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ABSTRACT Linear discriminant analysis (LDA) based classifiers tend to falter in many practical settings
where the training data size is smaller than, or comparable to, the number of features. As a remedy, different
regularized LDA (RLDA) methods have been proposed. These methods may still perform poorly depending
on the size and quality of the available training data. In particular, the test data deviation from the training
data model, for example, due to noise contamination, can cause severe performance degradation. Moreover,
these methods commit further to the Gaussian assumption (upon which LDA is established) to tune their
regularization parameters, which may compromise accuracy when dealing with real data. To address these
issues, we propose a doubly regularized LDA classifier that we denote as R2LDA. In the proposed R2LDA
approach, the RLDA score function is converted into an inner product of two vectors. By substituting
the expressions of the regularized estimators of these vectors, we obtain the R2LDA score function that
involves two regularization parameters. To set the values of these parameters, we adopt three existing
regularization techniques; the constrained perturbation regularization approach (COPRA), the bounded
perturbation regularization (BPR) algorithm, and the generalized cross-validation (GCV) method. These
methods are used to tune the regularization parameters based on linear estimation models, with the sample
covariance matrix’s square root being the linear operator. Results obtained from both synthetic and real data
demonstrate the consistency and effectiveness of the proposed R2LDA approach, especially in scenarios
involving test data contaminated with noise that is not observed during the training phase.

INDEX TERMS Linear discriminant analysis, LDA, RLDA, regularization, covariance matrix estimation,
classification algorithms.

I. INTRODUCTION
The idea of linear discriminant analysis (LDA) was originally
conceived by Fisher [1] and is based on the assumption that
the data follows a Gaussian distribution with a common class
covariance matrix. Owing to its simplicity, LDA has been
successfully applied to various classification and recognition
tasks such as detection [2], speech recognition [3], cancer
genomics [4], [5] and face recognition [6] to mention a few.
In addition, LDA is a classical tool for feature extraction [7].

The associate editor coordinating the review of this manuscript and

approving it for publication was Aysegul Ucar .

The performance of LDA-based classifiers depends heav-
ily on accurate estimation of the class statistics, namely,
the sample covariance matrix and class mean vectors. These
statistics can be estimated with fairly high accuracy when the
number of available samples is large compared to the data
dimensionality. In practical high-dimensional data settings,
the challenge is to cope with a limited number of avail-
able samples. In this case, the sample covariance estimates
become highly perturbed and ill-conditioned resulting in
severe performance degradation. To alleviate this problem,
the sample covariance matrix is replaced with a regularized
or ridge covariance matrix [8], giving the name regularized
LDA (RLDA). The values of the regularization parameters
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ultimately dictate the performance of RLDA classifiers.
Hence, it is essential to judiciously tune the regularization
parameters’ values to reap the full benefit of the regulariza-
tion process. Towards this end, various regularization tech-
niques have been proposed. For example, cross-validation [9]
has been one of the classical techniques for estimating the
ridge parameter as evidenced in [5], [10]–[13].

An optimal regularization method that minimizes the
asymptotic classification error is derived in [14], [15].
The method is based on recent results from random matrix
theory. In [16], [17], the method of [14], [15] is extended
to a more general class of discriminant analysis based clas-
sifiers, with LDA obtained as a special case. In [18], [19],
improved RLDA classifiers are proposed, with the required
parameters given in closed forms. These classifiers are
designed for spiked-model covariance structures. Neverthe-
less, the authors demonstrate their usefulness when the data
is generated from other (non-spiked) models.

In all the above-mentioned RLDA approaches, a regu-
larization parameter is tuned based only on the data avail-
able in the training phase. Such a regularization parameter
may produce satisfactory results when the test data follows
the exact model of the training data. In some practical
situations, it occurs that the test data deviates from the
training data model. For example, the training data and the
test data might represent measurements obtained from non-
identical devices. In such a case, the value of the regulariza-
tion parameter computed during the training phase may no
longer be adequate, let alone be optimal. Consequently, the
above-mentioned approaches’ performance might deteriorate
significantly. Moreover, these methods use the Gaussian
assumption of the underlying data distribution for finding the
value of the regularization parameter. This assumption may
not hold in practical settings, e.g., with real data. Even though
the Gaussian assumption is essential in deriving the basic
LDA, excessive reliance on the assumption may eventually
compromise the RLDA classifier’s performance. To tackle
these issues, we propose a new approach to regularized
LDA classification. Focusing on binary classification, this
paper develops a doubly regularized LDA (R2LDA) clas-
sifier by expressing the LDA score function as an inner
product of two vectors that are linearly related to the mean
vectors and the data covariance matrix. Regularized esti-
mators are used to obtain the values of the two vectors
and the value of the score function. The regularization
parameter used in the estimation of one of the two vec-
tors is tuned based on the current sample of the test data,
hence providing robustness against any irregularities in the
test data.

We summarize our main innovations and the most promi-
nent features of the proposed R2LDA approach as follows:
(a) We deviate from the classical covariance matrix estima-

tion approach to RLDA, where the focus is to obtain
a regularized linear estimator of the data covariance
matrix. Instead, we reformulate the problem as a vector
estimation problem.We apply regularization to estimate

two vector quantities. This implicitly results in a regular-
ized nonlinear estimator of the data covariance matrix.

(b) R2LDA is designed not only to cope with the insuffi-
ciency of the training data but also with perturbations
in the test data that are not observed during training.
This is achieved by adjusting two regularization param-
eters independently; one is computed based only on the
training data, and another is dynamically tuned to the
test data sample. This is to be contrasted with existing
approaches that compute their regularization parameters
based solely on the training data.

(c) We automate the regularization parameter selection pro-
cess based on existing methods that are well suited to
the task. We theoretically motivate the main approaches
adopted to tune the regularization parameters.

