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ABSTRACT Thangka murals are precious cultural heritage for Tibetan history, literature, and art. Digital
line drawing of Thangka murals plays a vital role not only as an abstracted expression of Thangka for art
appreciation but also as a fundamental digital resource for Thangka protection. Digital Thangka line drawing
can be categorized as image edge detection, which as a fundamental problem for computer vision, aims to
extract visually salient edges from images. Varieties of high-level computer vision tasks depend on edge
detection. Although existing non-learning and learning-based edge detection methods have progressed, they
failed to generate semantically plausible thin edges, especially thin in-object edges. We propose a novel
deep supervised edge detection solution Richer In-object Thin Edge Network (RITE-Net) to generate line
drawings of Thangka mural images. Compared to existing studies, firstly a new Cross Dense Residual
architecture (CDR) is proposed to propagate abundant edge features effectively from shallow layers to deep
layers of CNN using a long-range feature memory; Secondly, a new Hard Pixel Balancing (HPB) based
loss function strategy is designed to focus on hard pixel distinguishment. Experiments and tests on different
datasets show that the proposed RITE-Net is able to produce more visually plausible and richer thin edge
maps comparing to the existing methods. Both objective and subjective evaluations validated the competitive
performance of our method.

INDEX TERMS Edge detection, hard pixel balancing, line drawings, Thangka.

I. INTRODUCTION
As a kind of Tibetan encyclopedia [1], [2], Thangka murals
have become a very important cultural Heritage to study
Tibetan history, literature, and art. Digital line drawing of
Thangka murals plays a vital role not only as an abstracted
expression of Thangka for art appreciation but also as a
fundamental digital resource for Thangka protection.

Digital Thangka line drawing can be classified as image
edge detection, which as a fundamental problem for com-
puter vision, aims to extract visually salient edges and object
boundaries from images. Varieties of high-level tasks such as
image recognition [3], object detection [4], [5], segmentation
[6], [7], and image to image translation [8] depend on edge
detection.

Although edge detection methods have progressed,
there exist obvious limitations. 1) Traditional non-learning
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methods tend to either generate fake edges or lack important
edges because of the absence of high-level image semantics
(Fig.1(b)). This is because the traditional methods usually
extract low-level local cues of brightness, colors, gradients,
and textures, to classify edge and non-edge pixels. However,
it is difficult to use these local low-level cues to represent
object-level line information and image semantics [9]. This
inherent disadvantage prevents non-learning methods from
producing semantically plausible and visually satisfactory
edges. 2) Learning-based methods face serious problems too
although they have outperformed the non-learning methods
in recent years due to the capability of extracting and learning
of high-level image semantics [9]–[11]. The most com-
mon problems for learning-based methods such as incorrect
edges and large-scale shadow areas that around edges also
inevitably lead to unsatisfactory edge detection results.

Deep supervised learning has great potential for edge
detection and has been used in existing learning-based edge
detection methods such as HED [11], RCF [9], BDCN [12]
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FIGURE 1. The proposed RITE-Net achieved the best edge-map with richer image semantics and more edge details (Fig.1(d)). The existing learning-based
methods failed to generate vital edge details (eg: no face, hand and breast details in Fig.1(c)) while traditional non-learning method such as Canny tends
to either generate fake edges or lacks important edges because of the absence of high-level image semantics (Fig.1(b)). Fig.1(a)) is a Thangka mural.

FIGURE 2. The proposed Cross Dense Residual architecture (CDR) is capable of propagating abundant edge features effectively from shallow layers to
deep layers of CNN through two different kinds of skip connections: 1) Local Residual Connection (blue lines in Fig.2), and 2) Global & Local Dense
Connection (red lines in Fig.2). As inter-block connections, the Local Residual Connections are responsible for residual feature propagation between two
neighboring blocks; the Global & Local Dense Connections propagate both local features from the previous block and global features from the output of
the first block into each convolution layer of the current block. The proposed Hard Pixel Balancing (HPB) based losses are adopted to supervise six side
outputs and the final output at the end of the network.

due to its outstanding feature extraction performance. How-
ever, two challenges prevent existing learning-based methods
from generating satisfactory edge maps:

Challenge 1: No effective network architecture to propa-
gate edge information properly from shallow layers to deep
layers in a neural network. As a result, only some thick
contours and lines appear in the final output while many vital
edge details disappear (for example, in Fig.1(c), the face,
fingers, and breast areas of the Buddha disappear).

