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ABSTRACT Power system inter-area oscillations curtail the power transferring capabilities of the
transmission lines in a large interconnected power system. Accurate identification of dominant modes
and associated contributing generators is important to avoid power system failures by taking appropriate
remedial measures. This paper proposes a multi-channel Improved Dynamic Mode Decomposition (IDMD)
algorithm-based modal analysis technique using Synchrophasors measurement. First, a reduced-order
dynamic power system model is estimated and using this model dominant oscillation modes, corresponding
modes shapes, damping ratio, coherent group of generators, participation factors are determined. To improve
the accuracy data stacking technique is used to capture detailed information of the system. An optimal
hard threshold technique is utilized to select the most optimal model order to avoid uncertainties due
to the presence of high level of measurement noise. The study results show that the proposed algorithm
gives an accurate and robust solution even in systems having high level of noise in the measurement
data. The performance of the proposed technique is tested on simulated data from two-area four-machine
system and wNAPS 41-bus 16-generator system with PMU measurements corrupted with different levels
of measurement noise. To further strengthen the viewpoint, the proposed method is validated on real-time
PMU measurement from ISO New England data to validate the accuracy of the proposed work.

INDEX TERMS Phasor measurement unit, wide area monitoring system, dynamic mode decomposition
algorithm, eigensystem realization algorithm, low-frequency oscillations.

I. INTRODUCTION
Low-frequency electromechanical oscillations exist inher-
ently in any large interconnected power system. These oscil-
lations can be easily observed evenwith normal power system
operation and may be excited due to switching operations,
generation and load variations, faults, etc., [1], [2]. The
accurate information about these low-frequency oscillation
modes is crucial to determine the characteristics of the power
system. These oscillations can be broadly classified as inter-
area, local, limit cycle and forced oscillations. Out of these,
the damping of inter-area oscillation is most important as
it affects the stability of large interconnected power system
and limits the power-transferring capacity of the transmission
lines exchanging power between two areas [3], [4].

The associate editor coordinating the review of this manuscript and
approving it for publication was Amin Hajizadeh.

Conventionally, the analysis of electromechanical oscil-
lations was conducted by developing the power system
dynamic model from the set of differential equations and
finding the modal analysis parameters by linearizing the sys-
tem around the operating point [5]. This method may give
inaccurate results, as the power system dynamics changes
continuously, and it is almost impossible to update the alge-
braic model in real-time.

After various blackouts around the world, the Phasor
Measurement Unit (PMU) basedWide Area Monitoring Sys-
tem (WAMS) is now widely accepted due to the numer-
ous benefits it offers in real-time monitoring and control
of highly stressed large interconnected power system. With
the availability of these synchronized measurements, vari-
ous signal-processing techniques were utilized to estimate
the modal analysis parameters using synchronized PMU
measurements such as voltage magnitude, voltage angle,
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frequency, active power reactive power etc. collected from
multiple locations [6]–[8].

Various advanced signal-processing techniques are Fast
Fourier Transform (FFT) [10], Matrix Pencil (MP) [11], [12],
Prony Analysis (PA) [13], [14], Principal Component Analy-
sis (PCA) [15], Empirical Mode Decomposition (EMD) [16],
Multivariate Empirical Mode Decomposition (MEMD) [17],
Hilbert Transform (HT) [18], wavelet transform(WT) [19],
robust recursive least square (RRLS), regularized robust
recursive least square (R3LS) algorithm [20], all these meth-
ods have their own merits and demerits. FFT is restricted
to estimation of frequency components, while MP, PA and
PCA estimate both frequency, damping, and the magnitude
of the measurement data [21]. These methods are based on
eigenvalue analysis of the system. They, however do not
estimate mode shapes and participation factor, which are
the most critical parameters to characterize low-frequency
oscillations. In addition, the performance of these methods is
sensitive to the presence of measurement noise and signal off-
set. When the PMUmeasurements are subjected to high level
of measurement noise, which is unavoidable due to defects
in measurement and communication devices or may be due
to extreme operating conditions that includes random load
fluctuations. These conditions affects the estimation accuracy
in two ways. First, with noisy PMU measurements, results
may contain significant errors due to the presence of spurious
frequency components due to the presence of noise. Second, it
is quite challenging to determine the accurate model order of
the system for estimation of low frequency oscillation modes
that may also introduce significant errors [22], [23].

