
(c) Ford-dataset [74] and (d) Riani-HDx [128] on a total
of 10 epochs.

To perform experiments, we used various state-of-the-art
machine learning approaches to characterize the driver‘s
behaviors especially fatigue. These comparisons help us to
make a clear difference between drowsy and fatigue parame-
ters in different conditions and levels. The five-stages were
measured such as used V: Very alert (without distraction),
F: Fairly alert (drowsiness with distraction), N: Neither alert
nor drowsy, M: Moderate Drowsy, E: Extremely drowsy
based on SE: sensitivity, specificity: SP and AUC: area
under the receiver operating curve. In all subsequent tables
and paragraphs, we used notation “‘x/x/%’’ corresponding to
SE/SP/AUC values. Also, the first highest performance val-
ues are displayed in terms of the bold and second one in terms
of underline. We run a 10-leave-one-out cross-validation
scheme for our evaluation, and the average performance is
presented.

Experiment I: Table 12 represented state-of-the-art com-
parison results based on five-stage based hypovigilance
detection (HDx) systems using driver’s behaviors features
and 15 different subjects in 25 minutes of recorded time.
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TABLE 12. State-of-the-art comparison results based on five-stages based hypovigilance detection (HDx) systems using driver's behaviors features and
15 different subjects in 25 minutes of recorded time, where “+/+/+” means SE/SP/AUC values and high values provide better results.

Classifiers A% F N M E
CogBeacon-ML [124] 45.6/47.5/0.46 40.2/43.2/42 44.5/46.2/0.45 37.6/40.5/0.38 41.6/43.5/0.42
BROOK-DenseNet [126] 46.4/48.5/0.46 41.2/44.4/0.43 40.5/43.4/0.42 38.6/39.5/0.39 43.6/45.5/0.44
Ford-dataset [74] NA NA NA NA NA
Riani-M-HDx [128] 50.6/52.5/0.51 43.5/44.3/0.44 40.5/45.5/0.44 40.6/41.5/0.40 44.6/47.5/0.45

V: Very alert (without distraction), F: Fairly alert (drowsiness with distraction), N: Neither alert nor drowsy, M:
Moderate Drowsy, E: Extremely drowsy, SE: sensitivity, specificity: SP, AUC: area under the receiver operating

curve.

TABLE 13. State-of-the-art comparison results based on five-stages based hypovigilance detection (HDx) systems using driver's physiological features
and 15 different subjects in 25 min of recorded time, where “+/+/+"” means SE/SP/AUC values and high values provide better results.

Classifiers \% F N M E
CogBeacon-ML [124] 35.6/37.5/0.36 30.2/33.2/0.32 34.5/36.2/0.32 30.6/30.5/0.30 31.6/32.5/0.31
BROOK-DenseNet [126] 36.4/38.5/0.36 31.2/34.4/0.33 30.5/33.4/0.32 30.6/30.5/0.31 31.6/33.5/0.32
Ford-dataset [74] 30.1/32.5/0.31 28.5/24.4/0.26 30.5/34.1/0.33 30.6/31.5/0.30 30.1/32.5/0.31
Riani-M-HDx [128] 46.2/48.5/0.46 43.5/44.3/0.42 40.5/45.5/0.43 50.6/54.5/0.51 60.6/63.5/0.61

V: Very alert (without distraction), F: Fairly alert (drowsiness with distraction), N: Neither alert nor drowsy, M:
Moderate Drowsy, E: Extremely drowsy, SE: sensitivity, specificity: SP, AUC: area under the receiver operating

curve.

In Ford-dataset [74], there are unavailable behavior fea-
tures so we did not perform comparisons. On average,
the CogBeacon-ML [124] system achieved somewhat lower
results based on four-stage (V, F, M, E) compare to N-stage.
However, in the case of BROOK-DenseNet [126], the perfor-
mance is somewhat similar to CogBeacon-ML [124] system.
It was noticed that in four-stage (V, F, M, E), both approaches
achieved the same performance level when used driver’s
behavior features. Also, CogBeacon-ML achieved best per-
formance in terms of N-stage than BROOK-DenseNet and
Riani-M-HDx. Compare to these methods, the Riani-M-
HDx [128] achieved better performance but this is also not
up-to-the-mark to implement in a real-time environment.
As shown in this table, the Riani-M-HDx system achieved
the performance results as V-stage of 50.6/52.5/0.51, F-stage
of 43.5/44.3/0.44, M-stage of 40.6/41.5/0.40, and E-stage of
44.6/47.5/0.45. This perform-ance was achieved due to the
use of the best features and deep-learning (DL) architecture
compare to the traditional logic regression technique used
in the CogBeacon-ML system. Besides, the deep-learning
architecture utilized in (BROOK-DenseNet and Riani-M-
HDx) systems required many training samples, fine-tuning,
and selection of layers. In contrast, if a vision-based camera
is unavailable to get due to environmental or face occlusion
factors then all these methods were completely failed.
Experiment II: Five-stage based hypovigilance detection
(HDx) systems using physiological features and 15 differ-
ent subjects in 25 minutes of recorded time are described
in Table 13. On average, the Ford-dataset system achieved
somewhat very lower results in terms of four-stage (V,FN,E)
compare to other M-stage. The M-stage obtained second
highest result by Ford-dataset system. Where the case
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of the CogBeacon-ML system achieved somewhat sim-
ilar performance as the Ford-dataset approach. In addi-
tion, the BROOK-DenseNet achieved similar performance
as Ford-dataset and CogBeacon-ML systems and achieved
results. Compare to these methods, the Riani-M-HDx
achieved better performance. The higher results are obtained
due to the best utilize of psychological features by the Riani-
M-HDx system compare to other systems. Also in the case of
environment and face occlusion, this system obtained good
performance. Due to the use of psychological features com-
pares to behavior features, the Riani-M-HDx system achieved
the best performance. In terms of behavior features, the usage
of DL methods achieved higher detection accuracy but this is
also not up-to-the-mark to implement in a real-time environ-
ment.

Experiment I11: Table 14 represents the comparison results
obtained based on five-stage based hypovigilance detection
(HDx) systems using driver’s vehicular features on 15 dif-
ferent subjects and recorded time is 25 minutes. Among four
different systems, there are only two HDx systems (BROOK-
DenseNet [126], Ford-dataset [74]), which used vehicular
features to detect driver fatigue. The obtained results are men-
tioned in this table. The results show that poor performance is
obtained by using only vehicular features and even used DL
architectures and normal environmental conditions. On aver-
age, the Ford-dataset and BROOK-DenseNet achieved simi-
lar performance when used a simulator as comparisons. The
Ford-dataset HDx systems achieved better than BROOK-
DenseNet.