Challenge 2: Lack of attention to the hard pixels near
edges. The hard pixels refer to the pixels nearby edges
in an image, which are more difficult to be classified
into edge/non-edge pixels. Without paying attention to the
hard pixels, both shadow areas and false edges could
inevitably appear because of misjudging non-edge pixels
as edge pixels by algorithms (we term this situation as
false positive). Meanwhile, real edges also could disappear
because of misjudging edge pixels as non-edge pixels (false
negative) (for shadow areas see Fig.7 column 3-5). Owing
to shadow areas, false edges, and missing real edges, this
hard pixel problem inevitably degrades the quality of edge
maps.

The objective of this work is to provide a better edge detec-
tion solution (not only boundary/contour detection between
objects but also edge detection inside objects) to generate line
drawings of Thangka mural images. In this paper, we propose
a Richer In-object Thin Edge Network (RITE-Net, Fig.2)
based on cross dense residual architecture and hard pixel
balancing. The proposed method consists of two parts:

First (solution for Challenge 1), a novel Cross Dense
Residual architecture (CDR) is proposed to propagate abun-
dant edge features effectively from shallow layers to deep
layers of CNN. CDR consists of densely connected blocks.
CDR not only allows skip-connections between the outputs
of previous and current blocks (short-range feature fusion)
but also integrates features of shallow layers directly into
the layers locate inside each deep block (long-range feature
fusion). CDR stabilizes the training of deeper networks and
propagates edge features correctly with a long-range feature
memory.

Second (solution for Challenge 2), a new Hard Pixel Bal-
ancing (HPB) based loss function strategy is proposed to
pay attention to hard pixel distinguishment. HPB reduces the
relative loss for well-classified pixels, putting more focuses
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on hard, misclassified pixels. HPB enables training accurate
edge detectors in the presence of a vast majority of easy
background pixels by preventing the generation of false edges
and the missing of true edges.

Experiments show that our RITE-Net provides a
high-performance edge detector for generating accurate line
drawings for Thangka murals. In summary, the main contri-
butions of this work are:

1. A robust supervised deep CNN leaning framework for
edge detection is proposed, termed as RITE-Net: Richer
In-object Thin Edge Network.

2. A novel Cross Dense Residual architecture (CDR) is
proposed to stabilize the training of deeper networks and
propagate edge features correctly with a long-range feature
memory.

3. A new Hard Pixel Balancing (HPB) based loss function
strategy is proposed to focus on hard pixel distinguishment
and training.

4. For the first time, we introduce an end-to-end
learning-basedmethod to generate line drawings for the tradi-
tional Thangkamural images. The proposedmethod produces
more plausible and richer thin edge maps compared to the
existing methods.

II. RELATED WORK
A. EDGE DETECTION
As one of the most fundamental problems in computer vision
for several decades, there have emerged a large number of
works on edge detection. For a detailed review see [13], [14].
Broadly speaking, most edge detection methods can be cat-
egorized into three groups: 1) traditional edge detectors;
2) classic learning basedmethods; and 3) recent deep learning
methods.

1) TRADITIONAL NON-LEARNING EDGE DETECTORS
Early non-learning methods mainly focused on the utilization
of texture, intensity, and color gradients. Sobel detector com-
putes the gradient map and then generates edges by threshold-
ing the gradientmap [15]. Thewidely adopted Canny detector
[16] uses Gaussian smoothing as a preprocessing step and
then adopts a bi-threshold to produce edges. [17], [18] pro-
posed zero-crossing theory based edge detectors. Among the
early edge detectors, the Canny operator is more robust to
noise. In fact, the Canny operator is still very popular across
various tasks now because of its notable efficiency. Besides
these early pioneeringmethods, mammal vision systemswere
associated with the processing of edge and contour [19]–[21].
However, these methods have poor accuracy.

For the traditional non-learning methods, the absence
of high-level image semantics is the biggest issue, which
inevitably leads to either generating fake edges or lacking real
edges.

