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ABSTRACT This paper deals with the problem for exponential stability of a more general class of
neutral-type Cohen-Grossberg neural networks. This class of neutral-type Cohen-Grossberg neural networks
involves multiple time-varying delays in the states of neurons and multiple time-varying neutral delays in the
time derivatives of the states of neurons. Such neural system cannot be described in the vector-matrix forms
due to the existence of the multiple delays. The linear matrix inequality approach cannot be applied to this
class of neutral system to determine the stability conditions. This paper provides some sufficient conditions
to guarantee the existence, uniqueness and exponential stability of the equilibrium point of the neural system
by employing the homeomorphism theory, Lyapunov-Krasovskii functional and inequality techniques. The
provided conditions are easy to validate and can also guarantee the global asymptotic stability of the neural
system. Two remarks are given to show the provided stability conditions are less conservative than the
previous results. Two instructive examples are also given to demonstrate the effectiveness of the theoretical
results and compare the provided stability conditions to the previous results.

INDEX TERMS Neutral-type Cohen-Grossberg neural networks; multiple delays; exponential stability;
Lyapunov-Krasovskii functional.

I. INTRODUCTION
Since Cohen-Grossberg neural network was proposed [1],
it has been extensively investigated by some mathemati-
cians, physicists and computer scientists. These scholars have
quickly found that the neural network can be effectively
applied in signal processing, pattern recognition, optimiza-
tion and associative memories so on. These successful appli-
cations are dependent largely on the stability of the neural
network [2]–[4]. The early neural network model had not the
existence of time delay. Now, there is a consensus that time
delays always exists because the signal transmission between
neurons usually has the phenomenon of limited transmission
speed or traffic congestion. Time delay has a great influence
on the neural network and it can make the stable network
unstable or unstable network stable. In addition, time delay
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exists not only in the states, but also in the derivatives of
states. The time delay existing in the derivatives of states
is named neutral delay. In recent years, neutral delay has
been introduced into the field of neural network, which pro-
duces a kind of neural network called neutral-type neural
network. Neutral-type neural network has become a new hot
research topic. A number of significant stability results of
neutral-type neural networks have been published, see, for
example, [5]-[28] and the references therein.

Compared with [5]–[20], the neutral-type neural net-
works studied in this paper cannot be transformed into the
vector-matrix form due to the existence of the multiple
delays. As pointed out by [21] and [22], it is not possible
to derive stability conditions of the linear matrix inequality
forms for the neutral-type neural networks that cannot be
expressed in the vector-matrix form. Therefore, we need to
construct new Lyapunov-Krasovskii functional and develop
new mathematical methods and techniques to obtain stability
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conditions. At the same time, it is noted that the stability
results in [5]–[28] only give the sufficient conditions of global
asymptotic stability and do not further provide the suffi-
cient conditions of exponential stability, which indicates that
the exponential stability of the neutral-type neural networks
has not been paid enough attention. These facts have been
the main motivations of this paper to focus on the expo-
nential stability of the neutral-type Cohen-Grossberg neu-
ral networks with multiple time-varying delays. This paper
constructs a moderate Lyapunov-Krasovskii functional and
employs inequality techniques to derive new algebraic suf-
ficient conditions to ensure the exponential stability of the
neutral-type Cohen-Grossberg neural networks with multiple
time-varying delays. The new algebraic conditions are also
the sufficient conditions for the global asymptotic stability
of the neutral-type Cohen-Grossberg neural networks with
multiple time-varying delays. Two instructive examples are
provided to indicate that the proposed results reveal new
sufficient stability criteria when they are compared with the
previously published stability results. Therefore, the pro-
posed stability results enlarge the application domain of
neutral-type Cohen-Grossberg neural networks.