Experiment IV: The comparative results obtained from
experiment IV are represented in table 15. There is only one
Ford-dataset HDx system that used environmental features
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TABLE 14. State-of-the-art comparison results based on five-stages based hypovigilance detection (HDx) systems using driver’s vehicular features and

15 different subjects in 25 min of recorded time, where “+/x/+"” means SE/SP/AUC values and high values provide better results.

Classifiers A% F N M E
CogBeacon-ML [124] NA NA NA NA NA
BROOK-DenseNet [126] 26.4/28.5/0.26 21.2/24.4/0.23 20.5/23.4/0.22 28.6/29.5/:0.29 23.6/21.5/0.22
Ford-dataset [74] 27.1/29.5/0.26 22.5/24.4/:0.24 20.5/24.1/:0.23 29.6/20.5/0.27 23.6/22.5/0.23
Riani-M-HDx [128] NA NA NA NA NA

V: Very alert (without distraction), F: Fairly alert (drowsiness with distraction), N: Neither alert nor drowsy, M:
Moderate Drowsy, E: Extremely drowsy, SE: sensitivity, specificity: SP, AUC: area under the receiver operating

curve.

TABLE 15. State-of-the-art comparison results based on five-stages based hypovigilance detection (HDx) systems using driver's environmental features
and 15 different subjects in 25 min of recorded time, where “+/+/+"” means SE/SP/AUC values and high values provide better results.

Classifiers \ F N M E
CogBeacon-ML [126]: NA NA NA NA NA
BROOK-DenseNet [128] NA NA NA NA NA
Ford-dataset [74] 27.1/29.5/0.26 22.5/24.4/0.24 20.5/24.1/0.23 29.6/20.5/0.27 23.6/22.5/0.23
Riani-M-HDx [128] NA NA NA NA NA

V: Very alert (without distraction), F: Fairly alert (drowsiness with distraction), N: Neither alert nor drowsy, M:
Moderate Drowsy, E: Extremely drowsy, SE: sensitivity, specificity: SP, AUC: area under the receiver operating

curve.

for the detection of driver fatigue-stage. We have carried
out state-of-the-art comparative findings in this table based
on five-stage hypovigilance detection (HDx) systems using
driver’s environmental characteristics on 15 different subjects
and a reported period of 25 minutes. There is only one
HDx system out of four different systems (Ford-dataset [74])
that use environmental features to detect driver fatigue.
In this table, the results obtained are described and we have
observed very poorer efficiency. On average, the performance
results for the Ford dataset in five-stages are obtained as
V-stage of 27.1/29.5/0.26, F-stage of 22.5/24.4/0.24, N-stage
of 20.5/24.1/0.23, M-stage of 29.6/20.5/0.27, and E-stage of
23.6/22.5/0.23. These results indicate that it should be used
separately to detect driver fatigue in the 5-stage.

Experiment V: These experimental results are presented
in Table 16 by using multimodal features (Behavioral +
Psychological) and it has been mostly utilized in the past
to develop the HDx systems. These results are based on
five-stage based HDx systems using multimodal (Behavioral
+ Psychological) features, early fusion, and tested on 15
different subjects in 25 minutes of recorded time. On aver-
age, the Riani-M-HDx achieved better performance com-
pare to other three systems. Similarly, the BROOK-DenseNet
obtained second highest results in most of the stages to detect
driver fatigue when used multimodal features.

The multimodal representations display a gradual increase
in multiclass grouping relative to the use of the characteristics
of individual modalities. When using early fusion, the preci-
sion exceeds 45% for the five-classes-based M-HDx systems.
In comparison, by using early fusion, the per-class AUC
in all multi-class methods reached the highest performance.
The precision of the late fusion process, however, did not
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disclose comparable findings to early fusion. What is most
interesting is that despite the fact that early modality fusion
outperforms all other approaches. This may suggest a close
association between visual characteristics and the states iden-
tified by the classes “Alert” and “Drowsy” but also their
failure to perform as well when distractions are targeted as
explicit states. Physiological data tend to have somewhat
more consistent findings and are likely to have a positive
impact on our multimodal studies as well. The small number
of available data, which do not accurately reflect the targeted
groups, particularly in the 5-stage and 3-stage problems,
maybe a potential explanation for this finding. The problems
related to face occlusion, head position, and environmental
conditions are solved by using multimodal features in DL
architecture. In addition, we expect to further explore these
observations.

Next, there is a dire need to determine the effect of
machine learning algorithms on multimodal-based features
(M-HDx) systems for the detection of different levels of
driver fatigue. We have selected traditional machine learning
algorithms such as ANN, SVM, Logic Regression +ANN,
and hybrid DL architectures (HDLA) such as CNN +SVM,
CNN +Naive Bayes, CNN+ RNN-LSTM, and DenseNet-
BC100 based on early fusion. These machine learning algo-
rithms were selected because they have been mostly uti-
lized in the past for performing experiments no VI to
predict driver’s hypovig-ilance states. These experiments
are conducted based on SE, SP, ACC, PR, MCC, AUC,
and F1 statistical measures on two-, and three-stages-based
DFD detection systems. The notation “sx/%/” means that
drowsy/alert/distracted values and high values provide better
performance results.
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TABLE 16. State-of-the-art comparison results based on five-stages based hypovigilance detection (HDx) systems using multimodal (Behavioral +
Psychological) features, early fusion and 15 different subjects in 25 min of recorded time, where “+/+/+” means SE/SP/AUC values and high values

provide better results.

Classifiers A% F N M E
CogBeacon-ML [124] 75.6/77.5/0.76 65.2/67.2/0.66 63.5/64.6/0.64 65.6/68.0/0.66 51.6/53.5/0.52
BROOK-DenseNet [126] 87.4/89.5/0.88 90.2/94.5/0.93 85.5/87.5/0.86 87.6/89.5/0.88 85.6/88.5/0.86
Ford-dataset [75] 80.1/83.5/0.82 78.5/80.4/0.79 81.5/83.1/0.82 84.2/85.5/0.84 74.6/76.5/0.75
Riani-M-HDx [130] 90.6/93.5/0.92 90.5/93.3/0.91 90.5/95.5/0.93 92.6/94.5/0.92 95.6/97.5/0.96

V: Very alert (without distraction), F: Fairly alert (drowsiness with distraction), N: Neither alert nor drowsy,
M: Moderate Drowsy, E: Extremely drowsy, SE: sensitivity, specificity: SP, AUC: area under the receiver operating

curve

TABLE 17. State-of-the-art comparison of different classifier used in CogBeacon-ML [124] based on two-stages based hypovigilance detection (HDx)
systems using multimodal features (Behavioral + Psychological), early fusion, different classifiers and 20 different subjects in 35 minutes of recorded
time, where “x/+"” means DRW/ALT values and high values provide better results.