2) CLASSIC LEARNING-BASED EDGE DETECTION METHODS
Konishi et al. [22] proposed the first data-driven methods.
[23] formulated changes in brightness, color, and texture as

Pb features, and trained a classifier to combine the infor-
mation from these features. Arbelaez et al. developed Pb
into gPb [24]. In [25], Sketch token was proposed to repre-
sent mid-level information for contour and object detection.
StructuredEdges [26] employed random decision forests to
represent the structure of image patches and to produce edges
by inputting color and gradient as features. Other meth-
ods such as BEL [27], Multi-scale [28], sparse representa-
tion [29], and dictionary learning [30], obtained acceptable
results in most of the cases as well.

However, all these classic learning-based methods still
have limitations in challenging scenarios since they tended to
rely on hand-crafted features and had to employ sophisticated
learning paradigms.

3) DEEP LEARNING METHODS
In recent years, deep convolutional neural networks (CNN)
based methods achieved state-of-the-art performance for
edge detection, such as N4-Fields [31], Deep-Contour [32],
DeepEdge [33], and CSCNN [34]. Some newest methods
have demonstrated promising F-score performance improve-
ments. Xie and Tu [11] proposed an efficient and accurate
edge detector, HED, by connecting side output layers with
a holistically-nested architecture. Using the same architec-
ture of HED, Liu et al. proposed an improved architecture
RCF [9], to learn richer deep representations by extract-
ing features from all convolutional layers. [12] proposed
Bi-Directional Cascade Network (BDCN) structure, where
each layer is supervised at its specific scale, rather than
directly applying the same supervision to all CNN outputs.
Inspired by both HED and Xception, [10] proposed a new
method DexiNed to generate thin edge maps.

Although the aforementioned CNN-based methods have
advanced the state-of-the-art significantly, all of them still
inevitably generate fake edges or miss true edges since
they fail to propagate rich edge details correctly through
deep networks. Besides this, they paid no attention to hard
pixel distinguishment, which leads to inaccurate edge maps
as well.

B. HARD SAMPLE AND HARD PIXEL BALANCING
Hard sample training is not only a challenge for image clas-
sification because of class imbalance but also a potential
problem for the task of edge detection since the essence of
edge detection is classifying all pixels of an image to edge
pixels and non-edge pixels. This imbalance problem makes
the training of a deep CNN inefficient as most pixels are easy
negatives that contribute no useful signal for learning [35].
A common solution to overcome class imbalance is to per-
form hard negative mining [36]–[38] that trains hard exam-
ples more during training [39]. In contrast, [35] proposed
a novel solution, termed as Focal Loss, to naturally handle
the class imbalance and to efficiently train on all examples
equally without complex sampling strategy and also without
easy negatives overwhelming the loss.
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Similar to hard sample training, hard pixel training is also
a challenge for edge detection. As mentioned before, hard
pixels refer to the pixels that are near to edges and are more
difficult to be classified into edge or non-edge pixels. The
difference between hard sample and hard pixel is that the
former is a problem of sample-level imbalance (hard samples
and easy samples in a dataset) while the latter is a problem
of pixel-level imbalance (hard pixels and easy pixels in an
image).

Although the hard sample problem was partially resolved
by the above-mentioned methods, they only focused on hard
samples, but not on hard pixels. To the best of our knowledge,
the hard pixel problem has not been discussed before in edge
detection tasks.

III. METHODOLOGY
The proposed RITE-Net(Richer In-object Thin Edge
Network) consists of two parts: 1) a novel Cross Dense
Residual architecture (CDR) to propagate abundant edge
features effectively from shallow layers to deep layers of
CNN; and 2) a new Hard Pixel Balancing based loss function
strategy (HPB) to pay attention to hard pixel distinguishment
by reducing the relative loss for well-classified pixels, and
putting more focuses on hard, misclassified pixels.

A. CROSS DENSE RESIDUAL ARCHITECTURE (CDR)
Although the existing deep learning methods such as HED
[11], RCF [9], have achieved the state of art results for edge
detection, they still fail to propagate abundant edge details
correctly through deep networks, which inevitably leads to
inaccurate edge maps. Fig.2 shows the proposed CDR archi-
tecture, which consists of six blocks. The CDR network not
only produces an edge map by a side Upsampling Block (UB)
at each block, but also generates a final edge map at the end
of the network. All six side edge maps from the UBs and the
final edge map are concatenated together to output a fused
edge map.