Therefore, noise consideration should be also taken in to
account for characterization of low-frequency oscillations.
This problem is overcome by EMD technique that processes
the raw PMU data using filter banks. However, it can lead to
the phenomena of mode mixing, leading to many irrelevant
artificial modes [16]. HT and WT analyze the oscillation
features in both time and frequency domain. This magnifies
the identification of the onset of any event. These algo-
rithms, however, are only applicable to systems having a
single dominant mode [19]. RRLS and R3LS are based on
the identification of autoregressive moving average (ARMA)
model to estimate dominant oscillation modes from ambient
PMU data [20], [24]. The aforementioned methods also have
one common limitation when directly applied, as denoising
method is the estimation of an accurate reduced-order model
of the system for estimation of dominant low-frequency
oscillation modes. These methods are known as eigenvector
analysis methods as they estimate mode shapes from right
eigenvectors estimated from state matrix A of the estimated
reduced power system model.

Recently eigensystem realization algorithms (ERA) and
Dynamic mode decomposition (DMD) algorithms have
proved very accurate in identification of eigenvalues of a
dynamic system. In DMD, both state matrix A and state
variables are known, unlike ERA where only state matrix

A can be determined. This gives an additional advantage
to DMD over ERA as it can provide additional information
about the generators contributing to inter-area mode [25].

The DMD provides a spatiotemporal decomposition of a
high-dimensional dataset of a given system in time. This
advantage is not offered by any other model identification
method. The system model can be estimated utilizing the
dominant spatiotemporal modes obtained from given mea-
surement matrix with reduced system model order obtained
from singular value decomposition. The future state can also
be predicted using initial system conditions and obtained a
reduced-order system. These advantages extend the use of
DMD in various power system applications [26].

Ref. [27] utilizes the DMD algorithm based on energy met-
ric for analysis of power system disturbances. Ref. [22] uti-
lizes an optimized DMD algorithm to extract low-frequency
oscillation modes from wide-area measurement datasets
using variable projection and finite difference style approxi-
mation method. In [28] DMD algorithm is utilized to estimate
the frequency and amplitude of measurement data on differ-
ent power system scenarios with different levels of measure-
ment noise. Ref. [29] proposes a randomized DMD algorithm
that reduces the computational cost by radically reducing the
size of themeasurement matrix to compute the low-frequency
oscillation mode. In [30], DMD algorithm is implemented on
frequency and voltage measurements to determine oscillation
frequency, damping ratios and the amplitude of measure-
ment. Ref. [31] discusses koopman based DMD algorithm
for determination of modal analysis parameters of the power
system. Ref. [18] utilizes the DMD framework to interpret
the global dynamic behavior of a wide-area system in terms
of spatial and temporal patterns containing a single tone
frequency component. It highlights the superiority of DMD
over koopman and prony methods in identifying dominant
oscillation modes. Ref. [32] compares the performance of
DMD algorithm with ERA considering three power system
applications that include RLC circuit measurement, modal
analysis using PMUmeasurements and power signal analysis
corrupted with harmonics.

It can be noted that in all the above methods, the effect
of measurement noise has not given sufficient consideration.
Although measurements in real-time systems are often cor-
rupted with, high level of measurement noise and WAMS
has no exception. Therefore, the accuracy of all the methods
available in the literature is affected due to the presence of
measurement noise that makes the extraction of dominant
frequency modes more challenging.