II. PRELIMINARIES
Consider the following neutral-type Cohen-Grossberg neural
networks with multiple time-varying delays:

ẋi(t) = di(xi(t))
{
− ci(xi(t))+

n∑
j=1

aijfj(xj(t))

+

n∑
j=1

bijgj(xj(t − τij(t)))+ ui

}

+

n∑
j=1

eijẋj(t − ξij(t)), (1)

where ui is external input, eij are coefficients of the time
derivative of the delayed state, aij and bij are the strengths
of the neuron interconnections. Amplification function di(·),
behaved function ci(·), delay functions τij(·) and ξij(·), non-
linear activation functions fi(·) and gi(·) satisfy the following
assumption:
(A1) There exist some real numbers ci, d i, d i, li,mi, ξ, τ, ξ

and τ , i = 1, . . . , n, such that for all x, y ∈ R, x 6= y,

0 < ci ≤
ci(x)− ci(y)

x − y
=
|ci(x)− ci(y)|
|x − y|

,

0 < di ≤ di(x) ≤ d̄i, 0 ≤ ξij(t) ≤ ξ, 0 ≤ τij(t) ≤ τ,

ξ̇ij(t) ≤ ξ, τ̇ij(t) ≤ τ ,

|fi(x)− fi(y)|≤ li|x − y|, |gi(x)− gi(y)|≤mi|x − y|.

The initial conditions are xi(t) = ϕi(t) and ẋi(t) = φi(t) ∈
C([−max{τ, ξ}, 0],R), where C([−max{τ, ξ}, 0],R) is the
set of all continuous functions from [−max{τ, ξ}, 0] to R.
Remark 1: Compared with [9], [21] and [25], the upper

bound of ci(x)−ci(y)
x−y is not required, which implies that our

conditions are less conservative.

System (1) is a general mathematical expression and
includes some neural networks considered in the existed
references. For example, system (1) includes the following
system studied in [23]

ẋi(t) = di(xi(t))
{
− ci(xi(t))+

n∑
j=1

aijfj(xj(t))

+

n∑
j=1

bijfj(xj(t − τij(t)))+ ui

}

+

n∑
j=1

eijẋj(t − ξj), (2)

the following system studied in [21] and [25]

ẋi(t) = di(xi(t))
{
− ci(xi(t))+

n∑
j=1

aijfj(xj(t))

+

n∑
j=1

bijgj(xj(t − τij))+ ui

}

+

n∑
j=1

eijẋj(t − ξij), (3)

and the following system studied in [22]

ẋi(t) = −cixi(t)+
n∑
j=1

aijfj(xj(t))

+

n∑
j=1

bijfj(xj(t − τij))+ ui

+

n∑
j=1

eijẋj(t − ξj). (4)

Before considering the stability, we discuss the existence
and uniqueness of the equilibrium point.
Lemma 1 ([22]): Suppose that the mapH (x) ∈ C0 satisfies

two properties: H (x) 6= H (y), x 6= y and ||H (x)|| → ∞
as ||x|| → ∞ with x, y ∈ Rn. Then, H (x) is
homeomorphism of Rn.
Lemma 2: Suppose that assumption (A1) holds and there

exist some positive numbers p1, . . . , pn and γ < 1 such that
for every i = 1, . . . , n,

γ pici −
n∑
j=1

pj[γ |aji|li +
n∑
j=1

|bji|mi] > 0. (5)

Then, system (1) has a unique equilibrium point x∗ =
(x∗1 , . . . , x

∗
n )
T .

Proof. If x∗ = (x∗1 , . . . , x
∗
n )
T is one equilibrium point of

system (1), then

0 = di(x∗i )
{
− ci(x∗i )+

n∑
j=1

aijfj(x∗j )+
n∑
j=1

bijgj(x∗j )+ ui

}
,
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that is,

0 = −ci(x∗i )+
n∑
j=1

aijfj(x∗j )+
n∑
j=1

bijgj(x∗j )+ ui.

Define a mapping H : Rn→ Rn by

H (x) = (h1(x), . . . , hn(x))T

for x ∈ Rn, where

hi(x) = −ci(xi)+
n∑
j=1

aijfj(xj)

+

n∑
j=1

bijgj(xj)+ ui, i = 1, . . . , n.

For every x, y ∈ Rn with x 6= y, we conclude

γ pisgn(xi − yi)[hi(x)− hi(y)]

≤ −γ pici|xi − yi| +
n∑
j=1

γ |aij|pilj|xj − yj|

+

n∑
j=1

|bij|pimj|xj − yj|,∀i.