There are two different kinds of skip connections in CDR:
1) Local Residual Connection (blue lines in Fig.2), and
2) Global & Local Dense Connection (red lines in Fig.2),
which are inspired by ResNet [40] and DenseNet [41],
respectively. As inter-block connections, the Local Residual
Connections are responsible for residual feature propagation
between two neighboring blocks; each Global & Local Dense
Connection propagates both local features from the previous
block and global features from the output of the first block
into each convolution layer of the current block. Furthermore,
1× 1 convolution (green square block in Fig.2) is adopted in
the both connections to build correlation of channels.

In each CDR block, there are two convolution modules
and one max-pooling layer. Each convolution has a 3 × 3
kernel size. For convolution modules, the first convolution is
followed by batch normalization and ReLU activation while
the second convolution is followed only by batch normaliza-
tion. The max-pooling layer is set by 3 × 3 kernel size and
stride 2.

Since the CDR is a multi-scale learning, it is necessary to
restore each side output to the scale of ground truth image by
Upsampling Block (UB). Inspired by HED [11] and DexiNed
[10], we adopt a transpose convolution strategy in UB.

FIGURE 3. The proposed CDR improved the architecture of existing
learning methods by adopting Local Residual Connection (blue line
in Fig.3(c)) and Global & Local Dense Connection (red lines). HED [11]
only utilizes CNN features from the last layer of each conv block
(Fig.3(a)); RCF [9] improves HED by utilizing CNN features from all layers
of each conv block (Fig.3(b)). Nevertheless, both of them have no global
or local skip connections between blocks, which weakens the
propagation ability of edge features through a deep neural
network.

Summary of Advantages: Fig.3 illustrates the differences
and improvements of our CDR to some existing representa-
tive deep learningmethods. Powered by both the Local Resid-
ual Connection (blue lines in Fig.2 & Fig.3) and the Global
& Local Dense Connection (red lines in Fig.2 & Fig.3),
our CDR not only stabilizes the training of deeper net-
works, but also propagates richer edge details correctly with
a long-range feature memory.

B. HARD PIXEL BALANCING (HPB)
Hard pixel training problem has a crucial impact on the
performance of edge detection tasks because it is challenging
to classify hard pixels into edge or non-edge pixels. Fig.4
is an illustration of hard pixels. We divide all pixels of an
image into three types: 1) easy negative pixels that locate far
from lines (upper right and down left areas of Fig.4(d) that
pointed by 2 green arrowed lines); 2) easy positive pixels that
locate inside of lines (pointed by 1 blue arrowed line); and
3) hard pixels that locate nearby lines (pointed by 2 orange
arrowed lines). The hard pixels (both positive and negative)
have more chance to be misclassified, which leads to false
positive pixels and false negative pixels. As a result, there will
not only appear false edges (false positive pixels) but also lack
true edges (false negative pixels).

We propose a Hard Pixel Balancing (HPB) based loss
function strategy to resolve this problem. HPB utilizes two
different loss functions for two training stages respectively:
1) for pretrain stage, inspired by FocalLoss [35], we adopt
a Pixel-level FocalLoss (PFL) to more focus on hard pixels
and less focus on easy pixels; and 2) for finetune stage, a new
piecewise cross entropy loss function is proposed to focus
only on hard pixels.

1) PIXEL-LEVEL FocalLoss (PFL) FOR PRETRAIN STAGE
Let (i, j) be a pixel in an image I, y(i, j) be ground truth pixel,
y′(i, j) be prediction P(y = 1|x). For simplicity, we use y for
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FIGURE 4. The illustration of hard pixel problem. It is challenging for learning based methods to classify the hard pixels that locate nearby lines (pointed
by 2 orange arrowed lines in Fig.4(d)) into edge or non-edge pixels. As a result, there will not only appear false edges (false positive pixels) but also lack
true edges (false negative pixels). Contrarily, easy pixels are much easier to be classified (both easy negative pixels that pointed by 2 green arrowed lines
and easy positive pixels that pointed by 1 blue arrowed line; for more details, see Section 3.2.