The contributions of this research work are highlighted as
follows:

1. Utilization of data stacking technique to increases the
dimensions of the measurement matrix. This increases
the number of estimated eigenvalues that help in iden-
tifying the detailed dynamics of the low-frequency
oscillation modes for better characterization of system
dynamics.
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2. Application of hard threshold technique on singular
values obtained from SVD to obtain judicious rank
truncation and denoisedDMDeigenvalues to accurately
capture the system dominant modes.

3. Extend the application of DMD from dominant mode
estimation to the determination of mode shapes, coher-
ent group of generators and participation factor. Hence,
develop a systematic approach to reveal the dynamic
characteristics of the electromechanical oscillation
modes in one holistic framework. This will prove to
be very helpful in identifying the generators contribut-
ing to inter-area modes and take corrective actions to
improve the damping of these modes.

This paper is structured as follows. In section II, the mathe-
matical background of DMD algorithm is briefly reviewed
along with the concept of data stacking and hard thresh-
old techniques for rank determination. Section III discusses
various modal analysis parameters required to carry out the
analysis. Results obtained from considered test systems are
presented in Section IV and finally, conclusions are drawn in
Section V.

II. DYNAMIC MODE DECOMPOSITION
DMD is one of the potential algorithms to obtain a reduced-
order model of any nonlinear system. It has two forms that
can achieve themathematical formulation of any system. First
is by assuming the linear dependency beyond the critical
number of snapshots and introducing a companion matrix to
approximate the remaining infinite number of irrelevant snap-
shots using linear koopman operator. The second is obtain-
ing the similarity matrix from the constructed observation
matrix and components of the singular value decomposition
obtained from snapshot matrix. The latter method can provide
the best approximation of the system described by a large
dataset given that two aspects are satisfied. First is express-
ing the few channel measurement data matrix into a high-
resolution row dimension matrix to obtain large eigenvalues
from the measurement matrix to better approximate the sys-
tem. The second is the accurate determination of optimal rank
r of the system to construct the similarity matrix for reduced-
order model of the system [26], [32].

A mathematical definition of DMD is stated as follows:
For any linear time-invariant dynamic system, the present

state zk can be correlated to next state zk+1 as

zk+1 = Azk (1)

where, zεRn, with sampling interval 1t.
The time-domain expression of z(t) can be conveniently

derived if the eigenvalues of A and its eigenvector matrix are
known.

Z (t) =
∑n

k=1
8kexp(ωk t)bk = 8exp (�t) b (2)

where � is the diagonal matrix having continuous eigenval-
ues. In discrete form, it can be written as:

ωk = ln
λk

1t
(3)

The data measurement matrix is formed by data gather-
ing into subsequent overlapping sets with other being time-
shifted as

Zm−11 =
[
z1 z2 · · · zm−1

]
4 (4a)

Zm2 =
[
z2 z3 · · · zm

]
4 (4b)

where, Zm−11 ,Zm2 εR
n×(m−1)

It can be found that

Zm
2 = AZm−1

1

Or

A = Zm2 (Z
m−1
1 )

T
(5)

The modal analysis procedure can be carried out using these
two sequential time-shifted measurement data matrices.

Based on the above background, the key steps of the DMD
algorithm for processing PMU datasets are as follows:

1. Compute the SVD on the matrix as obtained in 4(4a) as

Z1 = U6V ∗

where U and V are orthonormal
2. Express the matrix A in terms of SVD components and

observation matrix Z2 as

A = Z2V6−1U∗

3. Construct a similarity matrix based on the selected trun-
cated rank r obtained from constructed singular values
as

Ã = Ur∗A∗UT
r = U∗r Z2Vr6

−1
r

where AεRr×r

Ã represent a similar feature as that of A but with
dimensionally reduced matrix discarding the irrelevant
features.

4. The lower rank dynamic model is defined as

ÃW = W∧

where W =
[
ω1 ω2 . . . ωr

]
and ∧ = diag

(λ1,λ2, λ3,............λr) are the eigenvectors and eigenval-
ues respectively of the similarity matrix.