In fact, for every i ∈ {i : xi − yi = 0},

0 = γ pisgn(xi − yi)[hi(x)− hi(y)]

≤ −γ pici|xi − yi| +
n∑
j=1

γ |aij|pilj|xj − yj|

+

n∑
j=1

|bij|pimj|xj − yj|,

and for every i ∈ {i : xi − yi 6= 0},

γ pisgn(xi − yi)[hi(x)− hi(y)]

= −γ pisgn(xi − yi)[ci(xi)− ci(yi)]

+

n∑
j=1

γ aijpisgn(xi − yi)[fj(xj)− fj(yj)]

+

n∑
j=1

γ bijpisgn(xi − yi)[gj(xj)− gj(yj)]

≤ −γ pisgn(xi − yi)
ci(xi)− ci(yi)

xi − yi
(xi − yi)

+

n∑
j=1

γ |aij|pilj|xj − yj|

+

n∑
j=1

|bij|pimj|xj − yj|

≤ −γ pici|xi − yi| +
n∑
j=1

γ |aij|pilj|xj − yj|

+

n∑
j=1

|bij|pimj|xj − yj|.

Therefore, for every x, y ∈ Rn with x 6= y, we have
n∑
i=1

γ pisgn(xi − yi)[hi(x)− hi(y)]

≤ −

n∑
i=1

|xi − yi|
{
γ pici −

n∑
j=1

γ |aji|pjli

−

n∑
j=1

|bji|pjmi

}
≤ −α||x − y||1,

and

α||x − y||1

≤ |

n∑
i=1

γ pisgn(xi − yi)[hi(x)− hi(y)]|

≤

n∑
i=1

pi|hi(x)− hi(y)|

≤ max
1≤i≤n
{pi}||H (x)− H (y)||1, (6)

where

α = min
1≤i≤n

{
γ pici −

n∑
j=1

pj[γ |aji|li +
n∑
j=1

|bji|mi]
}
.

From (6), we know that if x 6= y, then H (x) 6= H (y).
In addition, it follows from (6) that

α[ max
1≤i≤n
{pi}]−1||x||1 ≤ ||H (x)||1 + ||H (0)||1.

Since ||H (0)||1 is bounded, ||H (x)|| → ∞ as ||x|| → ∞.
From Lemma 1, we know that H (x) is homeomorphism of
Rn, that is, system (1) has a unique equilibrium point.

III. EXPONENTIAL STABILITY
In this section, we will establish the sufficient conditions for
the exponential stability of the equilibrium point of system (1)
by constructing a suitable Lyapunov-Krasovskii functional
and using inequality techniques. Two examples are provided
to demonstrate the effectiveness of the proposed theoretical
results and compare the established stability conditions to the
previous results.
Theorem 1: Let d j/d i ≥ 1, i, j = 1, . . . , n. Suppose that

assumption (A1) holds and there exist some positive numbers
p1, . . . , pn and γ < 1 such that for every i = 1, 2, . . . , n,
max{ξ̄ , τ̄ } < 1− γ,

γ picid i −
n∑
j=1

pjd j(γ |aji|li + |bji|mi) > 0, (7)

γ pi −
n∑
j=1

pj|eji| > 0. (8)

Then, the equilibrium point of system (1) is exponentially
stable.
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Proof. From (7), we derive

γ pici −
n∑
j=1

pj
d j
d i
(γ |aji|li + |bji|mi) > 0,

which implies that inequality (5) holds. Since Lemma 2 shows
that system (1) has a unique equilibrium point x∗ =
(x∗1 , . . . , x

∗
n )
T , system (1) can be transformed into

ẏi(t) = d̃i(yi(t))
{
− c̃i(yi(t))+

n∑
j=1

aij̃fj(yj(t))

+

n∑
j=1

bij̃gj(yj(t − τij(t)))
}

+

n∑
j=1

eijẏj(t − ξij(t)), i = 1, . . . , n, (9)

where

yi(t) = xi(t)− x∗i ,

d̃i(yi(t)) = di(yi(t)+ x∗i ),

c̃i(yi(t)) = ci(yi(t)+ x∗i )− ci(x
∗
i ),

f̃j(yj(t)) = fj(yj(t)+ x∗j )− fj(x
∗
j ),

g̃j(yj(t − τij(t))) = gj(yj(t − τij(t))+ x∗j )− gj(x
∗
j ).