y(i, j), y′ for y′(i, j). For a single image, we define PFL as:

LPFL =
∑
i,j

(−α y (1− y′)γ log(y′)

− (1− α) (1− y) (y′)γ log(1− y′)) (1)

where α is an adaptive parameter that can be configurated
automatically for each image, γ is a hyperparameter. α is
defined as:

α = Y_ / (Y+ + Y_) (2)

where Y+ and Y_ denote the edge and non-edge ground truth
label sets of an image, respectively. As for a typical image,
the distribution of edge/non-edge pixels is heavily biased:
90% of the ground truth is non-edge, like in HED [11], α
is a class-balancing weight for each image which can easily
offset the imbalance between edge and non-edge pixels.

The hyperparameter γ is value greater than 0 that set
manually, the role of (1− y′)γ is to reduce the focus on easy
positive pixels. Because the value of (1−y′)γ has less impact
to easy positive pixels (y′ > 0.5) than to hard positive pixels
(y′ < 0.5). Similarly, the role of (y′)γ is to reduce the focus
on easy negative pixels.

Although the loss structure of our PFL is similar to Focal-
Loss [35], there are still key differences:

1) The proposed PFL is to focus on hard pixels of an image
(pixel-level balancing) while FocalLoss is to focus on
hard samples of an image dataset (sample-level balanc-
ing).

2) The parameter α is an adaptive parameter that can be
automatically set in our PFL while it is a hyperparam-
eter that needs to be set manually in FocalLoss.

2) PIECEWISE CROSS ENTROPY LOSS (PCEL)
FOR FINETUNE STAGE
After the first stage training converges, a new piecewise cross
entropy loss is designed for finetune stage.

We first define a function g(y, y′) as:

g(y, y′) = 1− f (1− m− y) f (1− m− y′)

− f (y− m) f (y′ − m) (3)

where y, y′ are GT and prediction of a pixel respectively, m is
a hyperparameter to determine upper threshold (y=1∧y′<m)

and lower threshold (y = 0 ∧ y′ > (1 − m)) of hard pixels.
in this work we set m = 0.6. f (x) is a piecewise function:

f (x) =

{
1, x ≥ 0
0, else

(4)

According to Eq.(3) and (4), we have:

g(y, y′) =


0, y = 1 ∧ y′ ≥ m
1, y = 1 ∧ y′ < m
1, y = 0 ∧ y′ > (1− m)
0, y = 0 ∧ y′ ≤ (1− m)

(5)

Then we define the Piecewise Cross Entropy Loss as:

LPCEL =
∑
i,j

g(y, y′)(−y log(y′)−(1− y) log(1−y′)) (6)

According to Eq.(5) and (6), the loss LPCEL = 0 for easy
positive pixels (y = 1 ∧ y′ ≥ m) or easy negative pixels
(y = 0 ∧ y′ ≤ (1 − m)), that means the network no longer
propagate the loss of easy pixels backward; as a result, it only
trains the hard pixels.
Summary of Advantages: The proposed HPB strategy

reduces the relative loss for well-classified pixels, putting
more focuses on hard, misclassified pixels. HPB is capable
of learning richer edge details and training accurate edge
detectors by avoiding the generation of false edges and the
missing of true edges greatly.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. DATASET AND EXPERIMENT SETUP
Although there are some popular datasets such as BSDS [42],
NYUD [43], PASCAL [44], CID (contains only 40 contour
images) [20], all of them are for training and evaluation
of contour / boundary detection (here the words contour /
boundary mean the edges between objects) or semantic seg-
mentation tasks, but not for detailed edge detection (both
in-object and inter-object edges). BIPED [10] is a new and
better dataset for edge detection. Fig.5 shows the difference
of datasets, we can easily find that the samples of BIPED
(Fig.5(e)) contain rich in-object edgeswhile BSDS (Fig.5(a)),
NYUD (Fig.5(b)), PASCAL (Fig.5(c)), CID (Fig.5(d)) have
no in-object edges. To the best of our knowledge, There are
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FIGURE 5. BIPED [10] (Fig.5(e)) is the most suitable public dataset for our edge detection task although there are some more popular datasets such as
BSDS [42], NYUD [43], PASCAL [44], CID (contains only 40 contour images) [20]; in most cases, these datasets are suitable for contour / boundary
detection ( here the words contour / boundary mean the edges between objects) or semantic segmentation tasks, but not for detailed edge detection
(both in-object and inter-object edge details). We can easily find that the samples of BIPED (Fig.5(e)) contain rich in-object edges while BSDS (Fig.5(a)),
NYUD (Fig.5(b)), PASCAL (Fig.5(c)), CID (Fig.5(d)) have no in-object edges.