Classifiers SE SP ACC PR MCC AUC F1
Binary Classification Results=DRW: Drowsy, ALT: ALERT (With/without distraction)

ANN 45.6/47.5 47.6/48.5  452/46.1  47.6/49.5  0.25/0.26 0.45/0.46  0.45/0.46
SVM 45.6/47.5 47.6/485  46.3/452  49.6/47.5  0.25/0.27 0.45/0.47  0.45/0.47
Logic Regression +ANN 45.6/47.5 47.6/475  454/443  48.6/485  0.25/0.27 0.45/0.47  0.45/0.47
CNN +SVM 46.6/47.5 48.6/49.5  472/482  50.6/51.5  0.26/0.27 0.46/0.47  0.46/0.47
CNN +Naive Bayes 48.6/49.5 50.6/50.5  49.0/50.5  53.6/52.5  0.28/0.29 0.48/0.49  0.48/0.49
CNN+ RNN-LSTM 50.6/51.5 52.6/52.5 51.0/50.5 54.6/53.5 0.20/0.21 0.54/0.55 0.53/0.54
DenseNet-BC100 51.0/51.1 52.1/521  51.2/502  53.2/533  0.21/0.22 0.51/0.52  0.51/0.52

SE: sensitivity, specificity: SP, AUC: area under the receiver operating curve, MCC: Matthews correlation coefficient,

PR: Precision, F1: F1-score

TABLE 18. State-of-the-art comparison of different classifier used in BROOK-DenseNet [126] based on two-stages based hypovigilance detection (HDx)
systems using multimodal features (Behavioral + Psychological), early fusion, different classifiers and 20 different subjects in 35 minutes of recorded
time, where “x/+"” means drw/alt values and high values provide better results.

Classifiers SE SP ACC PR MCC AUC F1
Binary Classification Results=DRW: Drowsy, ALT: ALERT (With/without distraction)

ANN 85.6/87.5  84.6/86.5  85.2/86.1  80.6/82.5 0.55/0.56  0.85/0.86  0.85/0.86
SVM 85.6/87.5  85.6/88.5  86.3/85.2  81.6/83.5 0.55/0.57  0.85/0.87  0.85/0.87
Logic Regression +ANN 85.6/87.5  84.6/86.5  85.4/84.3  81.6/88.5 0.55/0.57  0.85/0.87  0.85/0.87
CNN +SVM 86.6/87.5  87.6/85.5  87.2/88.2  83.6/81.5 0.56/0.57  0.86/0.87  0.86/0.87
CNN +Naive Bayes 88.6/89.5  88.6/89.5 89.0/80.5  84.6/82.5 0.58/0.59  0.88/0.89  0.88/0.89
CNN+ RNN-LSTM 80.6/81.5  80.6/80.5  81.0/80.5  82.6/81.5 0.50/0.51  0.80/0.81  0.80/0.81
DenseNet-BC100 81.6/81.5  82.6/82.5  81.0/80.5 81.6/82.5 0.50/0.51  0.80/0.81  0.80/0.81

SE: sensitivity, specificity: SP, AUC: area under the receiver operating curve, MCC: Matthews correlation coefficient,

PR: Precision, F1: Fl1-score

Experiment VI: From Table 17, the CogBeacon-ML sys-
tem achieved better performance in the case of hybrid DL
algorithms such as CNN 4 RNN-LSTM and DenseNet-
BC100 compare to other ML algorithms based on two-stages
of the driver such as drowsy and alert. On average,
the ANN achieved very low performance. Though in the
paradigm of SVM, this M-HDx system achieved similar
performance. Also, in the case of CNN + Naive Bayes
and CNN + RNN-LSTM model achieved the best perfor-
mance and comparable to the DenseNet-BC100 model. These
results are obtained based on M-HDx features (behavioral
and psychological) when measured on 20 different drives
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in 35 minutes of recorded time. These experiments show
that the performance of CogBeacon-ML is improved if used
M-HDx features with HDLA. However, it is not having
better results compare to other M-HDx systems. It is also
observed that if the size of training data is slightly changed
then many variations in prediction results are observed.
Similarly, we have done experiments on other M-HDx
systems (BROOK-DenseNet, FORD-dataset, and Riani-M-
HDX) based on two-stage DFD decisions. Those results are
reported from Table 18 to Table 20. Based on these exper-
iments, the BROOK-DenseNet and Riani-M-HDx achieved
higher performance values compared to Ford-dataset and
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TABLE 19. State-of-the-art comparison of different classifier used in Ford-dataset [126] based on two-stages based hypovigilance detection (HDx)
systems using multimodal features (Vehicle + Environment + Psychological), early fusion, different classifiers and 20 different subjects in 35 minutes of
recorded time, where “+/+" means drw/alt values and high values provide better results.

Classifiers SE SP ACC PR MCC AUC F1
Binary Classification Results=DRW: Drowsy, ALT: ALERT (With/without distraction)

ANN 55.6/57.5  57.6/58.5 55.2/56.1  57.6/59.5  0.35/0.36  0.55/0.56  0.55/0.56
SVM 55.6/57.5  57.6/58.5 56.3/55.2  59.6/57.5  0.35/0.37  0.55/0.57  0.55/0.57
Logic Regression +ANN 55.6/57.5  57.6/57.5 55.4/54.3  58.6/585  0.35/0.37  0.55/0.57  0.55/0.57
CNN +SVM 56.6/57.5  58.6/59.5 57.2/582  60.6/61.5  0.36/0.37  0.56/0.57  0.56/0.57
CNN +Naive Bayes 58.6/59.5  60.6/60.5 59.0/50.5  63.6/62.5  0.37/0.39  0.58/0.59  0.65/0.67
CNN+ RNN-LSTM 60.6/61.5 62.6/62.5 61.0/60.5 64.6/63.5 0.39/0.36  0.60/0.61 0.68/0.66
DenseNet-BC100 60.0/61.1  62.1/62.1 60.2/60.2  64.2/63.3  0.31/0.32  0.57/0.59  0.59/0.60

SE: sensitivity, specificity: SP, AUC: area under the receiver operating curve, MCC: Matthews correlation coefficient,

PR: Precision, F1: Fl1-score

TABLE 20. State-of-the-art comparison of different classifier used in Riani-M-HDx [128] based on two-stages based hypovigilance detection (HDx)
systems using multimodal features (Behavioral + Psychological), different classifiers and 20 different subjects in 35 minutes of recorded time, where /"

means drw/alt values and high values provide better results.