From (7) and (8), we know that there exists a sufficiently
small positive real number λ such that for i = 1, . . . , n,

eλξγ + ξ − 1 < 0, eλξγ + τ − 1 < 0, (10)

2λpiγ − γ picid i +
n∑
j=1

pjd j(γ |aji|li

+eλτ |bji|mi) < 0. (11)

We construct the following Lyapunov-Krasovskii
functional

V (t) =
n∑
i=1

n∑
j=1

pi|eij|
∫ t

t−ξij(t)
eλ(s+ξ )|ẏj(s)|ds

+eλξ
n∑
i=1

n∑
j=1

d ipi|bij|mj

∫ t

t−τij(t)
eλ(s+τ )|yj(s)|ds

+eλ(t+ξ )
n∑
i=1

[piγ −
n∑
j=1

pj|eji|sgn(yi(t))

×sgn(ẏi(t))]|yi(t)|, (12)

and derive

V (t) ≥ eλ(t+ξ )
n∑
i=1

[piγ −
n∑
j=1

pj|eji|sgn(yi(t))

×sgn(ẏi(t))]|yi(t)|

≥ min
1≤i≤n
{piγ −

n∑
j=1

pj|eji|}eλ(t+ξ )‖y(t)‖1

≥ eλ(t+ξ )
n∑
i=1

[piγ −
n∑
j=1

pj|eji|]|yi(t)|, (13)

V (0) ≤ eλξ max
1≤i≤n
{piγ +

n∑
j=1

pj|eji|}‖y(0)‖1

+eλξ
n∑
i=1

n∑
j=1

pi|eij|
∫ 0

−ξ

|ẏj(s)|ds

+eλ(ξ+τ )
n∑
i=1

n∑
j=1

d ipi|bij|mj

∫ 0

−τ

|yj(s)|ds. (14)

Taking the Dini derivative of the first term and the time
derivatives of the all other terms in the Lyapunov-Krasovskii
functional V (t) along the trajectories of system (9) and
using (8), we have

V̇ (t) = λeλ(t+ξ )
n∑
i=1

[piγ −
n∑
j=1

pj|eji|sgn(yi(t))

×sgn(ẏi(t))]|yi(t)| + eλ(t+ξ )
n∑
i=1

[piγ

−

n∑
j=1

pj|eji|sgn(yi(t))sgn(ẏi(t))]sgn(yi(t))ẏi(t)

+eλ(t+ξ )
n∑
i=1

n∑
j=1

pi|eij||ẏj(t)| − (1− ξ̇ij(t))

×eλ(t−ξij(t)+ξ )
n∑
i=1

n∑
j=1

pi|eij||ẏj(t − ξij(t))|

+eλξ
n∑
i=1

n∑
j=1

pid i|bij|mj(eλ(t+τ )|yj(t)|

−(1− τ̇ij(t))eλ(t−τij(t)+τ )|yj(t − τij(t))|)

≤ 2λeλ(t+ξ )
n∑
i=1

piγ |yi(t)|

+eλt
n∑
i=1

{
eλξpiγ sgn(yi(t))ẏi(t)

−eλξ
n∑
j=1

pj|eji|(sgn(yi(t)))2|ẏi(t)|

+eλξ
n∑
j=1

pj|eji||ẏi(t)|

−(1− ξ )
n∑
j=1

pi|eij||ẏj(t − ξij(t))|
}

+eλξ
n∑
i=1

n∑
j=1

pid i|bij|mj(eλ(t+τ )|yj(t)|

−(1− τ )eλt |yj(t − τij(t))|). (15)

For every yi(t) ∈ R, we conclude

eλξpiγ sgn(yi(t))ẏi(t)− eλξ
n∑
j=1

pj|eji|(sgn(yi(t)))2|ẏi(t)|

+eλξ
n∑
j=1

pj|eji||ẏi(t)| − (1− ξ )
n∑
j=1

pi|eij||ẏj(t − ξij)|
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≤ eλξ
{
− γ picid i|yi(t)| + γ pid i

n∑
j=1

|aij|lj|yj(t)|

+γ pid i
n∑
j=1

|bij|mj|yj(t − τij(t))|
}
. (16)