only two publicly available datasets intended for edge detec-
tion MDBD [45], BIPED [10]. However, edges in MDBD
dataset have not been cross validated and contain wrong
annotations in some cases [10]. Hence, edge detector algo-
rithms trained by these incorrectly annotated edges would be
misguided.

In this work, we adopt BIPED as a training dataset since
there is no edgemap ground truth for Thangkamurals. BIPED
contains 250 1280 × 720 images that have been carefully
annotated and cross-checked. The dataset was randomly split
into a training set (65%), a validation set (15%), and a test-
set (20%). Like HED, data augmentation process has been
performed on the training set and validation set by random
splitting, rotation, cropping, and flipping. For testing, we use
both the above-mentioned BIPED testset and our Thangka
images.

We trained our model on NVIDIA P100 GPU. The model
converges after 50K iterations with a batch size of 8 at the
pretrain stage and converges after 30K iterations at the fine-
tune stage. In order to validate and compare the performance
of our proposed edge detector, three state-of-the-art meth-
ods HED [11], RCF [9], and BDCN [12] were also trained
with the BIPED dataset; in addition, the classic non-learning
detector CANNY [16] was also evaluated.

B. PERFORMANCE ON BIPED TESTSET
1) QUANTITATIVE EVALUATION
We adopt the BIPED testset to evaluate edge detection accu-
racy using three standard measures: Average Precision (AP),
F-score at both Optimal Dataset Scale (ODS) and Optimal
Image Scale (OIS), where F = 2×Precision×Recall

Presicion+Recall . Like pre-
vious works [9]–[12], a standard non-maximal suppression
(NMS) [26] technique is adopted to obtain the final edge
maps. Like HED and DexiNed [10], we provide two final
prediction results RITE-f (the concatenation and fusion of
all 7 outputs) and RITE-a (the average of all 7 outputs) for
comparisons.

The quantitative evaluation results are shown in Table.1
and Fig.6. In Table.1, the RITE-a achieved the best AP
while the RITE-f achieved the highest F-score both on OIS
and ODS. This validated the effectiveness of our methods.
In Fig.6, although the precision rates of RITE-f and RITE-a
are not the highest under the condition of low recall rate,
they are much higher than HED, RCF, and BDCN while
the recall rate increases. This should be due to the proposed
long-range feature memory of our CDR and the hard pixel
balancing mechanism of our HPB. An interesting observation
can be found in Fig.6: RITE-a has the longest curve, which
demonstrates that RITE-a achieves the best performance than
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FIGURE 6. Our RITE-a and RITE-f are more robust than the other
methods. Although the precision rates of RITE-f and RITE-a are not the
highest under the condition of low recall rate, they are much higher than
HED, RCF, and BDCN while the recall rate increases. This should be due to
the proposed long-range feature memory of CDR and the hard pixel
balancing mechanism of our HPB. An interesting observation can be
found in Fig.6: RITE-a has the longest curve, which demonstrates that
RITE-a achieves the best performance than the others including RITE-f
under high recall rate. In this work, we prefer to use RITE-a. Whenever the
term RITE is used it corresponds to RITE-a.

TABLE 1. The quantitative evaluation results show that the proposed
RITE-Net outperformed the traditional edge detector Canny and three
learning-based methods HED, RCF and BDCN. We provide two prediction
results RITE-f (the concatenation and fusion of all 7 outputs) and RITE-a
(the average of all 7 outputs) for comparisons. the RITE-a achieved the
best AP while the RITE-f achieved the highest F-score both on OIS and
ODS.

the others including RITE-f under high recall rate. In this
work, we prefer to use RITE-a. Whenever the term RITE is
used it corresponds to RITE-a.