(d) The regularization parameter selection approach is
agnostic to the underlying distribution of the data con-
trary to [15], [16], [18], which rely on the Gaussian
assumption. Even though the Gaussian assumption is
embedded in LDA, further commitment to Gaussianity
in the regularization parameter tuning process might
impede classification performance, especially with real
data.

A. NOTATIONS
Throughout this paper, we use non-bold letters to denote
scalars (e.g.,W ), boldface lowercase letters to denote column
vectors (e.g., x), and boldface uppercase letters to denote
matrices (e.g., H). The notation Ip denotes an identity matrix
of dimension p, and 0p1×p2 represents a p1 × p2 matrix with
all zero elements. We use tr(.) and (.)T to denote the matrix
trace and matrix/vector transpose operations, respectively.
The notation x̂ indicates an estimate of the variable x. The
set of real numbers is denoted by R and the l2 norm of
a vector is denoted by ‖.‖2. The probability density func-
tion and the statistical expectation of a random variable x
are denoted by P(x) and E(x), respectively. The symbol ≈
stands for ‘‘approximately equivalent to,’’ while := means
‘‘defined to be equal to’’. Finally, ‘‘s.t.’’ is an abbreviation for
‘‘subject to.’’

The remainder of this paper is organized as follows.
In Section II, we present a concise overview of regularized
LDA classification. In Section III, we present our proposed
R2LDA approach, along with three regularization parameter
selection methods. Performance evaluation of the proposed
approach and comparisons with existing techniques are pre-
sented in Section IV. We close this paper by making a con-
cluding remark in Section IV.

II. RLDA CLASSIFICATION
We consider the binary classification problem of assigning
a multivariate observation vector x ∈ Rp×1 to one of two
classes Ci, i = 0, 1. Let πi be the prior probability that x
belongs to the class Ci, and assume that the class conditional
densities P (x|x ∈ Ci) , i = 0, 1, are Gaussian with mean
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vectors mi ∈ Rp×1 and positive semidefinite covariance
matrices 6i ∈ Rp×p.

LDA employs the Bayesian discriminant rule, which
assigns x to the class with the maximum posterior probability.
Let S0={xl}

n0
l=0 and S1={xl}

n0+n1
l=n0+1

represent the available
training samples pertaining to the two classes, where ni is the
number of training samples for class Ci and n=n0+n1 is the
total number of training samples. The LDA score function
reads [20]

W LDA(x) =
(
x−

m̂0 + m̂1

2

)T

6̂
−1 (

m̂0 − m̂1
)
. (1)

The unbiased mean vector estimates m̂i, and the pooled sam-
ple covariance matrix 6̂, are computed according to

m̂i =
1
ni

∑
l∈Si

xl, 6̂ =
(n0 − 1)6̂0 + (n1 − 1)6̂1

n0 + n1 + 1
, (2)

where the sample covariance matrices 6̂i are computed using

6̂i =
1

ni − 1

∑
l∈Si

(xl − m̂i)(xl − m̂i)T. (3)

The class assignment rule for x is as follows:

x ∈

{
C0, ifW (x) > log(π1/π0);
C1, otherwise.

(4)

A major source of error in the above formulation is the
inversion of the sample covariance matrix 6̂. In many prac-
tical setups where n is comparable to p, 6̂ becomes ill-
conditioned, or even singular. To circumvent this issue, 6̂

−1

in (1) is replaced with a regularized estimator. Typically,
H= (Ip+γ 6̂)−1 is used, where γ ∈ R+ is a regularization
parameter and Ip is the identity matrix of dimension p. This
replacement results in the RLDA score function [14], [15]

WRLDA(x) =
(
x−

m̂0 + m̂1

2

)T

H
(
m̂0 − m̂1

)
. (5)

In this work, we apply a different regularization form
to (1). In the proposed regularized LDA classifier, we employ
two separate regularization operations to account for the
deficiency in the training data. The proposed approach also
improves the classifier’s robustness to error contributions that
are present only in the test data.

III. THE PROPOSED R2LDA CLASSIFICATION APPROACH
Many existing RLDA techniques are based on (5), with H
estimated by selecting the regularization parameter γ using
only the training data. This makes these techniques vulnera-
ble to errors in the test data. To address this issue, we express
the LDA score function (1) as

W LDA(x) = (x′)T6̂
−

1
2 6̂
−

1
2 m̂− = zTb, (6)

where x′ := x− 1
2m̂
+, m̂+ := m̂0+ m̂1, m̂

−
:= m̂0− m̂1,

z := 6̂
−

1
2 x′, and b := 6̂

−
1
2 m̂−. Based on the last two

definitions, our proposed R2LDA method aims to obtain
regularized estimates of z and b to improve the computation
of the score function (6). To this end, we utilize the linear
models

x′ = 6̂
1
2 z+ vx , (7)

m̂− = 6̂
1
2 b+ vm, (8)

where vx and vm are additive noise vectors. These noise
vectors can be interpreted as the contribution of the errors in
estimating the mean vectors. In addition, vx can also be used
to absorb any noise contributions that occur in the test data
vector x. Each of (7) and (8) can be represented by the linear
model

y = 6̂
1
2 c+ v, (9)

where (7) or (8) can be obtained by setting {y = x′, c = z,
v = vx}, or {y = m̂−, c = b,v = vm}, respectively.
Focusing on (9), regularizationmethods, commonly named

ridge regression or Tikhonov regularization [21]–[23], can be
applied to obtain a stabilized estimate of c. This estimate can
be expressed in a closed form as [24]

ĉ = (6̂ + γ Ip)−16̂
1
2 y. (10)

Based on (10), we can estimate z and b and substitute the
results in (6) to obtain the R2LDA score function in the form

WR2LDA(x) = ẑT b̂

= (x′)TUD2
(
D2
+ γzIp

)−1
×

(
D2
+ γbIp

)−1
UTm̂−, (11)

where γz ∈ R+ and γb ∈ R+ are the regularization param-
eters associated with the linear models (7) and (8), respec-
tively. The second equality in (11) follows directly from
substituting (in (10)) the eigenvalue decomposition (EVD)
6̂=UD2UT, where U is the matrix of eigenvectors and D2 is
the diagonal matrix of eigenvalues of 6̂.
Now, it only remains to set the values of the regularization

parameters γz and γb, whichwill be discussed in the following
subsections.