5. Compute the reconstruction matrix of DMD as

ZDMD =
∑r

1
8iexp(ωi1t)bi

= 8exp(�t)b,ZDMDεRm×n

where, 8i = ZVi
∑
−1
i Wi is a matrix consisting of ith

DMD modes and b is a matrix consisting of the initial
amplitude of each mode.
The desired oscillation modes, damping ratio, mode
shapes, and participation factors can be determined
using the eigenvalues and eigenvectors obtained.
The concept of data stacking and optimal hard threshold
technique is explained in the following subsections:
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A. DATA STACKING
Consider one-channel measurements Z represented by a row
vector. This will give only one eigenvalue of the system that
cannot give the best approximation of the dynamics of the
system. To address this issue data stacking technique using
the hankelization concept is adopted to create time-shifted
copies of datasets. This increases the row dimensions of the
measurement matrix to obtain the large eigenvalues of the
system to capture the detailed system dynamics [28], [29].

The generalized form of the augmented matrix with
stacking number s can be written as

Zaug =


Zm−(s−1)1
Zm−(s−2)2

...

Zms

 =

z1 z2 . . . zm−(s−1)
z2 z3 . . . zm−(s−2)
...

...
...

...

zs zs+1 . . . zm


(6)

where, ZaugεRs.n×(m−s+1).
The overlapping set of the augmented matrix Zaug can be

formed as

Zaug,1 = Zaug(:, 1 : m− s) (7a)

Zaug,2 = Zaug(:, 2 : m− s+ 1) (7b)

where Zaug,Zaug,1,Zaug,2εRs.n×(m−s)

The value of s depends on the number of frequency com-
ponents present in the signal. A higher value of s should be
selected for signal corruptedwith a high level ofmeasurement
noise. In this study, the value of s varies from 200 to 450.

B. OPTIMAL TRUNCATION OF SINGULAR VALUES USING
HARD THRESHOLD TECHNIQUE
In the DMD algorithm, nonsingular values are arranged in
decreasing order while computing the SVD of the signal
matrix Z. Thus keeping useful signal information represented
by first k singular values and discarding the remaining (s-k)
part representing the noise. The selection of k is quite trivial,
and difficulty lies in finding the optimal value especially
when the measurement matrix is corrupted with high level
of measurement noise. To solve this issue, the authors have
utilized hard singular value thresholding technique proposed
in [33] to select the optimal rank r for measurement matrix
Z containing useful signal information Zs plus additive white
noise Zn.
This approach estimates the optimal threshold value τ of

the singular values as given by

τ = ω (β) σmedian (8)

where, σmedian is the median singular value of the noisy
measurement matrix and

ω (β) = λ(β)/µB (9)

and µB is the marcenko-pastur distribution.
Thus, useful signal information represented by k singular

values is kept while the remaining (s-k) part representing the
noise is discarded.

TABLE 1. ERA algorithm [34].

The performance of the proposed algorithm is also verified
using ERA algorithm briefly described in Table 1.

III. MODAL ANALYSIS PARAMETERS
Modal analysis is a systematic methodology of determining
the characteristic of the power system in terms of frequency,
damping ratio, mode shape and participation factor. These
parameters should be carefully examined to investigate the
dynamic behavior of the power system under different char-
acteristic frequencies called modes [35].