Actually, from (8), (10) and (A1), we can deduce that for
yi(t) 6= 0,

eλξpiγ sgn(yi(t))ẏi(t)− eλξ
n∑
j=1

pj|eji|(sgn(yi(t)))2|ẏi(t)|

+eλξ
n∑
j=1

pj|eji||ẏi(t)| − (1− ξ )
n∑
j=1

pi|eij||ẏj(t − ξij(t))|

= eλξpiγ sgn(yi(t))ẏi(t)− (1− ξ )
n∑
j=1

pi|eij||ẏj(t − ξij(t))|

= eλξ
{
− γ pisgn(yi(t))̃di(yi(t))̃ci(yi(t))

+γ pisgn(yi(t))̃di(yi(t))
n∑
j=1

aij̃fj(yj(t))

+γ pisgn(yi(t))̃di(yi(t))
n∑
j=1

bij̃gj(yj(t − τij(t)))

+γ pisgn(yi(t))
n∑
j=1

eijẏj(t − ξij(t))
}

−(1− ξ )
n∑
j=1

pi|eij||ẏj(t − ξij(t))|

≤ eλξ
{
− γ pisgn(yi(t))̃di(yi(t))

c̃i(yi(t))yi(t)
yi(t)

+γ pid i
n∑
j=1

|aij||̃fj(yj(t))|

+γ pid i
n∑
j=1

|bij||̃gj(yj(t − τij(t)))|
}

+(eλξγ + ξ − 1)pi
n∑
j=1

|eij||ẏj(t − ξij(t))|

≤ eλξ
{
− γ picid i|yi(t)| + γ pid i

n∑
j=1

|aij|lj|yj(t)|

+γ pid i
n∑
j=1

|bij|mj|yj(t − τij(t))|
}
,

and for yi(t) = 0,

eλξpiγ sgn(yi(t))ẏi(t)− eλξ
n∑
j=1

pj|eji|(sgn(yi(t)))2|ẏi(t)|

+eλξ
n∑
j=1

pj|eji||ẏi(t)| − (1− ξ )
n∑
j=1

pi|eij||ẏj(t − ξij(t))|

= eλξ
n∑
j=1

pj|eji||ẏi(t)| − (1− ξ )
n∑
j=1

pi|eij||ẏj(t − ξij(t))|

= eλξ
{
−

n∑
j=1

pj|eji|sgn(ẏi(t))̃di(yi(t))̃ci(yi(t))

+

n∑
j=1

pj|eji|sgn(ẏi(t))̃di(yi(t))
n∑
j=1

aij̃fj(yj(t))

+

n∑
j=1

pj|eji|sgn(ẏi(t))̃di(yi(t))
n∑
j=1

bij̃gj(yj(t − τij(t)))

+

n∑
j=1

pj|eji|sgn(ẏi(t))
n∑
j=1

eijẏj(t − ξij(t))
}

−(1− ξ )
n∑
j=1

pi|eij||ẏj(t − ξij(t))|

≤ eλξ
{
− γ picid i|yi(t)| + γ pid i

n∑
j=1

|aij|lj|yj(t)|

+γ pid i
n∑
j=1

|bij|mj|yj(t − τij(t))|

+piγ
n∑
j=1

|eij||ẏj(t − ξij(t))|
}

−(1− ξ )
n∑
j=1

pi|eij||ẏj(t − ξij(t))|

≤ eλξ
{
− γ picid i|yi(t)| + γ pid i

n∑
j=1

|aij|lj|yj(t)|

+γ pid i
n∑
j=1

|bij|mj|yj(t − τij(t))|
}
,

where c̃i(yi(t)) = |yi(t)| = f̃i(yi(t)) = 0 when yi(t) = 0.
From (10), (11), (15) and (16), we deduce

V̇ (t) ≤ 2λeλ(t+ξ )
n∑
i=1

piγ |yi(t)|

+eλt
n∑
i=1

eλξ
{
− γ picid i|yi(t)|

+γ pid i
n∑
j=1

|aij|lj|yj(t)|

+γ pid i
n∑
j=1

|bij|mj|yj(t − τij(t))|
}

+eλξ
n∑
i=1

n∑
j=1

pid i|bij|mj(eλ(t+τ )|yj(t)|

−(1− τ )eλt |yj(t − τij(t))|)