Remark 1: Compared to the conventional RLDA score
function (5), the new formulation (11) involves two regular-
ization operations. Note that the estimation of the class mean
vectorsmi results in perturbations in both m̂

− and x′. Besides,
x′ also has errors coming from the test data. By carrying out
two independent estimations to obtain regularized estimates
of z and b (see (6)), we can optimize the choice of two
different regularization parameters to cope with the different
perturbations in x′ and m̂−. This is a key advantage of the
proposed R2LDA method over the classical RLDA based
on (5) that employs a single regularization operation based
only on the training data.
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A. REGULARIZATION PARAMETER SELECTION
Several methods have been proposed in the literature for
selecting the regularization parameter γ required in (10),
e.g., [25]–[28], to mention a few. These methods are based
on different criteria, which results in different regularization
parameter values (see [29]).

In this work, we pursue three regularization methods; the
constrained perturbation regularization approach (COPRA)
[30], bounded perturbation regularization (BPR) [31], and
the generalized cross-validation (GCV) [26]. The choice of
COPRA and BPR is motivated by the fact that these algo-
rithms are designed to optimize the mean squared error of
a vector estimation. Also, these two methods are based on a
very relevant model to the setup under consideration. As will
be shown subsequently, BPR is a special case of COPRA.
On the other hand, cross-validation, a method based on a
totally different concept compared to BPR and COPRA, is a
widely adopted heuristic technique that has shown immense
success in machine-learning applications.

Next, we provide details on the three selected regulariza-
tion methods and how they can be combined with R2LDA.

B. THE CONSTRAINED PERTURBATION REGULARIZATION
ALGORITHM (COPRA)
To simplify the derivations, we make the following assump-
tions on the model (9):

1) The noise vector v has zero mean and an unknown
covariance matrix σ 2

v Ip.
2) The unknown random vector c is zero mean with

an unknown positive semidefinite diagonal covariance
matrix 6cc.

3) The vectors v and c are mutually independent.

COPRA is based on the principle of introducing an artifi-
cial perturbation in a linear model to improve the singular-
value structure of the resulting model matrix. For the linear

model in (9), 6̂
1
2 is replaced by a perturbed version to obtain

the model

y ≈
(
6̂

1
2
+1

)
c+ v, (12)

where 1 ∈ Rp×p is an unknown perturbation matrix which
is norm bounded by a positive quantity λ, i.e., ‖1‖2 ≤ λ.
The original method in [30] utilizes the perturbation 1 to
stabilize the estimation of c based on the model (9). However,
in this specific application, 1 can be viewed as a genuine

uncertainty in the model due to the noisy nature of 6̂
1
2 .

In other words, (12) is the natural model for our vector
estimation problem. These two different interpretations of 1
in (12) yield identical estimators of the vector c (i.e., the same
value of the regularization parameter in (10)). This makes
COPRA an excellent candidate for computing the regulariza-
tion parameters for R2LDA.

To obtain an estimate of c, we consider the minimization
of the worst-case residual error. Namely, we pursue the

following optimization:

min
ĉ

max
1

∥∥∥y− (6̂ 1
2
+1

)
ĉ
∥∥∥
2
, s.t. ‖1‖2 ≤ λ. (13)

Interestingly, as shown in [30], [32], [33], the min-max
problem (13) can be converted to a minimization problem
whose solution is given by (10), with the additional constraint

γ ‖ĉ‖2 = λ
∥∥∥y− 6̂ 1

2 ĉ
∥∥∥
2
. (14)

Based on (14), we observe that the solution of (13) depends
on the bound λ (in addition to the other system parameters)
and is agnostic to the structure of the perturbation matrix 1.
Now, we can substitute (10) and the EVD of 6̂ in (14) and

manipulate to obtain

λ2 =
tr
((
D2
+ γ Ip

)−2
UT yyT U

)
tr
(
D2 (D2

+ γ Ip
)−2

UT yyT U
) . (15)

where tr(.) is the matrix trace operation. Since λ in (15) is
stochastic in nature (due to the involvement of y), we consider
a value of λ that would represent the average case. To this end,
we replace yyT with its expected value E(yyT), which can be
written based on (9) in the following form:

E(yyT) = UDUT6ccUDUT
+ σ 2

v Ip. (16)

Owing to the ill-conditioning of 6̂, it is likely that some of its
eigenvalues are very close, or even equal, to zero. Therefore,
the EVD of 6̂ can be written in the form

6̂ = [U1 U2]
[

D2
1 0p1×p2

0p2×p1 D2
2

] [
UT
1

UT
2

]
' U1D2

1U
T
1 ,

(17)

where D1 and D2 are diagonal matrices containing the p1
most significant and p2 = p−p1 least significant eigenvalues,
respectively. A threshold based approach to find the point of
this partitioning is recommended in [30]. However, a simple
and intuitive rule is used here to determine the value of p1
as the smaller value of p (the number of features) and n (the
number of training samples), i.e., p1 = min(n, p). The main
purpose of (17) is to improve numerical stability by removing
extremely small eigenvalues.