A. FREQUENCY AND DAMPING RATIO
After estimating the reduced-order similarity matrix, Ã, the
frequency and damping ratio of the system can be calculated
using eigenvalues of the system matrix Ã(λi = ai + jbi). The
frequency fi and damping ratio ξi of ith oscillation mode in
the system and can be expressed as

fi = imag(λi)/2π (10a)

ξi =
−real(λi)
|λi|

× 100 (10b)

B. LEFT AND RIGHT EIGENVECTORS OF THE SYSTEM
For every eigenvalue λi of a system matrix, there is an eigen-
vector φi = [φ1φ2φ3 . . . . . . . . . . . . . . . .φn]T which satisfies

Aφi = λiφi, i = 1,2 . . . . . . . . . . . . .n (11)

φi is called the right eigenvector of the system matrix A
associated with the eigenvalue λi. It is also called a mode
shape and determines the contribution of the system state
(machine) in each dominant mode. It also gives information
regarding the behavior of oscillations against each other,
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FIGURE 1. Two-area four-machine system.

i.e., inter-area, local, forced etc. The length of the mode shape
determines the contribution of the system state in that mode.

For every eigenvalue λi, there exists an eigenvector ψi,
which satisfies

ψiA = λiψi, i = 1, 2 . . . . . . . . . . . . .n (12)

ψi is called the left eigenvector of the system matrix A
associated with the eigenvalue λi. These along with the initial
system states determine the amplitude of oscillations.

C. PARTICIPATION FACTOR
The estimation of the relationship between states and the
modes utilizing right and left eigenvectors is dependent on
units and scaling associated with the state variables. To solve
this problem, a matrix called participation factor is proposed
in [36] obtained by multiplying the right and left eigenvectors
which is independent of the choice of the units and provides
an improved alternative to associate the state and the modes
of the system.

Using the estimated φi and ψi, the participation factor P
can be calculated as

P = [p1p2p3. . . . . . . . . . . . . . . . . . . . . . . . .pn] (13)

With 
p1i
...
...

pni

 =

φ1iψi1
...
...

φniψin


The element pki = φkiψik is called the participation factor,
which gives an overview of the contribution of the system
generators in each of the dominant modes.

This value is normalized by dividing the obtained values
with the maximum participation factor as follows:

pki_normalized =
pki

max|pki|
(14)

IV. TEST CASES
The performance and applicability of the proposed algorithm
are tested utilizing simulated PMU data from two-area four-
machine system and wNAPS 16 generator 41-bus system.
The obtained results are also validated on real-time PMU
measurements from ISO New England dataset.

A. TWO-AREA FOUR MACHINE SYSTEM
TheData for inter-area oscillation is generated using two-area
four-machine model using Matlab-based dynamic simula-
tion power system toolbox. The machines are modeled with
static excitation system having conventional PSS with two-
cascaded lag-lead compensation block.

As represented in Fig. 1, the network is divided into two
Areas a1-(G1-G2) and a2-(G3-G4). The PMUs are installed
at highly stressed buses i.e. bus 7 in Area 1 and bus 9 in
Area 2. A detailed description of the system is given in [37].
The sampling rate of PMU is taken as 60 samples per second.

The inter-area oscillation cases are produced by increasing
the stress on the system along with the introduction of the
dynamic event. This is done by increasing the equivalent load
at bus 7 to 1000 MW and at bus 9 to 2000 MW. The dynamic
event considered in the present case study is a single-line to
ground fault, applied to the line between bus 7 and bus 9.

Frequency signals, one from each Area (Bus 7 in Area 1
and Bus 9 in Area 2) are selected for modal analysis param-
eter estimation and signal reconstruction. A data window
of 10 seconds is used for the construction of the augmented
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FIGURE 2. Singular values of measurement matrix with 8% of additive
noise.

Hankel matrix, and the value of stacking factor s varies from
200 to 450 for all the cases considered.

The result of modal analysis for a different level of additive
noise is given in Table 2. In case of higher level of additive
noise, the higher model order r is required for obtaining high
correlation between actual and DMD spectra. For noiseless
data, the value of r=16 gives accurate results. With the addi-
tive noise of 2%, the optimal threshold value τ obtained from
SVD of noise is 7.125. Therefore, rank r for the measurement
matrix Z having singular values larger than the obtained τ
is 23. With additive noise of 5%, the value of τ is 5.67 and the
corresponding value of rank r is 26. For 8% of additive mea-
surement noise, the value of τ is 5.13 and the corresponding
value of rank r is 31 as shown in Fig. 2.

