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ABSTRACT The switched reluctance machine has been an attractive candidate for many applications owing
to its simple design and low construction costs, without the use of permanent magnets. However, the double
saliency of its stator and rotor poles results in noise-causing torque ripples. And although advanced torque
ripple minimization control techniques exist, they rely on modeling the machine, which in turn requires
specialized offline experimental setups or online (during operation) parameter identification techniques.
To date, existing online techniques are iterative without proof of convergence, do not provide all model
parameters, and/or rely on a priori information that can change after the machine is commissioned. In this
work, an online parameter identification method is developed with a new empirical model of its flux linkage
and electromagnetic torque, to provide a complete nonlinear model of the machine. With two seconds of data
collected online, all electrical and mechanical parameters are identified using a non-iterative algorithm, and
so it does not pose a risk of divergence. Therefore, parameter identification can be reliably and frequently
carried out at different operating conditions as the machine ages for diagnostics. Also, the resulting model
is designed to be used by advanced torque ripple minimization control techniques. The implementation
procedure is detailed along with simulation results to demonstrate its efficacy.

INDEX TERMS Switched reluctance machine, online parameter identification, nonlinear model,
noniterative techniques.

NOMENCLATURE
SRM Variables

vs, is Stator voltage and current.
θ, ω Mechanical rotor angular position and velocity.
τe Induced electromagnetic torque.
τL Load torque.
ψs Stator flux linkage.

Subscripts

s Stator phase, s ∈ {a, b, c}.
d, q Direct and quadrature axes.

Flux Linkage and Torque Empirical Model

ψd (is) Direct-axis flux linkage function.
ψq(is) Quadrature-axis flux linkage function.
l1, l2, l3 Parameters of ψd (is).

The associate editor coordinating the review of this manuscript and

approving it for publication was Yanbo Chen .

Lq Quadrature-axis inductance.
f (θ ) Flux linkage transition function.
f ′(θ ) , ∂f (θ )/∂θ . Partial derivative of f (θ ).
g(is) Current-scaling function of τe.

SRM Parameters

Rs Resistance per stator phase.
Js,Bf Combined coefficients of the moment of inertia

and viscous friction of the SRM and load.
Ns,Nr Number of stator and rotor poles.
m Number of stator phases.
αs Phase shift angle between stator phases.
ρ Torque production (cycle) capability angle.
β Torque zone angle, = ρ/2.

Identification Model

y,W Regressor vector and matrix.
K Vector of unknown parameters.
N Total number of sampled data points.
n Index of sampled data points.
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ν Indicator function for data within a valid range.
us(.) Unit step function.
EI Identification model error index.
ēx Normalized relative error of a variable x(t).

I. INTRODUCTION
Modeling and parameter identification of electric machines
(motors or generators) is an important first step towards
their reliable analysis and control. Towards that end, param-
eter identification methods have been developed for their
often nonlinear models, with objectives as varied as per-
forming stability analyses and enhancing controller perfor-
mance. These methods have been developed for the induction
motor [1], [2], the salient-pole synchronous generator [3],
and the divided-winding synchronous generator [4] to name
a few. For some machines, effective control techniques,
such as the PID method, exist that do not rely on an accu-
rate model [5]. However, for other applications such as the
switched reluctance machine (SRM), model-based closed-
loop control enhances their performance.

The SRM is characterized by its ability to operate at syn-
chronous speed without the use of field windings or perma-
nent magnets. As such, it has a wide range of applications
from vacuum cleaners and lathe machines to (potentially)
electric vehicles; e.g., see the comparative study on electric
vehicle motors by Ramamurthy et al. [6]. Its structure, how-
ever, has a double saliency, both in its rotor and stator poles,
which results in torque ripples and vibrations when basic
commutation control schemes are used. Instead, closed-loop
control aiming at torque ripple minimization is used, which
requires knowledge of its model including the nonlinear flux
linkage curves, and the induced electromagnetic torque in
relation to the phase current and rotor position, i.e., the
τ -i-θ characteristics. In many cases thesemodels are obtained
from experimental data to support such control techniques.
For example, a feedback linearization technique developed by
Ilic-Spong et al. [7] achieves robust position tracking control
of the SRM using a nonlinear model. The model parame-
ters were determined offline from experimental flux linkage
data (to best fit them) enabling their control method. Also,
adaptive fuzzy control was used by Mir et al. [8] and sliding
mode control was used by Inanc and Ozbulur [9] for torque
ripple minimization. The latter, for example, required model
parameters, namely, the rotor moment of inertia and slope
of inductance with respect to rotor angle variations. Several
other SRM control methods were developed including the
use of torque sharing functions in [10], [11], a hybrid PID
torque sharing with τ -i-θ characteristics in [12], and the use
of model predictive control and a Kalman filter with recursive
least squares to estimate the inductances in [13].