Now, we substitute (16) and (17) in (15) and manipulate to
obtain (18) (as shown at the bottom of the next page). Next,
we proceed to eliminate σv and 6cc from (18) by using the
mean squared error (MSE) as a performance criterion. The
MSE of the RLS estimator (10) can be written as [24]

MSE= tr
(
E
(
(c− ĉ)(c− ĉ)T

))
=σ 2

v tr
(
D2
(
D2
+γ Ip

)−2)
+γ 2tr

((
D2
+γ Ip

)−2
UT6ccU

)
. (19)

By differentiating (19), the regularization parameter γ that
minimizes the MSE can be obtained using

∂ (MSE)
∂ γ

= 0 H⇒ γ =
p σ 2

v

tr (6cc)
. (20)
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By substituting (20) in (18), we obtain (21), as shown at
the bottom of the page, which shows a bound λ that does
not depend on the statistics of c or those of the noise. Note
that the derivations of (16) and (18) require Assumptions 1–3
to be satisfied–otherwise, these results will hold only in an
approximation way.

Ultimately, by using (21), we can eliminate λ from (15)
to obtain (22), where d := UTy. Equation (22), as shown
at the bottom of the page, which is nonlinear in γ , can be
solved by using Newton’s method [34] to obtain the optimal
value of γ . The iterations should be initialized from a positive
initial guess close to zero to avoid missing the positive root,
as explained in [30].

C. BOUNDED PERTURBATION REGULARIZATION (BPR)
Similar to COPRA, the BPR approach is also based on
the model (12) [31]. The derivation of the BPR algorithm
takes similar steps to those of COPRA except for the eigen-
value matrix partitioning step (17), which is omitted. In fact,
the BPR algorithm can be obtained by setting p1 = p and
manipulating (22), which results in

tr
((

D2
+ γ Ip

)−1)
tr
((

D2
+ γ Ip

)−1
ddT

)
−p tr

((
D2
+ γ Ip

)−2
ddT

)
= 0. (23)

The above nonlinear equation can be solved using New-
ton’smethod to obtain the regularization parameter pertaining
to the BPR algorithm.

D. THE GENERALIZED CROSS-VALIDATION (GCV)
METHOD
One may consider using the GCV for automating the reg-
ularization parameter selection for R2LDA. In contrast to
COPRA and BPR, GCV hinges on a different philosophy and
is based on minimizing the GCV function [26]:

G(γ ) =

∥∥∥6̂ 1
2 (6̂ + γ Ip)−16̂

1
2 y− y

∥∥∥2
2(

tr
(
Ip − 6̂

1
2 (6̂ + γ Ip)−16̂

1
2

))2 , (24)

which can be manipulated to the form

G(γ ) =

∥∥∥D2(D2
+ γ Ip)−1d− d

∥∥∥2
2(

p− tr
(
D2(D2

+ γ Ip)−1
))2 . (25)

The GCV approach can be thought of as an approximation
of leave-one-out cross-validation (the reader can refer to [26],
chapter 4). To compute the regularization parameter using the
GCV, a line search that evaluatesG(γ ) over a suitably chosen
γ interval is carried out. To set up the interval, we apply the
technique described in [35].

E. SUMMARY OF THE PROPOSED R2LDA APPROACH
The main steps involved in the proposed R2LDA approach
are summarized as follows:

1) Estimate the class statistics m̂i, 6̂i and 6̂ from the
training data by using (2) and (3).

2) Compute m̂+, m̂− and the EVD of 6̂.
3) Set y = m̂− in the model (9) and obtain γb using the

chosen regularization parameter selection method.
4) For a given test sample, compute x′.
5) Set y = x′ in the model (9) and obtain γz using the

chosen regularization parameter selection method.
6) Compute the R2LDA score function using (11), and

assign the test sample to a class according to (4).

In Step 3 and Step 5, we apply any of the three regulariza-
tion parameter selection methods discussed in the previous
subsections (COPRA, BPR or GCV). Henceforth, the result-
ing classification algorithm will be referred to as COPRA-
R2LDA, BPR-R2LDA, or GCV-R2LDA, depending on the
regularization parameter selection method used.

IV. PERFORMANCE EVALUATION
We demonstrate the performance of the proposed R2LDA
classifiers with different regularization parameter selection
techniques against the RLDA classifiers of the asymp-
totic error estimator (Asym-RLDA) [15] and the optimal-
intercept-improved RLDA (OII-RLDA) [19]. We consider
both synthetic and real data for performance evaluation. The
codes used to generate the results are available online1.

1https://github.com/tBallal/R2LDA

λ2
(
tr
((

D2
1 + γ Ip1

)−2 (
D2
1 +

p1σ 2
v

tr (6cc)
Ip1

))
+

(p− p1)p1σ 2
v

γ 2tr (6cc)

)
' tr

(
D2
1

(
D2
1 + γ Ip1

)−2 (
D2
1 +

p1σ 2
v

tr (6cc)
Ip1

))
(18)

λ2
(
tr
((

D2
1 + γ Ip1

)−2 ( p
p1

D2
1 + γ Ip1

))
+

(p− p1)
γ

)
' tr

(
D2
1

(
D2
1 + γ Ip1

)−2 ( p
p1

D2
1 + γ Ip1

))
(21)

tr
(
D2
(
D2
+ γ Ip

)−2
ddT

)
tr
((

D2
1 + γ Ip1

)−2 ( p
p1

D2
1 + γ Ip1

))
+

(p− p1)
γ

tr
(
D2
(
D2
+ γ Ip

)−2
ddT

)
−tr

((
D2
+ γ Ip

)−2
ddT

)
tr
(
D2
1

(
D2
1 + γ Ip1

)−2 ( p
p1

D2
1 + γ Ip1

))
= 0 (22)
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We use the average percentage classification error as the
performance metric. This section also discusses the compu-
tational complexity of various algorithms.