Classifiers SE SP ACC PR MCC AUC F1
Binary Classification Results=DRW: Drowsy, ALT: ALERT (With/without distraction)

ANN 88.6/90.5  82.6/84.5  80.2/82.1  77.6/79.5  0.60/0.61  0.81/0.82  0.75/0.76
SVM 88.6/90.5  84.6/86.5  81.3/822  78.6/80.5  0.62/0.63  0.82/0.83  0.77/0.78
Logic Regression +ANN 88.6/90.5  83.6/85.5  84.4/86.3  81.6/83.5  0.63/0.65  0.83/0.84  0.79/0.81
CNN +SVM 89.6/90.5  84.6/86.5  852/87.2  82.6/835  0.63/0.65  0.84/0.85  0.80/0.81
CNN +Naive Bayes 91.6/91.5 90.6/91.5 89.0/87.5 85.6/86.5 0.68/0.69 0.88/0.89 0.88/0.89
CNN+ RNN-LSTM 88.6/86.5  85.6/86.5  86.0/85.5  83.6/81.5  0.63/0.64  0.84/0.83  0.80/0.81
DenseNet-BC100 89.6/90.5  86.6/85.5  87.0/885 84.6/82.5 0.65/0.64 0.87/088 0.85/0.86

SE: sensitivity, specificity: SP, AUC: area under the receiver operating curve, MCC: Matthews correlation coefficient,

PR: Precision, F1: F1-score

TABLE 21. State-of-the-art comparison of different classifier used in BROOK-DenseNet [126] based on three-stages based hypovigilance detection (HDx)
systems using multimodal features, different classifiers and 25 different subjects in 40 minutes of recorded time, where “+/+/” means drw/alt/dist values

and high values provide better results.

Classifiers SE sp ACC PR MCC AUC F1

Ternary Classification Results= DRW: Drowsy, ALT: ALERT, Dist: Distracted (drowsiness with distraction + alertness with
distraction)

ANN 76.6/77.5/76.5 74.6/75.5/75.5  85.2/86.1/86.5 81.6/82.5/81.5  0.55/0.56/0.57 0.85/0.86/0.84  0.85/0.86/0.83
SVM 77.6/77.5/76.5 76.6/77.5/76.5 86.3/85.2/86.5 82.6/81.5/80.5  0.55/0.57/0.57 0.85/0.87/0.85  0.85/0.87/0.82
Logic Regression +tANN  78.6/77.5/76.5 77.6/77.5/76.5  85.4/84.3/86.5 83.6/85.5/86.5  0.55/0.57/0.57  0.85/0.87/0.86  0.85/0.87/0.81
CNN +SVM 84.6/87.5/86.5 85.6/86.5/87.5 87.2/88.2/86.5 84.6/83.5/86.5 0.56/0.57/0.57 0.86/0.87/0.85  0.86/0.87/0.83
CNN +Naive Bayes 89.6/89.5/86.5  88.6/88.5/86.5  89.0/80.5/86.5 85.6/84.5/86.5 0.58/0.59/ 0.57  0.88/0.89/0.87  0.88/0.89/0.82
CNN+ RNN-LSTM 80.6/83.5/86.5 82.6/82.5/86.5 81.0/80.5/86.5 82.6/83.5/82.5  0.50/0.51/0.57 0.80/0.81/0.84  0.80/0.81/0.85
DenseNet-BC100 83.6/81.5/86.5  82.6/82.5/86.5 81.0/80.5/86.5 83.6/81.5/82.5 0.50/0.51/0.57 0.80/0.81/0.86  0.80/0.81/0.85

SE: sensitivity, specificity: SP, AUC: area under the receiver operating curve, MCC: Matthews correlation coefficient,

PR: Precision, F1: F1-score

CogBeacon-ML fatigue detection systems. However, dif-
ferent trends in hybrid deep-learning algorithms (HDLA)
are observed. Still, the HDLA are provided the best per-
formance compare to other machine-learning algorithms by
using M-HDx features.

Experiment VII: Experiments VII results are presented
in Table 21 by using multimodal features (M-HDx)
and machine learning algorithms. We used the BROOK-
DenseNet M-HDX system based on three-stage on
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25 different subjects in 40 minutes of recorded time. In the
case of CNN + Naive Bayes and CNN + RNN-LSTM
model achieved the best performance and comparable to other
algorithms such as the DenseNet-BC100 model. On aver-
age, SE of (89.6/89.5/86.5), SP of (88.6/88.5/86.5), ACC of
(89.0/80.5/86.5), PR of (85.6/84.5/86.5), MCC of (0.58/0.59/
0.57), AUC of (0.88/0.89/0.87), and F1 of (0.88/0.89/0.82)
are measured by using a hybrid algorithm (CNN +Naive
Bayes). This experiment shows that the BROOK-DenseNet
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TABLE 22. State-of-the-art comparison of different classifier used in Riani-M-HDx [128] based on three-stages based hypovigilance detection (HDx)
systems using multimodal features, different classifiers and 25 different subjects in 40 minutes of recorded time, where “x/+/+” means drw/alt/dist

values and high values provide better results.

Classifiers SE SP ACC PR MCC AUC F1

Ternary Classification Results= DRW: Drowsy, ALT: ALERT, Dist: Distracted (drowsiness with distraction + alertness with
distraction)

ANN 76.6/77.5/76.5  78.6/78.5/76.5 85.2/86.1/86.5  80.6/82.5/83.5 0.45/0.46/0.47 0.85/0.86/0.84 0.85/0.86/0.83
SVM 76.6/77.5/76.5  80.6/81.5/82.5 86.3/85.2/86.5 82.6/81.5/83.5 0.46/0.47/0.47 0.85/0.87/0.85 0.85/0.87/0.82
Logic Regression +ANN 74.6/77.5/76.5  82.6/82.5/83.5 85.4/84.3/86.5  83.6/84.5/85.5 0.47/0.47/0.47  0.85/0.87/0.86  0.85/0.87/0.81
CNN +SVM 74.6/77.5/79.5  83.6/84.5/86.5 87.2/88.2/86.5 84.6/81.5/85.5 0.48/0.49/0.50 0.86/0.87/0.85 0.86/0.87/0.83
CNN +Naive Bayes 80.6/83.5/87.5  84.6/85.5/86.5 89.0/80.5/86.5  85.6/83.5/86.5 0.49/0.50/0.51  0.88/0.89/0.87  0.88/0.89/0.92
CNN+ RNN-LSTM 90.6/90.5/92.5  94.6/95.5/98.5 90.6/93.5/96.5  86.6/84.5/85.5 0.52/0.51/0.54 0.90/0.91/0.94 0.90/0.91/0.95
DenseNet-BC100 93.6/91.5/96.5 95.6/94.5/98.5  93.6/91.5/96.5  88.6/87.5/86.5 0.55/0.54/0.57  0.90/0.91/0.96  0.92/0.91/0.93