Flux linkage curves can therefore be computed exper-
imentally as in [14], [15], using finite element analysis
methods (FEM) as in [16], [17], or as empirical analyti-
cal functions that approximate these curves at various rotor
positions and current levels, see for example Le-Huy and
Brunelle [18]. Using these curves the τ -i-θ characteristics

can then be determined for use in the aforementioned
control methods. Ultimately, the model obtained for the
τ -i-θ characteristics is either a look up table or an empirical
analytical model that best fits the data. The former method
can be more accurate in implementation (provided enough
data points are recorded) but requires a large memory on
the controller. Therefore, empirical analytical models are
preferred for microcontroller operated motor drives due to
their lower computational complexity in memory and time.
Miller and McGilp [19], for example, capture the flux non-
linear curves transitioning between the unaligned and aligned
rotor positions using parameterized piecewise functions and
correction factors. Their parameters and correction factors are
calculated from a limited set of points obtained from FEM.
Their model was later improved [20], with the introduction
of smooth transitions in their normalized flux gage curves.
Also, Vujicic and Vukosavic [21] propose a set of three
parameterized piecewise functions to characterize the flux
linkage curve with the parameters calculated from the SRM
geometry, magnetic material and points on the experimental
curves.

Parameter identification for a given model could be further
categorized as offline or online depending on whether the
SRM is disconnected from its load with a dedicated exper-
imental excitation setup or connected to its operational load,
respectively. Typically, offline methods aim to obtain detailed
flux linkage curves and are performed prior to commissioning
the SRM. The challenges of experimentally obtaining these
curves offline are discussed by Sharma et al. [14] with a
recommendation for example to use a fixed DC source as
excitation to reduce measurement noise and simplify filtering
requirements. In their offline method, the test had to be
repeated in standstill at different rotor angles. Data collection
periods also vary depending on whether the test requires
capturing steady state signals or transient signals, with the
former requiring significantly longer times. By adding a
search coil on the stator to measure the EMF, Ferrero and
Raciti [22] showed that AC excitation can be used with the
SRM in standstill or a DC excitation with the rotor moved
using another motor during data acquisition to obtain the
flux linkage curves. Alternatively, FEM can be used in the
design phase and later verified from experimental data, see
for example by Ursu et al. [17].

Online methods have also been developed to directly
obtain the parameters of an empirical model of the SRM.
They are non-intrusive to the operation of the SRMand can be
conducted periodically, e.g., at different operating conditions
and as the machine ages. Mir et al. [23] developed an iter-
ative (recursive) online method for torque estimation to aid
their fuzzy controller [8]. A single parameterized function for
the flux curve was used with a few parameters to be measured
offline such as the stator resistance, and five parameters to
be recursively computed and improved online. This function
was later reduced to four parameters [24] to improve the
chances of convergence. Also, online identification methods
for the linear SRM were developed by Pan et al. [25] for
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position control, and by Missouri et al. [26] to aid their
fuzzy system based controller. However, iterative methods
require a proof of convergence as they may diverge during
their implementation. A more recent iterative method devel-
oped by Aguado-Rojas et al. [27] identifies all electrical and
mechanical SRM model parameters online. Moreover, their
work outlines a proof of convergence of their iterative method
that can be tested by the algorithm during its execution.
However, their model assumes linear magnetics which limits
its applicability to very low current levels that are well below
the rated current of a typical SRM.

In this work, an online parameter identification method is
developed for the SRM, with the following contributions:

1) A new empirical nonlinear model of the SRM flux
linkage and torque is introduced.

2) All electrical and mechanical parameters of the model
are identified online.

3) Offline tests and a priori knowledge of the SRM are
not needed.

4) Its algorithm is non-iterative and hence can reliably
work without the need to prove its convergence or risk
divergence.

5) Its procedure is detailed and carried out with two sec-
onds of data, which can run on an SRM embedded
system drive.

Therefore, in contrast with existing online methods, it is
both comprehensive and reliable. The remainder of the paper
is organized as follows: The machine model is given in
Section II, and its parameter identification models are derived
in Section III. The implementation in simulation and its
results are detailed in Section IV, with the impact of distur-
bance considered and an alternative online method included
for comparison. Concluding remarks are drawn in Section V.