A. DATASETS DESCRIPTION
Synthetic Data: The synthetic data is generated based on a
Gaussian data model with dimension p = 100. The class
covariance matrix 60 is generated with diagonal elements
equal to 1 and off-diagonal elements equal to 0.1, while the
other class covariance matrix is generated as 61 = 60+ I.
As for the model mean vectors, we set m1 = −m0, where
m0= [a, a, . . . , a]T. The parameter a is chosen according to
the between-classMahalanobis distance, δ, defined according
to δ2 = (m0 −m1)T6−1(m0 −m1) [15]. We use δ2 = 9.
A training set Si of size ni is generated independently in each
training trial, where n0 = n1. For the test data, we generate
an independent set of samples for each class.
Real Data: We use (i) the MNIST dataset that consists of

20 × 20 gray-scale images of handwritten digits [36], (ii)
the phonemes dataset considered in [37], and (iii) the sonar
classification dataset [38]. These datasets are available for
download from the UCI Machine Learning Repository 2.
The MNIST images are vectorized to result in data of

dimensionality p = 400. For binary classification, selected
pairs of images are used.

The phonemes dataset is based on log-periodogram (of
length p = 256) of digitized speech frames extracted from
the TIMIT database (TIMIT Acoustic-Phonetic Continuous
Speech Corpus, NTIS, U.S. Department of Commerce) [37],
which is widely used in speech recognition. The phonemes
are transcribed as: (1) ‘‘sh’’as in ‘‘she’’, (2) ‘‘dcl’’as in
‘‘dark’’, (3) ‘‘iy’’as the vowel in ‘‘she’’, (4) ‘‘aa’’as the vowel
in ‘‘dark’’, and (5) ‘‘ao’’as the first vowel in ‘‘water’’. For
binary classification, selected pairs of phonemes are formed
from the above five phonemes.

The sonar dataset consists of 208 examples, each with
60 attributes representing sonar returns from a metal cylinder
(class 0) or a rough cylindrical rock (class 1).

B. EXPERIMENTS DESCRIPTION
For both the synthetic and real datasets, 500 training trials
were carried out, each followed by a number between 50 and
500 test trials, depending on the size of the available of data
from the dataset. Each training or test trial is based on a
randomly generated/selected data. As a pre-processing step,
all datasets are translated to the interval [−1, 1] to facilitate
comparison of results across different datasets.

For all datasets, we test the case where zero-meanGaussian
noise with standard deviation σ is added only to the test data.
For each dataset, we test σ values that allow us to observe
reasonable performance variability (some datasets are more
resilient to noise than others). The statistical properties of this
noise are not known to the proposedR2LDAclassifier, nor are
they known to any of the benchmark methods.

2https://archive.ics.uci.edu/ml/datasets

C. DIMENSIONALITY REDUCTION
In scenarios involving high-dimensional data and a limited
number of observations, one can reduce the dimensionality
of the data by extracting a small set of the most signifi-
cant features present in the data. While there are myriad of
feature reduction/selection methods available [39], we apply
the simple t-test and use the p-values of each feature as a
criterion for feature selection. In our experiments, we apply
dimensionality reduction to the MNIST dataset by selecting
the top 12.5% features based on the p-values. This exercise
aims to investigate the behavior of the proposed classifiers in
setups with reduced dimensionality.

D. RESULTS DISCUSSION
Figs. 1–5 plot the percentage classification errors versus the
training data size (n) for different datasets under different test
data noise levels. Fig.1 presents the results for the (synthetic)
Gaussian data, while Fig.2, Fig.3 and Fig.4 show the results
for the MNIST, phonemes and sonar datasets, respectively.
On the other hand, Fig. 5 depicts results for an example from
theMNIST dataset with reduced dimensionality. TheMNIST
results are based on the image/digit pairs (1,7), (5,8), and
(7,9), while the phonemes dataset results use the phoneme
combinations (1,2), (1,3), (1,5), and (4,5). From the results
in Figs.1–5, we observe the following:

• On average, the R2LDAmethods outperform the RLDA
methods.

• The R2LDAmethods remain more consistent and stable
than the RLDA methods as the noise level in the test
data increases. This is more visible in real datasets that
deviate from Gaussianity.

• Amongst the R2LDA classifiers, COPRA-R2LDA and
BPR-R2LDA appear to be slightly more consistent than
GCV-R2LDA. GCV-R2LDA seems to occasionally fal-
ter, as in Fig.2(a), Fig. 2(d) and Fig.2(g).

• For the MNIST dataset with reduced dimensionality,
the R2LDA methods preserve their superiority over
the RLDA counterparts, especially in noisy conditions.
This is evident from Fig. 5, where the top 50 features
are selected out of 400 features present in the MNIST
data.

E. COMPUTATIONAL COMPLEXITY
We consider the computational complexity of the proposed
algorithms when classifying a test dataset of size k . Let
lCOPRA and lBPR be the maximum number of iterations
required for the COPRA and BPR algorithms to converge.
Also, let gGCV and gAsym be the number of grid points used in
the search processes of the GCV and Asym methods, respec-
tively. The worst-case time complexities of the proposed
algorithms (including all the steps listed in Subsection III-E)
and the benchmark methods are given in Table 1 using the
big-O notation.

Note that all the five complexity expressions listed
in Table 1 feature the terms np2 and p3. These two terms
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FIGURE 1. Gaussian data misclassification rates versus training data size for different test data noise levels.