≤ eλ(t+ξ )
n∑
i=1

{
2λpiγ |yi(t)| − γ picid i|yi(t)|
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+γ pid i
n∑
j=1

|aij|lj|yj(t)|

+eλτpid i
n∑
j=1

|bij|mj|yj(t)|
}

+(eλξγ + τ − 1)eλt |yj(t − τij(t))|)

≤ eλ(t+ξ )
n∑
i=1

{
2λpiγ − γ picid i

+

n∑
j=1

pjd j(γ |aji|li + eλτ |bji|mi)
}
|yi(t)|

≤ 0. (17)

Thus, it follows from (13), (14) and (17) that there must
exist a real number M > 1 such that

‖x(t)− x∗‖1 ≤ Me−λt ( sup
t∈[−max{τ,ξ},0]

‖ϕ(t)− x∗‖1

+ sup
t∈[−max{τ,ξ},0]

‖φ(t)‖1), t ≥ 0.

Obviously, it is sometimes difficult to find the values of the
positive constants p1, . . . , pn satisfying the stability condi-
tions of Theorem 1. Therefore, it is necessary to give a special
case of Theorem 1 for p1 = · · · = pn.
Theorem 2: Let d j/d i ≥ 1, i, j = 1, . . . , n. Suppose that

assumption (A1) holds and there exists a positive number
γ < 1 such that for every i = 1, 2, . . . , n, max{ξ̄ , τ̄ } <
1− γ,

γ cid i −
n∑
j=1

d j(γ |aji|li + |bji|mi) > 0, (18)

γ −

n∑
j=1

|eji| > 0. (19)

Then, the equilibrium point of system (1) is exponentially
stable.

Theorem 1 and Theorem 2 give some stability results for
systems (2) and (3).
Corollary 1: Let d j/d i ≥ 1, i, j = 1, . . . , n. Suppose that

assumption (A1) holds and there exist some positive numbers
p1, . . . , pn and γ < 1 such that for every i = 1, 2, . . . , n, (8)
holds and τ̄ < 1− γ,

γ picid i −
n∑
j=1

pjd jli(γ |aji| + |bji|) > 0. (20)

Then, the equilibrium point of system (2) is exponentially
stable.
Corollary 2: Let d j/d i ≥ 1, i, j = 1, . . . , n. Suppose that

assumption (A1) holds and there exists a positive number
γ < 1 such that for every i = 1, 2, . . . , n, (19) holds and
τ̄ < 1− γ,

γ cid i −
n∑
j=1

d jli(γ |aji| + |bji|) > 0. (21)

Then, the equilibrium point of system (2) is exponentially
stable.

Corollary 3: Let d j/d i ≥ 1, i, j = 1, . . . , n. Suppose that
assumption (A1) holds and there exist some positive numbers
p1, . . . , pn and γ < 1 such that for every i = 1, 2, . . . , n, (8)
and (20) hold. Then, the equilibrium point of system (3) is
exponentially stable.
Corollary 4: Let d j/d i ≥ 1, i, j = 1, . . . , n. Suppose

that assumption (A1) holds and there exists a positive number
γ < 1 such that for every i = 1, 2, . . . , n, (19) and (21) hold.
Then, the equilibrium point of system (3) is exponentially
stable.

For system (4), Lemma 2 and Corollary 3 give the follow-
ing result.
Corollary 5: Suppose that there exist some positive num-

bers li(i = 1, . . . , n) such that

|fi(x)− fi(y)| ≤ li|x − y|, x, y ∈ R.

(i) If there exist some positive numbers pi(i = 1, . . . , n)
and γ < 1 such that for every i = 1, 2, . . . , n,

γ pici −
n∑
j=1

pjli(γ |aji| + |bji|) > 0, (22)

then system (4) has a unique equilibrium point.
(ii) If there exist some positive numbers pi(i = 1, . . . , n)

and γ < 1 such that for every i = 1, 2, . . . , n, (8) and (22)
hold, then the equilibrium point of system (4) is exponentially
stable.
Remark 2:We know that if the equilibrium point of the sys-

tem is exponentially stable, then it is also globally asymptoti-
cally stable. Therefore, our results also provide the sufficient
conditions of global asymptotic stability of systems (1)-(4).
In [21], [23] and [25], the authors have not discussed the
existence and uniqueness of the equilibrium point and only
provided the sufficient conditions of the global asymptotic
stability. In [22], the author has discussed the existence,
uniqueness and global asymptotic stability of the equilib-
rium point of system (4). However, it is easy to see that the
conditions of Corollary 5 can include the criteria of in [22].
Therefore, the results in [22] can be taken as a corollary of
our result.
Remark 3: Theorem 1 in [23] gives the following sufficient

conditions for global asymptotic stability of system (2):

picid i −
n∑
j=1

pjd jli(|aji| +
|bji|
1− τ̄

) > 0,

γ pi −
n∑
j=1

pj|eji| > 0, i = 1, 2, . . . , n. (23)