II. MODELING THE SRM
The dynamic model of the SRM using the motor (load)
convention represents the electrical andmechanical dynamics
as follows, see Le-Huy and Brunelle [18] and Gieras [28]

vs =
dψs
dt
+ Rsis, (1)

τe(i, θ) = J
dω
dt
+ Bf ω + τL , (2)

dθ
dt
= ω. (3)

There are m stator phases, with the subscript s denoting any
one of these phases, e.g., for a three phase machine m = 3
and s ∈ {a, b, c}. For the electrical quantities, vs is the
terminal voltage, is is the current, ψs is the flux linkage,
and Rs is the resistance per stator phase. For the mechanical
dynamics τe is the induced electromagnetic torque, which is
a function of both is and the rotor position θ . Also, ω is the
rotor angular velocity, τL is the load torque. J and Bf are
the rotor coefficients of the moment of inertia and viscous
friction, respectively.

A prominent feature of an SRM is its double saliency, and
the number of stator poles Ns and rotor poles Nr are not
equal. To operate the SRM, a complete cycle of pulses and
torque production is identified as its periodicity, or the torque
production capability angle, and is given by ρ , 2π/Nr .
A related angle is the torque zone [28], which is half of the
periodicity, and can be defined as β , ρ/2 = π/Nr . So,
a voltage is applied in each stator phase to generate a current
pulse resulting in a magnetic field attracting the rotor poles.
The angle over which one phase can influence torque is called
the stroke angle αs , 2π/(mNr ), which is also the phase shift
between stator phases.

Therefore, the rotor pole starts from an aligned position
with stator phase a at θ = 0 rad and reaches the quadrature
point (furthest from this alignment) at θ = β. The next rotor
pole reaches full alignment with stator phase a at θ = 2β.
One SRM configuration that will be adopted in this work

without loss of generality is the 6/4 SRM with Ns = 6 and
Nr = 4 as shown in Fig. 1. This has m = 3 stator phases,
β = π/4 rad and αs = π/6 rad. Note that there is no
need to define an electrical counterpart to the mechanical
angle θ . That is, θ suffices for modeling both mechanical and
electrical dynamics of the SRM [7].

FIGURE 1. A 6/4 SRM with its axes and angles.

A. FLUX LINKAGE CHARACTERISTICS
Assuming no mutual coupling between the phases, ψs only
depends on its self-inductance. However, the machine is typ-
ically operated in the magnetic saturation region, making ψs
nonlinearly dependent on is. Also, the reluctance along the
path of the magnetic flux significantly changes as the SRM
rotates due to its double saliency, hence, it is both a function
of is and θ , i.e., ψs(is, θ). If vs, is, and Rs are known, ψs
can be computed directly by integrating both sides of (1) and
rearranging to get

ψs(t) =
∫ t ′=t

t ′=t0
vs − Rsis dt ′, (4)
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where t0 is the moment when commutation starts and t ′ is
a dummy integration variable evaluated in the time range
t > t0 such that is(t) 6= 0 and is(t0) = 0. Note that
ψs(t0) = 0, and, in general,ψs must be reset to zero whenever
is = 0 because the SRM stator and rotor are constructed
using soft ferromagnetic materials, i.e., they do not retain a
residual magnetic field. Therefore, the integrator reset is an
important step when using this method in a simulation or on
a microcontroller to calculate ψs.

Alternatively, ψs(is, θ) can be obtained using one of two
methods:

1) A look up table constructed with the rotor fixed at
specific angles in the range 0 ≤ θ ≤ 2β. This requires
a large memory allocation in the controller.

2) An approximate parameterized empirical model, with
the parameters either obtained to best fit experimental
data (of method 1) or from an online parameter identi-
fication method as discussed in this work.

One such empirical model was proposed by Le-Huy and
Brunelle [18] and is the basis of a new empirical model
developed in this work. This model is given by

ψs(is, θ) = ψq(is)+
(
ψd (is)− ψq(is)

)
f (θ ), (5)

whereψd (.) is the aligned flux linkage,ψq(.) is the quadrature
flux linkage, and f (θ ) is a function representing the transition
along the range 0 ≤ θ ≤ 2β. In other words, the flux linkage
is maximum when stator phase a and a rotor pole are directly
aligned, withψs = ψd . In quadrature,ψs = ψq, which occurs
at θ = β. These flux linkages are functions of the phase
current as

ψd (is) = l1is + l2ise−l3is , (6)

ψq(is) = Lqis, (7)

where ψq(is) is parameterized with Lq, but unlike Le-Huy
and Brunelle [18], ψd (is) is parameterized with l1, l2, and l3.
These parameters along with Rs will be obtained using online
parameter identification.