FIGURE 2. MNIST data misclassification rates versus training data size for different test data noise levels.

are, approximately, of similar order for scenarios with n ≈ p.
Each complexity expression includes a term of the form αkp2,
with different α values for different methods. For a large α
and/or a large number of test samples k � p, this term will
dominate the complexity. For the RLDA methods, we have

α = 1. On the other hand, for the R2LDA methods, α takes
the values lCOPRA and lBPR and gGCV, for the three methods
respectively. These parameters are due to the computations
involved in finding the regularization parameter γz each time
a test data sample is classified. As an example, for n ≈ k ≈ p,
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FIGURE 3. Phonemes data misclassification rates versus training data size for different test data noise levels.

an R2LDA algorithm with α ≈ p would have a complexity
O(p4). Under the same conditions, an RLDA algorithm’s
complexity is O(p3).
In addition to the time complexity, we also consider the

runtimes of various algorithms observed during our exper-
iments. We illustrate this using two examples. Fig. 6 com-
pares the runtimes (in seconds) of various algorithms against
the number of training samples for the Gaussian data used

in Fig. 1. Fig. 6(a) and Fig. 6(b) plot the average runtime
for a single test sample and 500 test samples, respectively.
We observe that the COPRA-R2LDA is considerably slower
than the other algorithms for both numbers of test data
samples. Despite computing a new regularization parameter
for each test data sample, BPR-R2LDA and GCV-R2LDA
offer comparable runtimes to those of the benchmark RLDA
methods.
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FIGURE 4. Sonar data misclassification rates versus training data size for different test data noise levels.

FIGURE 5. Reduced-dimension MNIST data misclassification rates versus training data size for different test data noise levels.

In Fig. 7, we show another example similar to Fig. 6
using the MNIST dataset. In this example, COPRA-
R2LDA is faster than Asym-RLDA in the single-test case.
Whereas, with 500 tests, COPRA-R2LDA becomes substan-
tially slower than the rest of the algorithms. On the other
hand, the runtimes of BPR-R2LDA and GCV-R2LDA stay

relatively close to those of the RLDA methods when applied
to 500 test samples, while offering the fastest runtimes in
the single-test case. The slowness of the COPRA-R2LDA
algorithm is attributed mainly to its large convergence time.

Based on the above discussions, we can conclude that,
among the tested algorithms, BPR-R2LDA is the most
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FIGURE 6. Average runtime (in seconds) versus training data size for Gaussian data: (a) A single test sample, (b) 500 test samples.

FIGURE 7. Average runtime (in seconds) versus training data size for the MNIST image pair (7, 9): (a) A single test sample,
(b) 500 test samples.

TABLE 1. Time complexity summary.

attractive classifier since it is much faster than COPRA-
R2LDA and offers a more consistent classification perfor-
mance than GCV-R2LDA.

V. CONCLUSION
We have presented novel regularized LDA classifiers based
on a dual regularization scheme. The proposed R2LDA
approach allows us to tune two regularization parameters
independently. The first regularization parameter is computed
offline from the training data. In contrast, the second regu-
larization parameter is dynamically tuned to each test data
sample. Based on synthetic and real datasets, results confirm

our approach’s effectiveness. The results also demonstrate the
robustness of the proposed approach when noise is present in
the test data. Although the proposed method is developed for
binary classification, it can be easily extended to the multi-
class case.

REFERENCES
[1] R. A. Fisher, ‘‘The use of multiple measurements in taxonomic problems,’’

Ann. Eugenics, vol. 7, no. 2, pp. 179–188, Sep. 1936.
[2] K. R. Varshney, ‘‘Generalization error of linear discriminant analysis

in spatially-correlated sensor networks,’’ IEEE Trans. Signal Process.,
vol. 60, no. 6, pp. 3295–3301, Jun. 2012.

[3] C. Avendano, S. Van Vuuren, and H. Hermansky, ‘‘Data based filter design
for RASTA-like channel normalization in ASR,’’ in Proc. 4th Int. Conf.
Spoken Lang. Process. (ICSLP), 1996, pp. 2087–2090.

[4] S. Kim, E. R. Dougherty, I. Shmulevich, K. R. Hess, S. R. Hamilton,
J. M. Trent, G. N. Fuller, and W. Zhang, ‘‘Identification of combination
gene sets for glioma classification,’’ Mol. Cancer Therapeutics, vol. 1,
no. 13, pp. 1229–1236, 2002.

[5] D. Huang, Y. Quan, M. He, and B. Zhou, ‘‘Comparison of linear dis-
criminant analysis methods for the classification of cancer based on gene
expression data,’’ J. Exp. Clin. Cancer Res., vol. 28, p. 149, Dec. 2009.

[6] D. L. Swets and J. J. Weng, ‘‘Using discriminant eigenfeatures for
image retrieval,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 18, no. 8,
pp. 831–836, Aug. 1996.

51352 VOLUME 9, 2021



A. Zaib et al.: Doubly RLDA Classifier With Automatic Parameter Selection

[7] Z. Liu, K. Shi, K. Zhang, W. Ou, and L. Wang, ‘‘Discriminative sparse
embedding based on adaptive graph for dimension reduction,’’ Eng. Appl.
Artif. Intell., vol. 94, Sep. 2020, Art. no. 103758.

[8] P. J. Di Pillo, ‘‘The application of bias to discriminant analysis,’’ Commun.
Statist.-Theory Methods, vol. 5, no. 9, pp. 843–854, Jan. 1976.

[9] J. H. Friedman, ‘‘Regularized discriminant analysis,’’ J. Amer. Statist.
Assoc., vol. 84, no. 405, pp. 165–175, 1989. [Online]. Available:
http://www.jstor.org/stable/2289860

[10] Y. Guo, T. Hastie, and R. Tibshirani, ‘‘Regularized linear discriminant
analysis and its application in microarrays,’’ Biostatistics, vol. 8, no. 1,
pp. 86–100, Jan. 2007, doi: 10.1093/biostatistics/kxj035.