For all the test cases considered with different levels of
measurement noise, the reconstructed denoised data obtained
from the reduced-order system is shown in Fig. 3. It can be
concluded that the reduced-order model obtained from the
proposed method can accurately recover the actual PMU data
from noisy PMU measurement.

From Table 2, it can be concluded that even with the
increase in the level of measurement noise, the frequency
and damping ratio error is within the acceptable limits. This
proves the accuracy and robustness of the proposed method-
ology in identifying the dominant oscillation of the wide-area
system.

Using the estimated left and right eigenvectors, the mode
shapes associated with four inter-area modes having a damp-
ing ratio of less than 10% are plotted as shown in Fig. 4.Mode
shape 1 reveals that the generator G1 in Area 1 oscillates
against generator G4 in Area 2, while generator G1 has a
significant role in this oscillation.Mode shape 2 demonstrates
that the generators G1 and G2 in Area 1 and generators G3
and G4 in Area 2 are coherent and oscillate against each
other. While the generators G1 and G4 have a significant
role in this oscillation. Mode shape 3 reveals that G1 and G3
oscillate against each other and exhibit higher participation in
this oscillation. Mode 4 reveals that Generator G1 in Area 1
oscillates against generator G4 in Area 2 while G1 exhibits
high participation in this oscillation mode.

The accuracy of mode shapes estimated by IDMD algo-
rithm is verified using ERA algorithm, as shown in Fig. 5.
The phase displacement expressed in mode shapes for all the
generators determined by both the algorithms may vary but

FIGURE 3. A. Actual PMU measurements B. PMU measurements with Noise C. Denoised PMU measurements with 2% of measurement
noise D. Denoised PMU measurements with 5% of measurement noise E. Denoised PMU measurements with 8% of measurement
noise.
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TABLE 2. Dominant inter-area oscillation modes with different level of measurement noise.

FIGURE 4. Mode shapes estimated by IDMD algorithm.

FIGURE 5. Mode shapes estimated by ERA algorithm.

can accurately identify the contribution of generators in each
mode.

The participation factors corresponding to dominant
inter-area modes are estimated via (13) and shown in

Fig. 6. It can be observed that Generators G1 has a
higher participation factor in mode 1 while G4 domi-
nates in oscillation mode 2. For mode 3, both generators
G1 and G3 possess significant participation factor while
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FIGURE 6. Participation factor estimated by IDMD and ERA.

FIGURE 7. Singular values of measurement matrix with 8% of additive
noise.

the generator G1 has the highest participation factor in
mode 4.

The participation factor estimated by the proposed
improved DMD algorithm is also compared with ERA algo-
rithms. It can be concluded from the obtained results that
the participation factor obtained from both the algorithms is
almost similar.

B. wNAPS 41-BUS 16-GENERATOR SYSTEM
The system comprises of 16 generators and 41 buses as shown
in Fig. 8. Frequency signals, one from each area (Bus 32 in
Area 1, Bus 27 in Area 2, Bus 29 in Area 3 and Bus 28 in
Area 4) are selected for modal analysis and signal reconstruc-
tion. The sampling rate of PMU is 60 samples per second.
The test system is divided into 4 Areas; A1-(G1, G2, G5, G9,

G10, G13), A2-(G4, G6, G12, G14), A3-(G3, G11), A4-(G7, G8,
G15, G16). The detailed parameters of the system can be found
in [38].

The result of modal analysis for a different level of additive
noise is given in Table 3. For noiseless data, the value of r=27
gives accurate results. With the additive noise of 2%, the opti-
mal threshold value τ obtained from SVD of noise is 12.436.
Therefore, rank r for the measurement matrix Z having sin-
gular values larger than the obtained τ is 33. With additive
noise of 5%, the value of τ is 9.213, and the corresponding
value of rank r is 41. For 8% of additive measurement noise,
the value of τ is 7.32 and the corresponding value of rank r is
47 as shown in Fig. 7.