In addition, the function representing the transition
between ψd (.) and ψq(.) in (5) is given as [18]

f (θ ) =
2N 3

r

π3 θ
3
−

3N 2
r

π2 θ
2
+ 1. (8)

Recalling that β , π/Nr , we can rewrite this equation as

f (θ ) =
2
β3
θ3 −

3
β2
θ2 + 1. (9)

Note that ψd (.) and ψq(.) are only functions of the current
is and f (.) is only a function of θ . This analytical function
is similar in form to the work by Miller et al. [20], but it
is simpler as it has fewer parameters to identify. Based on
this model from [18], f (0) = 1, f (β) = 0 and f (2β) = 5.
Therefore, f (.) is only valid for 0 < θ < β, i.e., between the
aligned (direct) and the unaligned (quadrature) positions of

phase a. So, a modification is necessary to make f (.) valid for
a complete cycle in the range 0 < θ < 2β, by redefining it as

f (θ )=
(

2
β3
θ3 −

3
β2
θ2 + 1

)
(1− us(θ − β))

+

(
2
β3
(2β − θ)3−

3
β2
(2β−θ)2+1

)
us(θ − β),

(10)

where us(.) is the unit step function. It can be simplified to

f (θ )=
1
β3

[(
2θ3 − 3βθ2 + β3

)
− 4 (θ − β)3 us(θ − β)

]
.

(11)

Therefore, the flux linkage model is comprised of
equations (5), (6), (7) and (11).

B. THE INDUCED ELECTROMAGNETIC TORQUE
The electromagnetic torque τe,s resulting from is in each
phase s is computed from the coenergy functionW ′ as

τe,s =
∂W ′

∂θ
, (12)

whereW ′ =
∫ ι=is
ι=0 ψ(ι, θ)dι.

The coenergy is in turn computed from ψs(is, θ) either
numerically using the tables or analytically from equation (5).
Accordingly,

τe,s(is, θ) =
∂W ′

∂θ
=

∫ ι=is

ι=0

∂ψ(ι, θ)
∂θ

dι. (13)

Then,

∂ψ(is, θ)
∂θ

=
(
ψd − ψq

) ∂f (θ )
∂θ

, (14)

and

f ′(θ ) ,
∂f (θ )
∂θ
=

6 (θ − β)
β3

[θ − 2 (θ − β) us(θ − β)] .

(15)

Since this is a derivative of a piecewise function, the deriva-
tive of each portion is obtained separately. In this case,
the first order derivative at θ = β is zero for both functions.
Hence, there is no discontinuity and as a result

τe,s(is, θ) =
∫ ι=i

ι=0

((
ψd (ι)− ψq(ι)

)
f ′(θ )

)
dι = g(is)f ′(θ ),

(16)

where,

g(is),
1
2
(l1 − Lq)i2s −

l2
l3
ise−l3is +

l2
l23

(
1− e−l3is

)
(17)

The total induced electromagnetic torque is the sum

τe(ia, ib, ic, θ) = τe,a + τe,b + τe,c
= g(ia)f ′(θ )+ g(ib)f ′(θ − αs)

+g(ic)f ′(θ − 2αs), (18)
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with αs = 2π/(mNr ) = π/6 rad being the phase shift
between the stator phases.

In summary, the SRMmodel is given by equations (1), (2),
and (3), in addition to

ψs(is, θ) = ψq(is)+
(
ψd (is)− ψq(is)

)
f (θ )

= Lqis+
(
(l1−Lq)is+l2ise−l3is

)
f (θ ), (19)

τe(ia, ib, ic, θ) = g(ia)f ′(θ )+ g(ib)f ′(θ − αs)
+ g(ic)f ′(θ − 2αs), (20)

with f (θ ), f ′(θ ) and g(is) defined in (11), (15) and (17),
respectively.

III. ONLINE PARAMETER IDENTIFICATION MODEL
The identification model is derived next, consisting of elec-
trical and mechanical regressor equations. They are solved in
sequence to obtain all the SRM parameters. Also, two error
metrics are introduced, namely, an error index and a normal-
ized relative error, which are used as qualifying metrics for
the results.

A. ELECTRICAL REGRESSOR
For any phase s ∈ {a, b, c}, we substitute (19) in (4) and
rearrange to get∫ t ′=t

t ′=t0
vsdt ′ = Rs

∫ t ′=t

t ′=t0
isdt ′ + Lqis(1− f (θ ))

+ l1isf (θ )+ l2ise−l3is f (θ ). (21)

During the online operation of the machine, let the current
be regulated at two reference values over two time ranges as

is ≈

{
Iref 1, ∀t ∈ (t1a, t1b)
Iref 2, ∀t ∈ (t2a, t2b)

, (22)

for which indicator functions can be defined as

ν1,

{
1, ∀t ∈ (t1a, t1b)
0, otherwise.

, ν2,

{
1, ∀t ∈ (t2a, t2b)
0, otherwise.