It follows from (20) and τ̄ < 1− γ that

0 ≤
n∑
j=1

pjd jli|bji|

< γ (picid i −
n∑
j=1

pjd jli|aji|)
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< (1− τ̄ )(picid i −
n∑
j=1

pjd jli|aji|),

which shows that (23) holds. Therefore, the conditions of
Corollary 1 are less conservative than those of Theorem 1
in [23].
Remark 4: Theorem 1 in [21] provides the following

sufficient conditions for the global asymptotic stability of
system (3):

σi = 2cidi −
n∑
j=1

(d̄ilj|aij| + d̄jli|aji|)

−

n∑
j=1

(d̄ilj|bij| + d̄jli|bji|)

−

n∑
j=1

(d̄ic̄i|eij| + d̄jc̄j|eji|)

−

n∑
j=1

n∑
k=1

(d̄ili|aki||ekj| + d̄k li|bki||ekj|)

−

n∑
j=1

n∑
k=1

(d̄jlk |ajk ||eji| + d̄jlk |bjk ||eji|) > 0,

and 1 −
∑n

j=1 |eji| > 0, i = 1, . . . , n, where 0 < ci ≤
ci(x)−ci(y)

x−y ≤ c̄i. Example 2 indicates the above conditions
σi > 0(i = 1, . . . , n) cannot be satisfied while the conditions
of Corollary 3 can be satisfied.
Remark 5: Theorem 1 in [25] provides the following

sufficient conditions for the global asymptotic stability of
system (3):

εi =
c2i
l2i
−

n∑
j=1

|

n∑
k=1

akiakj| −
n∑
j=1

n∑
k=1

(|aji||bjk |

+|aji||ejk | + |ajk ||bji| + |bji||ejk | + |bji||bjk |) > 0,

εij =
1

nd2i
−

1

d̄2i

n∑
k=1

(|eji||ejk | + |ajk ||eji| + |bjk ||eji|) > 0,

where i, j = 1, . . . , n. Example 2 indicates the above condi-
tions εij > 0(i, j = 1, . . . , n) cannot be satisfied while the
conditions of Corollary 3 can be satisfied.
Remark 6: In [22], the author has stated that it is not

possible to derive stability conditions of the linear matrix
inequality forms for the neutral-type neural network that can-
not be expressed in the vector-matrix form. In [21], the author
has also stated since the neutral-type neural networks cannot
be expressed in the vector-matrix form, the linear matrix
inequality approach cannot be applied to this class of neutral
system to determine the stability conditions. Therefore, it is
impossible to derive the linear matrix inequality criteria for
system (1). In this case, although the criteria in this paper
ignore the symbol of network parameters, the criteria are
easier to verify and can guarantee the existence, uniqueness
and exponential stability of the equilibrium point.

Example 1: Consider system (1) with the following system
matrices and the network functions:

A


1 − 1 1 − 1
−1 1 1 − 1
1 1 1 1
1 − 1 − 1 − 1

 ,

B=


1 1 − 1 1
−1 − 1 1 − 1
1 1 1 1
−1 − 1 − 1 1

 ,

E =


0.1 − 0.1 − 0.1 − 0.1
−0.1 0.1 0.1 0.1
0.1 − 0.1 0.1 − 0.1
−0.1 − 0.1 − 0.1 0.1

 ,
d1(x) = 1.5 + 0.5sinx, d2(x) = 1.5 − 0.5cosx, d3(x) =
1.5 − 0.5sinx, d4(x) = 1.5 + 0.5cosx, c1(x) = c2(x) =
c3(x) = 9x, c4(x) = 8 x, fi(x) = 0.5tanh(x), gi(x) =
0.25tanh(x), ui = 0.5, ξij(t) = τij(t) = 0.05cost + 0.05, i =
j; ξij(t) = τij(t) = 0.05sint + 0.05, i 6= j; i, j = 1, 2, 3, 4.
It is easy to calculate c1 = c2 = c3 = 9, c4 = 8, d i =

1, d i = 2, ξ̄ = τ̄ = 0.05, li = 0.5,mi = 0.25,
∑4

j=1 |eji| =
0.4 and

γ cid i −
4∑
j=1

d j(γ |aji|li + |bji|mi) =

{
5γ − 2, i = 1, 2, 3;
4γ − 2, i = 4.