For all the test cases considered with different levels of
measurement noise, the reconstructed denoised data obtained
from the reduced-order system is shown in Fig. 9.

It can be concluded that the reduced-order model obtained
from the proposed system can accurately recover the actual
PMU data from noisy PMU measurement.

Table 3 shows that the percentage frequency and damp-
ing ratio errors for all the cases considered are within the
acceptable limits and it proves the robustness of the proposed
methodology against measurement noise.

The mode shapes of inter-area modes of all the generators
estimated from the proposed method are shown in Fig. 10.
As can be observed from Fig. 10, the mode shapes associated
with mode 1 suggest that generators G4, G6, G12, G14 in
Area 2 and generators G3 and G11 in Area 3 are coherent and
oscillate against generators G7, G8, G15 and G16 in Area 4 at
a frequency of 0.23 Hz. For mode 2, generators comprising
of G1, G2, G3, G4, G5, G6, G12 and G14 in area 1 and 2
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TABLE 3. Dominant inter-area oscillation modes with different level of measurement noise.

FIGURE 8. wNAPS 41-Bus 16 generator system.

are coherent and oscillates against generators G3, G7, G8,
G11, G15, G16 in Area 3 and 4 respectively at a frequency
of 1.29 Hz. For mode shapes associated with mode 3, the
generators G3 and 11 in Area 3 oscillate against generators
G7, G15, G16 in Area 4 at a frequency of 0.89 Hz. For mode 4,
generator G1, G2, G4, G5, G6, G9, G10, G13, G12 and G14 in
Area 1 and 2 form a cluster of coherent group and swings
against the cluster of other coherent groups of generators
comprising of generators, G3, G7, G8, G11, G15 and G16 in
Area 3 and 4 respectively at a frequency of 1.47 Hz.

The mode shapes estimated by the ERA, as shown in
Fig. 11, are in close proximity to the mode shapes estimated
by the proposed algorithm.

The participation factor of all the generators in each domi-
nant mode is shown in Fig. 12. It can be observed from Fig.12

that generators G14 andG15 exhibit higher participation factor
in mode 1 while G15 plays a significant role in mode 2. For
mode 3, the two largest participation factors in this inter-area
mode are from generator G3 andG7, while G6 andG7 perform
higher participation in inter-area oscillation mode 4.

The participation factor estimated by the proposed
improved DMD algorithm is also compared with ERA algo-
rithms. It can be concluded from the obtained results that
the participation factor obtained from both the algorithm is
almost similar.

C. ANALYSIS OF OSCILLATION ON ACTUAL PMU DATA
The performance of the proposed algorithm is also tested
utilizing real-time PMU measurements from ISO New Eng-
land. The system is divided into 3 areas as shown in Fig. 13.
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FIGURE 9. A. Actual PMU measurements B. PMU measurements with Noise C. Denoised PMU measurements with 2% of measurement noise D. Denoised
PMU measurements with 5% of measurement noise E. Denoised PMU measurements with 8% of measurement noise.

FIGURE 10. Mode shapes estimated by IDMD algorithm.

The dataset contains PMUmeasurements from 12 substations
of area 1, while line 7 and line 21 connect the external
areas 2 and 3 [39]. In this work, the authors have utilized
datasets reported on July 20, 2017, to test the effectiveness
of the proposed algorithm.

Frequency signals from substations 3, 6, 7 and 9 are
selected for modal analysis parameter estimation and signal
reconstruction. A data window of 10 seconds is used to con-
struct the augmented Hankel matrix, and the value of stacking
factor s varies from 200 to 450.