. (23)

We can approximate the last term of (21) as l2 ise−l3 is ≈
l2 Iref e−l3 Iref over a given time range, either by tightly
regulating the phase current or simply by collecting data
points only when they satisfy a tolerance bound 1Itol ,
i.e.,

∣∣Iref − is∣∣ < 1Itol . Representing these equations in
regressor form we obtain

y = W K , (24)

with,

y ,
[
ν1
∫ t ′=t
t ′=t0

vsdt ′ ν2
∫ t ′=t
t ′=t0

vsdt ′
]T
,

W ,

[
ν1
∫ t ′=t
t ′=t0

isdt ′ ν1 (1− f (θ )) is ν1f (θ )is
ν2
∫ t ′=t
t ′=t0

isdt ′ ν2 (1− f (θ )) is ν2f (θ )is

ν1f (θ ) 0
0 ν2f (θ )

]
,

K ,
[
κ1 κ2 κ3 κ4 κ5

]T
,
[
Rs Lq l1 l2Iref 1e−l3Iref 1 l2Iref 2e−l3Iref 2

]T
,

where K contains the unknown parameters, whereas y and
W are known from the measured variables. The variables are
sampled at t = T , 2T , 3T , . . . ,NT , where T is the sam-
pling period and N is the total number of samples collected.
So y and W are computed for each data point n = 1 to N .
One desires to find K that minimizes the mean squared error
defined by

E2(K ) ,
N∑
n=1

‖y(nT )−W (nT )K‖2 . (25)

Multiplying out the right-hand side gives

E2(K ) = Ry − RTWyK − K
TRWy + KTRWK , (26)

where, Ry=
N∑
n=1

yT (nT )y(nT ), RW=
N∑
n=1

W T (nT )W (nT ), and

RWy=
N∑
n=1

W T (nT )y(nT ).

If RW is invertible, we can minimize E2(K ) by
∂E2(K )/∂K = −2RWy + 2RWK = 0, that is,

K = R−1W RWy. (27)

After computing K , recall that κ4 = l2 Iref 1e−l3 Iref 1 and
κ5 = l2 Iref 2e−l3 Iref 2 , so we need to find l2 and l3 from these
parameters. Further restricting the reference currents so that
Iref 1 = 1

2 Iref 2, facilitates finding l2 and l3 as will be shown.
Iref 2 can be the rated current of the machine, or an operating
point close to it, resulting in a model that represents a wide
range of operating points. However, any other two reference
currents can be used so long as they represent the linear and
saturation regions of operation. To solve for l1 and l2 using(
κ4, Iref 1

)
and

(
κ5, Iref 2

)
, we divide κ5 by κ4, and rearrange

to get l3 as

l3 =
ln
(
κ4Iref 2

)
− ln

(
κ5Iref 1

)
Iref 2 − Iref 1

. (28)

Substituting back in κ5, and solving for l2 we get

l2 =
κ5

Iref 2
el3Iref 2 . (29)

B. MECHANICAL REGRESSOR
After finding the electrical parameters, the induced elec-
tromagnetic torque can be computed using (2), (20), (15)
and (17). Additionally, (2) can be integrated to add a second
equation forming the mechanical parameter identification
model

τe(i, θ) = J
dω
dt
+ Bf ω + τL (30)∫ t ′=t

t ′=0
τe(i, θ) dt ′ = Jω + Bf θ + τL t (31)

Rewriting them in regressor form

yM = WM KM , (32)
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where,

yM ,
[
τe(i, θ)

∫ t ′=t
t ′=0 τe(i, θ) dt

′

]T
,

WM ,

[
dω/dt ω 1
ω θ t

]
,

KM ,
[
κ6 κ7 κ8

]T
,
[
J Bf τL

]T
.

KM contains the unknown mechanical parameters, whereas
yM and WM are known from the N sampled measurements.
Note that J and Bf represent the combined SRM and load
coefficients. Also, τL is assumed to be constant over the brief
period over which the data is collected. One desires to find
KM that minimizes the mean squared error defined by

E2(KM ) ,
N∑
n=1

‖yM (nT )−WM (nT )KM‖2 . (33)

where, in this case, Ry =
N∑
n=1

yTM (nT )yM (nT ), RW =

N∑
n=1

W T
M (nT )WM (nT ), and RWy =

N∑
n=1

W T
M (nT )yM (nT ). This

was shown to yield KM = R−1W RWy.

C. AN ERROR INDEX
The squared errors in (26) and (33) can be used to define an
Error Index. This determines how well the identified param-
eter set K∗ provides a best fit for the collected data [3], [5],
and is defined as,

EI ,
√
E2(K∗)/E2(0)

=

√(
Ry − 2RTwyK∗ + K∗TRWK∗

)
/Ry ≤ 1, (34)

where, the squared error at K∗ is compared to the squared
error at the zero vector, i.e., K = 0. EI should be less than
one; otherwise, K∗ is as good as any arbitrary set K .