SE: sensitivity, specificity: SP, AUC: area under the receiver operating curve, MCC: Matthews correlation coefficient,

PR: Precision, F1: F1-score

TABLE 23. State-of-the-art comparisons of hypovigilance detection system (m-HDx) based on multimodal features (Behavioral + Psychological) systems
on five-stage in terms of hardware-based benchmarks such as (a) Graphical-processing unit (GPU) and (b) central processing unit (CPU).

Ref. No. Cited Accuracy Training Time Testing Time
(A) GPU: xTesla K80, having 2496 CUDA cores, 12GB GDDR5 VRAM

[124] CogBeacon-ML [124] 58.5% 6.70s 1.20s
[126] BROOK-DenseNet [126] 85.5% 7.88s 2.18s
[74] Ford-Dataset [74] 83.5% 14.33s 1.33s
[128] Riani-M-HDx [128] 91.5% 6.35s 0.35s
(B) CPU: Intel(R) Xeon(R) CPU, RAM: 12.6 GB@2.3Ghz (1 core,2 threads)

[126] BROOK-DenseNet [126] 85.5% 27.88s 3.18s
[74] Ford-Dataset [74] 83.5% 24.33s 2.33s
[128] Riani-M-HDx [128] 91.5% 26.35s 1.35s
[124] CogBeacon-ML [124] 58.5% 26.70s 3.3s

M-HDx system is improved if used CNN and Naive Bayes
classifiers to detect driver fatigue compare to DenseNet-BC
100 model. These results can be affected in case of increased
training data size. Also, the Riani-M-HDx system is used to
test the performance of M-HDX features in different machine
learning algorithms based on a three-stage prediction of
fatigue. It was noticed that the DenseNet-BC100 and CNN +
RNN-LSTM model achieved the best performance and com-
parable to other machine learning algorithms. From table 22,
it noticed that the DenseNet-BC100 classifier outperformed
compare to other learning algorithms.

Experiment VIII: Tt is also important to measure the
computational time when implemented by using the same
learning strategy and different benchmarks. This experi-
ment is presented in Table 23 based on five-stage based
detection of driver fatigue. For benchmarks, we used GPU
of xTesla K80, having 2496 CUDA cores with dedicated
12GB GDDRS5 VRAM and CPU of Intel(R) Xeon(R) CPU,
RAM: 12.6 GB@2.3Ghz (1 core,2 threads). These results
are reported in Table 23 based on different M-HDx systems.
Also, this complexity is calculated based on 20 minutes of
data recorded by 10 persons. On average, the Riani-M-HDx
system achieved the highest accuracy of 91.5% with low
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training: 6.35s and testing: 0.35s times compare to other
systems. It was calculated based on GPU, which is ultimately
provided faster calculations due to dedicated memory as
compare to shared-memory of CPU. Moreover, it is noticed
that if increased the 7 cores of the processor then testing time
performance is slightly improved but still, GPU is provided
faster testing and training time. This point is not noticed by
many M-HDx systems in the past to develop multistage’s
driver fatigue systems.

Experiment IX: The transfer learning (TL) algorithms are
the latest trend in deep-learning models. Therefore, separate
experiments are conducted to check the performance of the
TL algorithm on Riani-M-HDx compared to other M-HDx
systems because mostly, this system is outperformed. The
TL algorithms used in this comparison are VGG-16, VGG-
19, ResNet-50, DenseNet, InceptionV3, and Pretrain-CNN
models. From these experiments, it was observed that the
hybrid HDLA and transfer-learning (TL) algorithms are
achieving high performance in terms of detection and pre-
diction accuracy compared to standard machine learning and
DL algorithms. Therefore, the TL algorithms are selected
based on experiment analysis for predicting driver fatigue.
To set up the TL algorithms, we describe the validation loss,
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TABLE 24. Comparisons of validation loss and training time for all transfer learning models using Riani-M-HDx [128] architecture.

Model Epoch Validation Training Time Testing Time Convergence Time
Loss (Epoch)
VGG-16 97 0.1925 50s 0.02020 s 426s
VGG-19 90 0.0525 65s 0.02134 s 389 s
ResNet-50 98 0.0496 53s 0.02340 s 345 s
DenseNet 95 0.4531 56s 0.02550 s 245 s
InceptionV3 120 0.0453 60s 0.02440 s 800 s
Pretrain-CNN 120 0.0453 60s 0.02440 s 750 s

TABLE 25. Performance measures of different transfer learning algorithms for prediction of five-stage based on Riani-M-HDx [128] architecture.

Model Precision Recall F1 MCC AUC
VGG-16 0.824 0.902 0.821 0.8501 0.908
VGG-19 0.814 0.892 0.810 0.8455 0.901
ResNet-50 0.854 0.934 0.873 0.8655 0.933
DenseNet 0.864 0.945 0.895 0.8955 0.943
InceptionV3 0.834 0.910 0.845 0.8550 0.914
Pretrain-CNN 0.846 0.926 0.853 0.8520 0.923

AUC: area under the receiver operating curve, MCC: Matthews correlation coefficient and F1: F1-score
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FIGURE 13. Transfer learning (TL) experiment for prediction of 5-classes based on RIANI-M-HDX [128] architecture, where (a) area under the receiver
operating curve (AUC) and (b) precision-recall graphs for different multimodal-based hypovigilance detection (M-HDx) systems by using 10-fold cross

validation test.

epochs, training, and testing times in Table 24 when used
the RTANI-M-HDX system. Compare to VGG-16, VGG-
19, InceptionV3, pre-train CNN TL, the ResNet-50, and
DenseNet are achieved the highest detection accuracies with
the less computational burden. These results are described
in Table 25. A graphically those results are represented
in terms of AUC and recall-precision (as shown in Fig-
ure 13) from Table 25. These results are obtained even in
the case of 5-classes based detection of driver drowsiness.
Hence, the transfer learning algorithms are provided the best
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performance compared to traditional machine learning,
hybrid, and standard deep learning algorithms. However,
the results can be further improved to increase the training
dataset and selection of deep layers. The results may be
further enhanced by including different environmental con-
ditions and position of the camera to define visual features.