The results of modal analysis is given in Table 4. It is found
that even for actual PMU data, the proposed algorithm is
capable of recovering the actual PMU data from noisy PMU
measurements. The value of most optimal rank r is 21 for
obtaining high correlation between actual and DMD spectra
and the corresponding value of τ obtained from SVD of noise
is 11.35 as shown in Fig. 14.

The reconstructed denoised data obtained from the
reduced-order system is shown in Fig. 15. It can be concluded
that the reduced order model obtained from the proposed
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FIGURE 11. Mode shapes estimated by ERA algorithm.

FIGURE 12. Participation factor estimated by IDMD and ERA.

FIGURE 13. Network topology of ISO New England power system.

system can accurately recover the actual PMU data from
noisy PMU measurement.

FromTable 4, it can be concluded that the proposedmethod
is capable in identifying the dominant oscillation modes of

FIGURE 14. Singular values of measurement matrix with 8% of additive
noise.

the wide-area system with measurements from a real-time
system.
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FIGURE 15. A. Actual PMU measurements B. Denoised PMU
measurements by the proposed algorithm.

Using the estimated left and right eigenvectors, the mode
shapes associated with four inter-area modes having damp-
ing ratio of less than 10% are plotted as shown in Fig. 16.
The mode shape 1 reveals that the generator G1 in Area 1
oscillates against generators in Area 2 and Area 3 respec-
tively, while the generator G1 has a significant role in this
oscillation. Mode shape 2 demonstrates that the generators

TABLE 4. Dominant inter-area oscillation modes of a real-time system
from ISO New England dataset.

in Area 1 and Area 2 are coherent and oscillate against gen-
erators in Area 3, while the generator G1 and generators in
Area 3 have a significant role in this oscillation.Mode shape 3
reveals that generators in Area 1 and Area 3 are coherent
and oscillate against generators in Area 2, while generators
in area 2 exhibit higher participation in this oscillation. Mode
4 reveals that Generator G1 and G2 in Area 1 oscillate against
Area 2 and Area 3 respectively, while G1 exhibits high par-
ticipation in this oscillation mode.

The accuracy of mode shapes estimated by IDMD algo-
rithm is verified using ERA algorithm, as shown in Fig. 17.
The phase displacement expressed in mode shapes for all the
generators determined by both the algorithms may vary but
can accurately identify the contribution of generators in each
mode.

The participation factors corresponding to dominant inter-
area modes are estimated via (13) and shown in Fig. 18. It
can be observed that Generators G1 in Area 1 has a higher
participation factor in mode 1 while generator G2 in Area 1
and generators in Area 3 dominates in oscillation mode 2. For
mode 3, generators in Area 2 possess significant participation
factor while the generator G1 in Area 1 has the highest
participation factor in mode 4.

The participation factor estimated by the proposed
improved DMD algorithm is also compared with ERA
algorithms. It can be concluded from the obtained results that

FIGURE 16. Mode shapes estimated by IDMD algorithm.
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FIGURE 17. Mode shapes estimated by ERA algorithm.

FIGURE 18. Participation factor estimated by IDMD and ERA.

the participation factor obtained from both the algorithms is
almost similar.

V. CONCLUSION
This work presented an ImprovedDMD algorithm to estimate
the entire modal analysis parameters like dominant modes,
damping ratio, mode shapes, coherent group of generators,
and participation factor in one holistic framework. The intro-
duction of data stacking technique and optimal hard threshold
technique for determination of reduced model order substan-
tially improves the performance of standard DMD algorithm
in identifying the system dominant modes even in the pres-
ence of high level of measurement noise.

The proposed approach is tested on two-area four-machine
system and wNAPS 41 bus 16 generator system with PMU
measurements corruptedwith different levels ofmeasurement
noise. The obtained results are also validated on real-time
PMU datasets from ISO New England. It can be observed
from the results obtained that even in the presence of high
level of measurement noise the proposed algorithm can accu-
rately recover the actual PMUmeasurements and estimate the
dominant modes of the system with high accuracy.
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