D. A NORMALIZED RELATIVE ERROR
One main objective of the parameter identification method is
to produce a model that can estimate the stator flux linkage
ψs(t) and induced torque τe(t) state variables. Therefore,
a useful metric for determining the efficacy of the proposed
method is to calculate the relative error between the actual
(e.g., from simulation data) and the estimated state variables.
This can be defined similar to the state estimation methods in
the work by Chen et al. [29]–[31] as

ēx ,
1
N

N∑
n=1

∣∣∣∣xact (nT )− xest (nT )xact (nT )

∣∣∣∣ , (35)

where, x is the state variable of interest (e.g., ψs), xact is the
measured (or simulated) variable, and xest is its estimated
counterpart. Note that in practice, the sampled data must be
in a range where xact (nT ) is not zero, in which case, N is
replaced by the number of samples in this valid range.

IV. IMPLEMENTATION AND RESULTS
The application of the proposed parameter identification
method is demonstrated in simulation with the implemen-
tation procedure listed in detail. A model of the SRM is
constructed in Simulink along with: a mechanical load, a hys-
teresis current controller, and a data acquisition block, see
Fig. 2. Moreover, a three-leg asymmetric bridge converter is
used to drive the SRM, which is a standard converter for SRM
drives [28].

The model represents an SRM with Ns = 6 stator poles,
Nr = 4 rotor poles, that is rated for an output power
of 8 hp at a rotor speed of 860 rpm, and is driven by a converter
with a DC bus voltage of 240 V and a rated line current
of 180 A. Its parameters include Rs = 0.3 �, J = 0.05
kg.m2, and Bf ,SRM = 0.001 N.m.s. To model a practical
mechanical load, both viscous friction and constant torque
loads are applied with Bf ,L = 0.4 N.m.s and τL = 4 N.m,
respectively. For a conveyor belt application, for example,
viscous friction load exists at all contact points along the
belt and an incline in the belt along with the mass of the
loaded objects will present a constant applied torque. If the
loaded objects are traveling upwards along the conveyor belt
a load torque results, whereas traveling downwards results in
a generating torque. Experimental flux linkage data is used
with ψs,max = 0.43 Wb-t, Is,max = 180 A and, the flux
linkage curvesψs(is, θ) are shown for different is and θ values
in Fig. 3.

With the SRM inertia and friction moved outside of the
SRM block in Fig. 2, τind (t) can be directly measured. Also,
when Rs is known, ψs(t) can be computed by integrating
the vs and is, which is performed by its block in Fig. 2.
Both waveforms are used for comparison with their estimated
counterparts τind,est (t) and ψs,est (t), but they are otherwise
not needed by the identification method.

The flux linkage curves can be used to obtain Lq =
ψ(180, 45◦)/180 = 0.5556 mH at the quadrature position.
However, the remaining parameters have to be obtained to fit
the empirical flux linkage model.

A. PARAMETER IDENTIFICATION PROCEDURE
The procedure is detailed in the following steps:

1) With the SRM online and connected to its load, it is
brought up to two operating points using a hysteresis
current controller, e.g., Is,ref of 75 A and 150 A for a 1 s
interval each, with a switching frequency fs = 20 kHz.
The hysteresis band is set to ±5% of Is,ref . That is, for
each active phase s ∈ a, b, c, the switches are turned on
when is < Is,ref × 0.95, turned off when is > Is,ref ×
1.05, and kept unchanged otherwise.

2) The collected data includes vs, is, and θ , where the sam-
pling frequency is the same as the switching frequency.
It is also helpful to record the active phase s ∈ {a, b, c}
during data collection. This facilitates determining the
parameters of each phase and separately modeling any
asymmetries in the SRM; potentially identifying an
imminent failure in one of the phases.
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FIGURE 2. SRM Simulink model.

3) Select the data points where the current is is within
Itol = ±4% around the reference current Iref ,
i.e.,

∣∣Iref − is∣∣ /Iref < Itol .
4) Numerically integrate is and vs, resetting whenever

is = 0. Also, integrate ω to get θ if the latter is not
measured.

5) The modulo of the rotor angle θ is taken with periodic-
ity 2β = 90◦, and is used to calculate f (θ) and f ′ (θ),
in (11) and (15).

6) Set each indicator function ν1, ν2 in (15) to 1, whenever
its corresponding reference current is active.

7) The sampled data, indexed from n = 1 to N , is used
to calculate y(nT ) andW (nT ) in (24) and construct the
regressor matrices Ry, RW & RWy of (26).