V1. DISCUSSIONS
After presenting the results in detail in the previous section,

we focus our attention on discussing the significance of
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these results in this section. Several hypovigilance detec-
tion (HDX) systems were developed based on the inte-
gration of vision-based features, sensor-based features, and
multimodal-based approaches. By using vision-based fea-
tures, the drowsiness of a person reveals itself in physical and
physiological changes which can either be visually observed
by eyes (PERCLOS measure) and/or mouth activity and head
nodding. Those visual features are extracted and then used
to classify driver hypovigilance or drowsiness by the tra-
ditional machine learning (TML), deep-learning (DL), and
transfer learning (TL) architectures. Also, there is another
way to detect drowsiness through digitally registered via
EEG and/or heart rate monitoring systems. The non-visual
features are extracted in the past systems based on the driver’s
physiological measure and vehicle parameters. In the case
of physiological parameter measurements, the authors pre-
dict driver fatigue based on different parameters such as
steering-wheel, acceleration pedal, and speed. In practice,
those approaches were mostly dependent on the road-shape,
way of driving, and performance of the vehicle. Also, some
other studies utilized electroencephalograph (EEG), electro-
cardiogram (ECG), electrooculography (EOG), and surface
electromyogram (SEMG) sensors to predict driver fatigue.
Based on the sensors, the authors were detected drowsy
and alert conditions of drivers. Later on, the authors used
multimodal-based features to develop M-HDx systems based
on an approach to integrate vision-based, vehicular-based
or environmental-based and sensor-based features to detect
driver fatigue into multistage (Very alert (without distraction),
Fairly alert (drowsiness with distraction), Neither alert nor
drowsy, Moderate Drowsy, Extremely drowsy). According to
a literature review, it noticed that the multimodal-based fea-
tures provided higher accuracy compare to unimodal-based
techniques. Therefore in this review paper, multimodal-based
features approaches are described and compared in detail
with emphasis on machine-learning algorithms (TML, DL,
and TL).

Numerous survey articles were written by authors to
develop the need for driver fatigue detection (DFD) systems.
However, many research questions need to be addressed as
mentioned in Table 1. Those survey articles are unable to
address all problems as described in Table 2. A recent sur-
vey shows that several kinds of research have been going
on to develop an automatic solution [127] for detecting
and predicting the driver’s fatigue using multimodal and
deep learning (DL) architectures to recognize multistage
drowsiness. An automatic solution for drivers’ fatigue [4]
is considered significant to improve the visual attention of
drivers. In the past studies, the researchers found that road
attention is very sensitive to driver fatigue as discussed
in [130]. Also, it is very much important to regularly mon-
itor the traffic environment as well as vigilance [131]. For
sustained driver attention, fatigue detection in real-time is
beneficial to save accidents. An alert system is also designed
in the past techniques to detect upcoming hazards in their
path [132]. An automatic driver fatigue detection system is
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always required to advance the development system for road
safety.

Visual features are also provided an efficient way to detect
real-time driver fatigue without using non-visual features
as suggested by many authors [12], [45]-[64]. In particu-
lar [63] study, the authors observed that the light-illumination
has a considerable effect on extracting features based on
PERCLOS measure. Also, in [67], the authors reported that
face occlusion with big-black glasses and head position might
affect the measurement’s reliability and accuracy. In many
studies to detect driver fatigue, the PERCLOS measure was
employed using a single camera. However, in real-time driver
detection, if the driver’s head is not centered and it is out
of focus. This poses a problem as it will be very hard to
measure PERCLOS. As a result, domain-expert knowledge
and image processing must be robust through at-least three
cameras in a three-different position to capture the driver’s
face. Night-vision is another limitation for the PERCLOS
measure to detect visual features. To minimize these light-
illumination problems, many authors are suggesting using IR
cameras.

Studies [122]-[127] suggested using a single-view cam-
era to detect visual features and it is very much difficult
to detect perfect facial features through one camera. As a
result, it might require multiview Online, there are several
datasets available to researchers to test their M-HDx systems
but with limited real-time conditions. A video database of
YawDD [142] is available to test development techniques.
The videos were acquired in a day and nighttime driving con-
ditions, with drivers belonging to different gender and race.
Another challenging aspect of conventional fatigue detection
systems is to make them compatible with changing times and
trends.

During our studies, it was observed that numerous visual
and non-visual features (as described in Table 3 and Table 4)
are considered in the past to detect and predict driver drowsi-
ness levels. However, the sensors that are utilized in [76]-[79]
must not interfere with the real-time driving process, the life
expectancy of sensors, and even the effect on the health
of drivers. Instead of using the camera, many researchers
have worked with health vitals such as EEG, ECG, and
EMG sensors [80]-[94] to extract biological features from
the driver. Some important visual-feature-based datasets are
described in Table 6. These psychological features are used
to detect multistage fatigue detection, which is not possible
to use only behavior features.

Our study finds that it is not possible to use a single
visual or non-visual feature to be used to detect real-time
driver fatigue in all environmental conditions. Some research
suggests using hybrid systems that combined both visual and
non-visual features to get higher accuracy. Mostly, the authors
utilized PERCLOS visual features and EEG, ECG sensors
for non-visual features. Those hybrid or multimodal features
are feasible to detect driver fatigue. In Table 8, we presented
online data resources about different multimodal-based HDx
(M-HDx) systems. Those datasets can be used to test and train
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M-HDx systems. The correctness of driver fatigue detection
methods, in this case, depends on various factors such as
real-time processing as fast and accurate results. A compari-
son of the fatigue detection techniques is presented in Table 5.
It is concluded that the most suitable features for driver
fatigue detection are visual features and machine learning
algorithms especially deep-learning methods.

The latest trend is the utilization of deep learn-
ing algorithms (DLAs) [95], [97], [128]-[141] and
multimodal-features to detect and predict driver drowsiness.
Those DLAs-based DFD systems are presented in Table 9.
In particular, a convolutional neural network (CNN) method
is used in [35] to recognize driver fatigue based on minimal
network structure and facial points. The authors reported
that they achieved 73.06% classification accuracy. They used
SoftMax and CNN algorithms together with three dropout
hidden layers to do the final prediction. It was noticed that the
authors did not train the model on the huge dataset and they
used CNN for the prediction of driver fatigue. Since the CNN
model is used to detect features from images and selection
of features map are difficult steps for real-time detection of
fatigue. As a result, the computational complexity is also
high due to CNN methods and it is difficult to detect mul-
tistage drowsiness. Similarly, there are other deep-learning
(DL) architectures that require many data augmentation and
selection of multilayers to train and test the model. To eval-
uate the performance of traditional machine-learning, deep-
learning, and transfer-learning algorithms on the detection of
multistage of fatigue, we used four different M-HDx systems
such as CogBeacon-ML [124], BROOK-DenseNet [126],
Ford-dataset [74], and Riani-HDx [128]. By using 10 epochs,
the training and validation accuracies are also computed.