[11] T. V. Bandos, L. Bruzzone, and G. Camps-Valls, ‘‘Classification of hyper-
spectral imageswith regularized linear discriminant analysis,’’ IEEETrans.
Geosci. Remote Sens., vol. 47, no. 3, pp. 862–873, Mar. 2009.

[12] J. Ye and T. Xiong, ‘‘Computational and theoretical analysis of
null space and orthogonal linear discriminant analysis,’’ J. Mach.
Learn. Res., vol. 7, pp. 1183–1204, Dec. 2006. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1248547.1248590

[13] J. Ye, T. Xiong, Q. Li, R. Janardan, J. Bi, V. Cherkassky, and
C. Kambhamettu, ‘‘Efficient model selection for regularized linear
discriminant analysis,’’ in Proc. 15th ACM Int. Conf. Inf. Knowl.
Manage. (CIKM), New York, NY, USA, 2006, pp. 532–539, doi:
10.1145/1183614.1183691.

[14] A. Zollanvari and E. R. Dougherty, ‘‘Generalized consistent error estimator
of linear discriminant analysis,’’ IEEE Trans. Signal Process., vol. 63,
no. 11, pp. 2804–2814, Jun. 2015.

[15] B. Daniyar, J. Alex, and Z. Amin, ‘‘An efficient method to estimate the
optimum regularization parameter in RLDA,’’ Bioinformatics, vol. 32, 22,
pp. 3461–3468, 2016.

[16] K. Elkhalil, A. Kammoun, R. Couillet, T. Y. Al-Naffouri, and
M.-S. Alouini, ‘‘Asymptotic performance of regularized quadratic
discriminant analysis based classifiers,’’ in Proc. IEEE 27th Int. Workshop
Mach. Learn. Signal Process. (MLSP), Sep. 2017, pp. 1–6.

[17] K. Elkhalil, A. Kammoun, R. Couillet, T. Y. Al-Naffouri, and
M.-S. Alouini, ‘‘A large dimensional study of regularized discriminant
analysis,’’ IEEE Trans. Signal Process., vol. 68, pp. 2464–2479, 2020.

[18] H. Sifaou, A. Kammoun, and M.-S. Alouini, ‘‘Improved LDA classifier
based on spiked models,’’ in Proc. IEEE 19th Int. Workshop Signal Pro-
cess. Adv. Wireless Commun. (SPAWC), Jun. 2018, pp. 1–5.

[19] H. Sifaou, A. Kammoun, and M. S. Alouini, ‘‘High-dimensional linear
discriminant analysis classifier for spiked covariance model,’’ J. Mach.
Learn. Res., vol. 21, no. 112, pp. 1–24, 2020.

[20] T. W. Anderson, ‘‘Classification by multivariate analysis,’’ Psychometrika,
vol. 16, no. 1, pp. 31–50, Mar. 1951, doi: 10.1007/BF02313425.

[21] A. N. Tikhonov, ‘‘Solution of incorrectly formulated problems and the
regularization method,’’ Sov. Math. Doklady, vol. 4, no. 4, pp. 1035–1038,
1963.

[22] B. B. John, ‘‘Reviewed work: Solutions of ill-posed problems by A. N.
Tikhonov, V. Y. Arsenin,’’Math. Comput., vol. 32, no. 144, pp. 1320–1322,
Oct. 1963.

[23] P. C. Hansen, Discrete Inverse Problems: Insight and Algorithms.
Philadelphia, PA, USA: SIAM, 2010.

[24] A. E. Hoerl and R. W. Kennard, ‘‘Ridge regression: Biased estimation
for nonorthogonal problems,’’ Technometrics, vol. 12, no. 1, pp. 55–67,
Feb. 1970.

[25] P. C. Hansen and D. P. O’Leary, ‘‘The use of the L-Curve in the regulariza-
tion of discrete ill-posed problems,’’ SIAM J. Sci. Comput., vol. 14, no. 6,
pp. 1487–1503, Nov. 1993, doi: 10.1137/0914086.

[26] G. Wahba, Spline Models for Observational Data. Philadelphia, PA, USA:
SIAM, 1990.

[27] A. Aries, Z. Nashed, and V. Morozov, Methods for Solving Incorrectly
Posed Problems. NewYork, NY, USA: Springer, 2012. [Online]. Available:
https://books.google.com.pk/books?id=z6beBwAAQBAJ

[28] F. Bauer and M. Reiß, ‘‘Regularization independent of the noise level: An
analysis of quasi-optimality,’’ Inverse Problems, vol. 24, no. 5, Oct. 2008,
Art. no. 055009. [Online]. Available: http://stacks.iop.org/0266-
5611/24/i=5/a=055009

[29] F. Bauer and M. A. Lukas, ‘‘Comparingparameter choice methods for
regularization of ill-posed problems,’’Math. Comput. Simul., vol. 81, no. 9,
pp. 1795–1841, May 2011, doi: 10.1016/j.matcom.2011.01.016.

[30] M. A. Suliman, T. Ballal, and T. Y. Al-Naffouri, ‘‘Perturbation-based
regularization for signal estimation in linear discrete ill-posed problems,’’
Signal Process., vol. 152, pp. 35–46, Nov. 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0165168418301658

[31] T. Ballal, M. A. Suliman, and T. Y. Al-Naffouri, ‘‘Bounded perturbation
regularization for linear least squares estimation,’’ IEEE Access, vol. 5,
pp. 27551–27562, 2017.

[32] S. Chandrasekaran, G. H. Golub, M. Gu, and A. H. Sayed, ‘‘Param-
eter estimation in the presence of bounded data uncertainties,’’ SIAM
J. Matrix Anal. Appl., vol. 19, no. 1, pp. 235–252, Jan. 1998, doi:
10.1137/S0895479896301674.