8) With K = R−1W RWy: Rs = κ1, Lq = κ2, and l1 = κ3.
Also, calculate l2 and l3 using (29) and (28), respec-
tively. Its EI is calculated using (34).

9) Use the identified electrical parameters to compute
τe(ia, ib, ic, θ) in (20).

10) Use the same sampled data with a digital low pass
filter, e.g., 4th order low pass Butterworth filter set at
fc = 200 Hz, and substitute for τe, ω, and dω/dt to
calculate yM (nT ) and WM (nT ) of (32). Note that in
Matlab this can be implemented using the filtfilt
function with the order set to 2, as the function filters
the data forward and backward to eliminate phase shifts
in the resulting filtered signals.

11) The mechanical regressor matrices Ry, RW & RWy of
equation (33) are constructed resulting in the vector
KM = R−1W RWy.

12) Then, the identified mechanical parameters, which
combine the SRM and its load, are J = κ7 andBf = κ8,
and τL = κ9, and EI is found using (34).

FIGURE 3. SRM model flux linkage data at different angles.

B. SIMULATION RESULTS
The steps of the procedure are implemented on the SRM
in Fig. 2. The plots of the measured variables va, ia, and ω are
shown in Fig. 4, Fig. 5, and Fig. 6, respectively. The estimated
electrical parameters are listed in Table 1 along with the
actual (known) values. An error index EI = 0.0173 was
calculated showing that the parameters resulted in a model
that is a good fit for the collected data.

These estimated parameters are used to compute ψa,est
and τest as shown in Fig. 7 and Fig. 8, respectively. The
waveforms show that both estimated waveforms closely fol-
low their measured counterparts. Specifically, the normalized
relative errors in these two waveforms are ēψ = 0.018 and
ēτ = 0.15, respectively.
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FIGURE 4. Stator voltage va vs. time with zoomed subplots.

FIGURE 5. Stator current ia vs. time with Iref and the tolerance bounds
with zoomed subplots.

TABLE 1. Electrical parameter identification results.

Then, the estimated variables ψa,est and τest are used to
obtain themechanical parameters, which are shown in Table 2
along with the actual (known) values. The error index is
EI = 0.066, which also shows that the parameters are a good
fit for the collected data and that the machine is sufficiently
excited. In addition, the total execution time of the proce-
dure is 2.45 seconds, with 2.0 seconds for data collection
and 0.45 seconds for computations, on a PC with an Intel

FIGURE 6. Rotor speed ω vs. time.

FIGURE 7. Actual ψexp and estimated ψest flux linkages vs. time with
zoomed subplots.

TABLE 2. Mechanical parameter identification results.

Core i5 CPU operating at 2.40 GHz with an 8 GB RAM.
Therefore, the proposed online parameter identification
method furnished all electrical and mechanical model param-
eters of the SRM. Both the plots of the estimated flux and
torque obtained from the analytical model proposed in this
work are close to those computed from the measured data.

C. IMPACT OF DISTURBANCE
To further validate the proposed online identification
method, the impact of disturbance on the measured signal
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FIGURE 8. Actual τexp and estimated τest torques vs. time with zoomed
subplots.

is investigated. Specifically, the additive white gaussian noise
model function is applied to all the signals that are used by
the identification model, namely, va, ia, ω and θ for phase
a. Also, va and ia are numerically integrated after the added
noise. Then, the same identification algorithm settings are
used. Signal to noise ratios of SNR = 40 dB, SNR = 34 dB
and SNR = 30 dB are used, with the percentage error in the
parameters listed in Table 3. These results show that as the
noise levels increase, the electrical parameters are still identi-
fied with relatively low errors. However, the performance of
the mechanical identification deteriorates with higher noise
levels, particularly with regards to τL .

TABLE 3. Parameter identification errors at different SNR levels.

D. ALTERNATIVE FLUX LINKAGE MODELING AND ONLINE
IDENTIFICATION
As mentioned in Section I, there are alternative online iden-
tification techniques. To contrast the proposed method with
existing ones, the approach in [24] also provides an empirical
flux linkage model to replace look up tables that instead relies
on a Fourier series function in the exponent of the model.
Online data is used with the assumption that all the other
electrical parameters are known such as ψs,max and Rs, and
that an initial guess of the parameters is known a priori
to improve the convergence of their iterative method. It is
based on an earlier work [23] with more Fourier series terms,

however, the earlier approach did not converge when
attempted in the current simulation. Also, the alternative
iterative method in [27] is more comprehensive as it furnishes
all electric and mechanical parameters of the SRM, however,
it relies on the assumption of linear magnetics, which does
not represent SRMs operating at their rated conditions.