Our comparative analysis based on different machine-
learning algorithms and distinct features is described
in Table 12 to Table 22. Based on these experiments,
the application of deep learning (DL) models provided the
best performance compared to traditional machine learning
algorithms. In particular, the hybrid DL (HDL) algorithms
are outperformed to detect driver fatigue in three-stage and
five-stage level detection of drowsiness. It was noticed that
many authors used unimodal or multimodal features with
DL architectures to get state-of-the-art prediction results.
This distribution can be seen in Figure 14 and Figure 15.
This shows that the application of DL with transfer learning
models is highly prevalent with both visual and non-visual
feature-based fatigue detection systems. It was observed that
the transfer learning (TL) algorithms were only utilized 5%
in the past. However, our comparison analysis based on four
M-HDx systems indicates that the TL algorithms are the
best candidate for the detection of fatigue in multistage.
By using TL algorithms, it is difficult to provide sufficient
training samples based on visual and non-visual features.
If we can provide enough training datasets then it can pro-
vide effective performance. To access computational perfor-
mance, we have done another experiment and those results
are mentioned in Table 23. In this table, we used the GPU of
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Transfer-Pretrain, 5% 18%

FIGURE 14. Distribution of different deep-learning models that utilized in
the past for the development of hypovigilance detection systems.

xTesla K80, having 2496 CUDA cores with dedicated 12GB
GDDRS5 VRAM and CPU of Intel(R) Xeon(R) CPU, RAM:
12.6 GB@2.3Ghz (1 core,2 threads). On average, the Riani-
M-HDx system achieved the highest accuracy of 91.5% with
low training: 6.35s and testing: 0.35s times compare to other
systems. It was calculated based on GPU, which is ultimately
provided faster calculations due to dedicated memory as com-
pare to shared-memory of CPU.

In this review and comparative analysis study, we incor-
porated a preliminary comparison to find a use of mul-
timodal driver alertness for transfer learning algorithms.
Also, the identification of multimodal datasets and available
M-HDx systems are described to further conduct a pilot study
to differentiate among 2-stage, 3-stage, and 5-stages of driver
drowsiness. It is our first attempt to present a detailed study
that uses physiological, visual, and environment modalities
to track the different driver states together. Besides, three key
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FIGURE 15. Distribution of number of multimodal-based, sensor-based
and vision-based HDx systems utilized in the past.

aims were covered by this study. First, as it is a widely under-
researched process, we explored the benefits of the integra-
tion of multimodal features in tracking multistage detection
of fatigue. Second, our comparisons work extended the stan-
dard binary classification problem as mostly addressed in the
past into a three- and five-classes problem to detect different
levels of driver’s alertness. Finally, we studied which methods
have a greater ability to discriminate to classify alertness in
drivers. Our experimental findings demonstrated the bene-
fits provided by multimodal feature learning, highlighting
substantial drawbacks for both multiclass classification sys-
tems overall individual modalities. Compared to individual
modalities for multiclass classification, early modality fusion
leads to improved performance, with an overall accuracy of
79.73 percent for the three-class system and 55.12 percent
for the five-class approach if you used all parameter settings
and different facial occlusions such as a scarf, big sunglasses.
Finally, our study would not only seek the discovery of uni-
versal trends of the multiple driver states, but also the detec-
tion of personalized features associated with five-stage of
driver drowsiness. This study shows that the state-of-the-art
M-HDx systems are based on unimodal- or multimodal-based
features to detect multi-stage of fatigue. In the subsequent
sub-sections, we show the limitation of the training dataset,
deep-learning methods, and future directions to assist other
researchers.

A. LIMITED DATASETS FOR TRAININGS

In addition to the above technological problems in deep learn-
ing (DL) algorithms, there is an increasing need for multiple
enormous datasets to undertake a successful training process.
In fact, in terms of classes and instances that impact the train-
ing accuracy of deep learning algorithms, the online datasets
available are small with limited variability in environments.
However, we have identified the most recent datasets includ-
ing vision-based, sensor-based, and multimodal-based. Those
datasets can be easily integrated into any real-time applica-
tions for training the network but we did not find a dataset
that covered all aspects of driver drowsy in multiple stage
recognition on day and night times of driving. In the literature,
these mentioned datasets along contained trained networks
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that can be used as a pre-train model for the transfer learning
domain. It can help to increase classification accuracy.

B. CHALLENGES OF DL ARCHITECTURES

The development of multilayer deep-learning (DL) archi-
tectures including hybrid learning (HL) and transfer learn-
ing (TL) is a recent trend in machine learning to develop
hypovigilance (HDx) systems. In a large variety of applica-
tions, these DL algorithms [143]-[147] have obtained very
promising results. To detect real-time multistage of driver
fatigue, the DL architectures are still facing the challenges of
computational cost, the complexity of network parameters,
and system performance. Since the authors did not focus on
computing cost and parameter complexity to develop many
HDx systems when used DL algorithms. Therefore, a robust
DL-based architecture is necessary to develop for feature
extraction and classification tasks. Moreover, the computa-
tional complexity of the DL model is very high during the
training phase because of the large number of parameters
used in a network. As a result, the model reduction methods
such as pruning, removal of redundant neurons, and layers
are required to solve complex problems. In comparison rel-
ative to the classical DL models implemented in the CPU,
the GPU-based implementation of the DL also offers high
performance. Thus, this can remove the high computation
cost.

The HDx architectures have recently been expanded and
are becoming deeper in terms of the number of layers and
the number of processing units per layer, following the new
developments. Still, in terms of their computing power and
training sophistication, the HDx architectures need to be more
efficient. Henceforth, we are going to discuss certain rec-
ommendations to improve the computing capacity of the DL
architectures in terms of the development of M-HDx systems
for a real-time environment.