[33] T. Ballal and T. Y. Al-Naffouri, ‘‘Improved linear least squares estimation
using bounded data uncertainty,’’ in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process. (ICASSP), Apr. 2015, pp. 3427–3431.

[34] C. Zarowski, An Introduction to Numerical Analysis for Electrical and
Computer Engineers. Hoboken, NJ, USA: Wiley, 2004. [Online]. Avail-
able: https://books.google.com.pk/books?id=3AihEG52ImkC

[35] P. C. Hansen, ‘‘Regularization tools version 4.0 forMATLAB 7.3,’’Numer.
Algorithms, vol. 46, no. 2, pp. 189–194, Nov. 2007.

[36] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-
ing applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[37] T. Hastie, A. Buja, and R. Tibshirani, ‘‘Penalized discriminant anal-
ysis,’’ Ann. Statist., vol. 23, no. 1, pp. 73–102, Feb. 1995, doi:
10.1214/aos/1176324456.

[38] R. P. Gorman and T. J. Sejnowski, ‘‘Analysis of hidden units
in a layered network trained to classify sonar targets,’’ Neural
Netw., vol. 1, no. 1, pp. 75–89, Jan. 1988. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0893608088900238

[39] Y. Saeys, I. Inza, and P. Larranaga, ‘‘A review of feature selection tech-
niques in bioinformatics,’’ Bioinformatics, vol. 23, no. 19, pp. 2507–2517,
Oct. 2007, doi: 10.1093/bioinformatics/btm344.

ALAM ZAIB received the B.Sc. degree (Hons.)
in electrical engineering from the University of
Engineering and Technology (UET), Peshawar,
Pakistan, in 2002, the M.Sc. degree in electri-
cal engineering and information technology from
the Universitat Politècnica de Catalunya (UPC),
Barcelona, Spain, and the Karlsruhe Institute of
Technology (KIT), Germany, in 2009, and the
Ph.D. degree in electrical engineering from the
King Fahd University of Petroleum and Minerals

(KFUPM), Dhahran, Saudi Arabia, in 2016. From 2007 to 2009, he was an
Erasmus Mundus Scholar in MERIT master program. Since 2010, he has
been an Assistant Professor with the Department of Electrical and Com-
puter Engineering, COMSATSUniversity Islamabad (CUI), Abbottabad. His
research interests include statistical signal processing, channel estimation for
OFDM and massive MIMO systems, blind equalization, adaptive filtering,
machine learning, and artificial neural networks.

TARIG BALLAL (Member, IEEE) received the
B.Sc. degree (Hons.) in electrical engineering from
the University of Khartoum, Khartoum, Sudan,
in 2001, the M.Sc. degree in telecommunications
from the Blekinge Institute of Technology, Karl-
skrona, Sweden, in 2005, and the Ph.D. degree
from the School of Computer Science and Infor-
matics, University College Dublin, Dublin, Ire-
land, in 2011. From April 2011 to July 2012,
he worked as a Research Engineer with Bian-

caMed Ltd. and University College Dublin. Since September 2012, he has
been as a Postdoctoral Fellow with the Electrical Engineering Department,
KingAbdullahUniversity of Science and Technology, Thuwal, Saudi Arabia,
where he is currently as a Research Scientist. His current research interests
include regularization and robust estimation methods, image and signal pro-
cessing, machine learning, acoustic sensing, and tracking and localization.

VOLUME 9, 2021 51353

http://dx.doi.org/10.1093/biostatistics/kxj035
http://dx.doi.org/10.1145/1183614.1183691
http://dx.doi.org/10.1007/BF02313425
http://dx.doi.org/10.1137/0914086
http://dx.doi.org/10.1016/j.matcom.2011.01.016
http://dx.doi.org/10.1137/S0895479896301674
http://dx.doi.org/10.1214/aos/1176324456
http://dx.doi.org/10.1093/bioinformatics/btm344


A. Zaib et al.: Doubly RLDA Classifier With Automatic Parameter Selection

SHAHID KHATTAK received the B.Sc. degree
from the University of Engineering and Tech-
nology (UET), Peshawar, Pakistan, in 1993,
theM.S.E.E. degree fromPurdueUniversity, USA,
in 1997, and the Ph.D. degree from the Tech-
nische Universität Dresden, Germany, in 2008.
Since 2002, he has been associated as a Faculty
Member with COMSATS University Islamabad
(Abbottabad Campus). He is currently the Vice-
Chancellor of the University of Engineering and

Technology Mardan, Pakistan. His research interests include wireless com-
munications and signal processing.

TAREQ Y. AL-NAFFOURI (Senior Member,
IEEE) received the B.S. degree (Hons.) in math-
ematics and electrical engineering from the King
Fahd University of Petroleum and Minerals,
Dhahran, Saudi Arabia, the M.S. degree in elec-
trical engineering from the Georgia Institute of
Technology, Atlanta, in 1998, and the Ph.D. degree
in electrical engineering from Stanford University,
Stanford, CA, USA, in 2004. He was a Visiting
Scholar with the California Institute of Technol-

ogy, Pasadena, CA, in 2005 and 2006. He was a Fulbright Scholar with
the University of Southern California, in 2008. He is currently a Professor
with the Electrical Engineering Department, King Abdullah University of
Science and Technology (KAUST). He has over 300 publications in journal
and conference proceedings and 20 issued/pending patents. His research
interests include sparse, adaptive, and statistical signal processing and their
applications to wireless communications and localization, machine learning,
and network information theory. He was a recipient of the IEEE Education
Society Chapter Achievement Award, in 2008, and the Al-Marai Award for
Innovative Research in Communication, in 2009. From 2013 to 2018, he was
an Associate Editor of the IEEE TRANSACTIONS ON SIGNAL PROCESSING.

51354 VOLUME 9, 2021