The flux linkage model [24] is given by

ψs=ψs,max

(
1− e−isfs(θq)

)
, (36)

fs(θq)= a0 + a1 cos(θq)+ a2 cos(2θq)+ a3 cos(3θq), (37)

where θq = θ + π/Nr as chosen in [24], i.e., it starts at the
unaligned (quadrature) position. Rearranging the flux model
in regressor form

Y = φTχ, (38)

with,

Y , ln
(

ψs,max

ψs,max − ψs

)
, (39)

φT ,
[
is is cos(θq) is cos(2θq) is cos(3θq)

]
, (40)

χT ,
[
a0 a1 a2 a3

]
, (41)

where, φ and Y contain the measurable quantities, χ are the
unknown parameters, and ψs =

∫
vs − isRsdt is calculated

online.
The following recursive least squares (RLS) discrete-time

equations are calculated at time iteration k

Pk =
1
γ

[
Pk−1 −

Pk−1φkφTk Pk−1
γ + φTk Pk−1φk

]
, (42)

εk = Yk − φTk χk−1, (43)

χk = χk−1 + Pkφkεk . (44)

This identification method was implemented in Simulink
by adding the block shown in Fig. 9 and its RLS block
in Fig. 10. Phase a parameters are estimated, with the
RLS block enabled whenever phase a is active. More-
over, a discrete-time Butterworth second order low pass
filter is applied to the signals with a cuttoff frequency
fc = 1 kHz.

The main issue observed with the method was that the
parameters in χ converge to a new set of values with every
phase a cycle. Specifically, there are four parameter sets that
were heuristically identified from the resulting plots with the
aid of the error function ε. After converging to a set of values
that yield a low error, they diverge again before the end of
each cycle as shown in Fig. 11 for the parameters and Fig. 12
for the error function ε. To achieve this temporary conver-
gence, the following additional factors were considered:

1) Selecting the appropriate cutoff frequency fc was nec-
essary to avoid over filtering of the flux linkage signal
if fc is too low and to avoid divergence of χ if fc is too
high.

2) The RLS parameter γ has to be 0.95 < γ < 1.00,
so γ = 0.97 was selected.
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FIGURE 9. RLS Simulink online identification method.

FIGURE 10. RLS regressor block.

3) The controller was set to a fixed reference current at the
rated value Is,ref = 180 A for a 1 s interval.

4) The machine was slowed down by increasing the load’s
coefficient of viscous friction to Bf ,L = 2.2 N.m.s to
collect more data when phase a is enabled.

5) Identification starts at t = 0.2 s to skip over initial
transients.

As a result, the four χ sets of identified parameters are
shown in Table 4. These result in four alternative estimated
waveforms forψa,est as shown in Fig. 13. Note that the y-axis
in these figures is restricted for clarity and does not show the
diverging waveforms. It can be seen that each one of the esti-
mated ψa,est waveforms closely matches the actual ψa albeit
once every four cycles. In conclusion, the implementation of
the RLS algorithm under these simulated conditions of the

FIGURE 11. RLS identification of the four parameters in χ vs. time with
zoomed subplots.

TABLE 4. Parameter χ sets for the RLS online identification method.

SRM is not reliable in producing a single empirical function
that captures the behavior of the flux linkage ψa.
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FIGURE 12. RLS error function ε vs. time with zoomed subplots.

FIGURE 13. The actual and four RLS estimated flux linkage waveforms vs.
time.

V. CONCLUSION
An online parameter identification method was developed in
this work for the SRM, which uses a new nonlinear empir-
ical model of the machine. All electrical and mechanical
parameters of the model were identified without a priori
knowledge or offline measurements. It was shown that 2 sec-
onds of data collection time sufficiently excited the parameter
identification regressor equations, with a computation time
of 0.45 seconds to obtain all the parameters. Also, the result-
ing analytical model closely predicted the flux linkages and
induced electromagnetic torque waveforms compared to their
measured counterparts in simulation. In addition, the impact
of disturbance due to noise inmeasurements was investigated.
It was found that the electrical parameter identification was
reliable, and that the mechanical parameter identification
only deteriorated at an SNR of 30 dB and lower. Key fea-
tures of the proposed method are the non-iterative algorithm
that would otherwise require proof of convergence and the

ability to identify each phase independently. For compari-
son, a recursive least squares method was demonstrated that
diverged in the simulation. The proposed online method is
therefore more comprehensive and more reliable than exist-
ing iterative methods. It is also particularly beneficial for
embedded system drives that require a fast algorithm that
enables periodic diagnostics of the machine, is capable of
independently detecting anomalies in each phase, and can
support advanced torque ripple minimization control tech-
niques.
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