Therefore, for every γ ∈ (0.5, 0.95), all conditions of Theo-
rem 2 are satisfied.

If we choose γ = 0.45, p1 = p2 = p3 = 0.0762, p4 =
0.0857, then

0 < γ picid i −
4∑
j=1

pjd j(γ |aji|li + |bji|mi)

= 0.45 pici − 0.95
4∑
j=1

pj = 0.01, i = 1, 2, 3, 4,

0 < piγ −
4∑
j=1

pj|eji| = 0.45 pi − 0.1
4∑
j=1

pj

=

{
0.00286, i = 1, 2, 3;
0.007135, i = 4.

Thus, all conditions of Theorem 1 are satisfied.
Example 2: Consider system (3) with the following system

matrices and the network functions:

A


−1 1 − 1 1 − 1
−1 − 1 1 1 − 1
1 − 1 1 1 1
−1 1 − 1 − 1 − 1
1 1 1 1 1

 ,

B =


1 − 1 1 − 1 1
−1 1 − 1 1 − 1
−1 1 1 1 1
−1 − 1 − 1 − 1 1
−1 − 1 1 − 1 1

 ,
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FIGURE 1. The solution trajectory of system (1) .

FIGURE 2. The solution trajectory of system (3) .

E =


0.1 − 0.1 − 0.1 − 0.1 − 0.1
−0.1 0.1 0.1 0.1 0.1
0.1 − 0.1 − 0.1 0.1 − 0.1
−0.1 − 0.1 − 0.1 0.1 − 0.1
0.1 0.1 − 0.1 0.1 − 0.1

 ,
d1(x) = 1.5 + 0.5sinx, d2(x) = 1.5 − 0.5cosx, d3(x) =
d5(x) = 1.5 − 0.5sinx, d4(x) = 1.5 + 0.5cosx, c1(x) =
c2(x) = c3(x) = c4(x) = 12x, c5(x) = 11 x, fi(x) =
0.5tanh(x), ui = 0.5, ξij = τij = 0.1, i = j; ξij(t) = τij(t) =
0.05, i 6= j; i, j = 1, 2, 3, 4, 5.

In this case, we calculate c1 = c2 = c3 = c4 = 12, c5 =
11, d i = 1, d i = 2, li = 0.5,

∑5
j=1 |eji| = 0.5,

γ cid i −
5∑
j=1

d jli(γ |aji| + |bji|) =

{
7γ − 5, i = 1, 2, 3, 4;
6γ − 5, i = 5.

Therefore, for every γ ∈ (5/6, 1), all conditions of Corol-
lary 4 are satisfied.

If we choose γ = 0.8, p1 = p2 = p3 = p4 = 0.0229, p5 =
0.0250, then

0 < γ picid i −
5∑
j=1

pjd jli(γ |aji| + |bji|)

= 0.8 pici − 1.8
5∑
j=1

pj = 0.01, i = 1, 2, 3, 4, 5,

0 < piγ −
5∑
j=1

pj|eji| =

{
0.00666, i = 1, 2, 3, 4;
0.00834, i = 5.

Thus, all conditions of Corollary 3 are satisfied.
On the other hand, we calculate

σ1 = 2× 12− 2× 5− 2× 5− 0.2
5∑
j=1

(c̄i + c̄j)

−0.2× 52 − 0.2× 52

= −0.2
5∑
j=1

(c̄i + c̄j)− 6 < 0,

εij =
1
5
−

0.21× 5
4

= −0.0625 < 0,

where c̄1 = c̄2 = c̄3 = c̄4 = 12, c̄5 = 11. Therefore, the
conditions of in [21] and [25] cannot be satisfied.
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