In this work, we have studied and compared various
DL architectures based on multimodal-based HDx (M-HDx)
systems to predict multistage driver fatigue. The latest
techniques for M-HDx systems are DL models, where the
emphasis is on extracting multimodal features fusion with-
out defining handcrafted features. Multimodal feature fusion
will mitigate the deficiencies of both visual features and
non-visual features, thus enhancing HDx efficiency. While
multimodal M-HDx has improved dramatically over the
past few years, when integrating multiple modalities, cur-
rent works fall short of optimum efficiency. Deciding at
which stage of information fusion is a big difficulty such as
early fusion, function level fusion, and decision/late fusion,
the modalities should be fused [15]. Multimodal fusion aims
to obtain complimentary knowledge from modalities to cor-
rectly perform the task of analysis. The major concern in
multimodal fusion is to find the best example or stage to
combine the modalities. The widely employed techniques
are, based on this philosophy, data level or early fusion,
function level or intermediate fusion, and judgment level or
late fusion [16]. Some new fusion models have arisen from
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the advent of deep learning. Since feature extraction can be
performed on any layer in deep learning models, particularly
CNN, we can now have early and late feature level fusions.

The most commonly used technique for incorporating
knowledge in deep learning models is feature-level fusion.
The biggest advantage of early fusion is that at an early stage
it exploits the similarity between the modalities. Besides,
to execute a task, only one classifier is required, rendering the
training process less repetitive. However, time synchroniza-
tion is a noteworthy constraint of the function level fusion,
as the data is collected at various rates and formats in different
modalities [17]. Decision stage fusion is the other broadly
employed fusion tactic. The major advantage of this strat-
egy is that it helps one to analyze each modality directly,
thus significantly minimizing the probability of superiority
of one modality over the other. Most current works either
feature level fusion or decision fusion, losing the chance
to fuse rich representations of mid-level features available
in a CNN-based architecture. Hence, new deep architec-
ture with fusion frameworks for HDx needs to discuss to
resolve the aforementioned shortcomings and to exploit var-
ious fusion strategies. The major drawback in current HDx
deep learning-based fusion approaches using deep and iner-
tial sensors is that the fusion is carried out at a single level
or point without providing us semantic knowledge from the
features to the classifier.

C. FUTURE DIRECTIONS AND IMPROVEMENTS

After doing extensive experiments on different features and
classification algorithms, we conclude that there is still a big
research gap to implement DL architecture for the recognition
of the different states of the drivers in terms of drowsiness.
The below points are described to improve the architecture of
DL models with future improvements and given as follows.

1) Create deeper DL architectures to increase perfor-
mance and override the problem of degradation by
adding more layers.

2) Selection of multimodal features and fusion approach
will be important concerns to develop accurate model
for prediction of multistage fatigue.

3) Increasing training datasets with more than 50 epochs
to build the transfer-learning (TL) model.

4) Parameters for DL methods should be decreased and
there will be extensive optimization techniques to com-
pare and test the performance.

5) Designing of an appropriate loss-function is an impor-
tant factor for DL architecture to improve the discrim-
inating power of the network.

6) Feature extraction and fine-tuning are important steps
for the accurate development of the deep learning
model.

7) Learning using hierarchical functions, i.e., learning
variant layers with variant characteristics.

8) To make use of the complimentary benefits of these
DL models, the development of hybrid models will be
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considered as best instead of using single DL model for
features extraction or classification tasks.

9) A different kinds of DL architecture should be
investigated such as few-short learning (FSL) and
semantic-based learning (SBL). These kind of DL
model are significantly improved identification accu-
racy with fewer training samples.

10) To compare the performance of vision transform-
ers (VTs) with DL model is also required for the devel-
opment of M-HDx systems.

11) Instead of using generalize DL architecture, it is also
required to develop DL model specific of HDx-related
problem.

12) To detect driver fatigue, many researchers
[10]-[30] used visual features that are defined through
vision-based technique. The authors used single view
or multi-view camera to define PERCLOS measure but
unfortunately, it is very much difficult to detect driver’s
features in case of face occlusion, light illumination and
head is not center-aligned.

13) Few authors used combine approach by using
vision-based and sensors-based devices together to
detect driver fatigue to avoid face occlusion or light
illumination problem.

14) Few current models collect both temporal function data
and temporal interaction information between driver
fatigue detection features. A greater degree of mouth
opening, for instance, does not generally reflect fatigue,
which may be reassessed over time by shifts in heart
rate and level of eye opening.

15) In order to build an integrated framework that proac-
tively identifies driver tension levels, it is important to
capture, pass, pre-process, minimize, incorporate data
and use it automatically to make the final decision.

16) Implement TL algorithms on GPU-based platform with
cloud-computing platform.

A comprehensive literature review has taught that each
approach has its drawback. Therefore, the use of many
methods will be best be used. The considered features are
derived from non-intrusive sensors that are related to the
changes in driving behavior and visual facial expressions.
To get enhanced visual facial features, three cameras can be
deployed at different angles. Afterward, it should be trained
on big multimodal datasets with transfer learning algorithms
that can better assist automatic drowsiness detection in a
real-time environment. However, time is also an important
factor in a real-time environment. Hence, if transfer learning
will be implemented in GPU then 35% on average training
and testing time will be enhanced compared to CPU based
processing.

Vil. CONCLUSION

This article shows the state-of-art current research and devel-
opment efforts on recognition of driver drowsiness through
vision-based, sensor-based, and multimodal-based features
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techniques. Literature has shown that the prediction of
required features was performed by standard and latest deep
learning (DL) algorithms in the past. In this paper, we have
focused on deep-learning with transfer learning algorithms
that have been utilized in the past to predict driver drowsi-
ness instead of conventional machine learning techniques.
A critical review is also presented to show the different driv-
ing influence factors, traditional and advance deep-learning
algorithms to help the researchers identify the research gap.
We conclude that many multimodal-based M-HDx systems
were developed and tested on different hardware bench-
marks such as (CPU and GPU). However, there are several
review articles in this domain but according to our limited
knowledge, none of them focused on comparisons about
multimodal-based M-HDx systems in different benchmark
settings. In the future, we will focus on more comparison
studies related to hybrid systems for the implementation of
the fatigue recognition system in a multistage. Moreover,
we have assessed and described the latest methodologies used
in this domain such as deep-learning algorithms. According
to our knowledge, several review articles have been written
to address driver fatigue detection problems but none of
them focused on the domain of deep-learning multi-layer
architectures. The future trends will implement the combi-
nation of supervised and unsupervised algorithms to enhance
driver adaptability and cognitive performance without giving
more details. With the development of hardware, the internet
of things (IoT), 5G network, energy computing, and more
transfer-learning based algorithms will be tested in the future
trend.
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