2) QUALITATIVE EVALUATION
Fig.7 shows some visual comparisons on the BIPED testset.
We can easily find the visual differences between different
edge detection methods. The proposed RITE-Net is capable
of generating visually clear thinner edge maps compared to
the classic non-learning method Canny and the existing rep-
resentative learning methods. Canny detector either produces
fake edges or lacks real edges; what’s more, it contains no
high-level image semantics. Although HED [11], RCF [9]
and BDCN [12] can generate better edge maps than Canny,
their results still not only contain plenty of unnecessary
shadow areas around edges but also generate fake edges.

FIGURE 9. More edge examples of Thangka murals generated by our
method. Our RITE-Net achieved state-of-art edge detection performance
by generating visually satisfactory and semantically plausible edge maps
for Thangka mural images.

C. PERFORMANCE ON THANGKA TESTSET
Fig.8 shows the visual comparison on the Thangka testset.
Our RITE-net achieved the best edge maps with clear edges
of both in-objects and inter-objects. Canny detector inevitably
either produces fake meaningless edges or lacks semantically
important edges because of its inherent characteristics we
mentioned before. HED [11], RCF [9] and BDCN [12] failed
to generate some important edges (especially those in-object
edges). For the edge results of HED, RCF, and BDCN, nearly
all lines in the red area are totally missing in the first row
of Fig.8; in the second row, edge details of the Buddha’s
breast and the instrument are missing in HED and RCF while
the edge details of lines of halos disappear in all 3 methods;
in the third row, the inner edge details of the Buddha’s ribbon
are also totally missing in HED, RCF, and BDCN. On the
contrary, our RITE-net is capable of generating nearly every
important edge and represents the edge semantics of the
original mural images well.

From the above test results we can find that although HED,
RCF and BDCN are all trained with the same dataset BIPED
like our RITE-Net, they still cannot achieve satisfactory edge
maps. By combining our CDR architecture and HPB loss
functions, the edge detection performance of the RITE-Net
outperformed the other non-learning and learning methods.
Fig.9 shows more edge maps of Thangka murals generated
by our RITE-Net.

We performed a user study on the Thangka testset. 50 pro-
fessional evaluators (experts and students of Thangka art)
and 150 general evaluators are invited to evaluate Thangka
line drawings generated by the above 5 methods. We set
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FIGURE 7. The proposed RITE-Net is capable of generating visually clear thinner edge maps comparing to the classic non-learning method Canny and the
existing representative learning methods. Canny detector either produces fake edges or lacks real edges; what’s more, it contains no high-level image
semantics. Although HED [11], RCF [9] and BDCN [12] can generate better edge maps than Canny, their results still not only contain plenty of unnecessary
shadow areas around edges but also generate fake edges.

FIGURE 8. Our RITE-net achieved the best edge maps with clear edges of both in-objects and inter-objects on Thangka testset. Canny detector inevitably
either produces fake meaningless edges or lacks semantically important edges because of its inherent characteristics we mentioned before. HED [11],
RCF [9] and BDCN [12] failed to generate some important edges (especially those in-object edges). For the edge results of HED, RCF, and BDCN, nearly all
lines in the red area are totally missing in the first row of Fig.8; in the second row, edge details of the Buddha’s breast and the instrument are missing in
HED and RCF while the edge details of lines of halo disappear in all 3 methods; in the third row, the inner edge details of the Buddha’s ribbon are also
totally missing in HED, RCF, and BDCN. On the contrary, our RITE-net is capable of generating nearly every important edge and represents the edge
semantics of the original mural images well.

up 2 criteria for subjective evaluation: 1) line correctness and
2) artistic quality. We randomly chose 10 mural images from
the Thangka testset for the invited participants to evaluate.
Fig.10 shows the results. In Fig.10, the numbers are the
averaged percentages of the votes on the edge maps that
are regarded to be the best ones. In our user study, 57% of
the 150 general evaluators believed that our results have the
best visual performance while 48% of the 50 professional
evaluators chose our edge maps as the best ones. The user
study shown that our method outperformed the other methods
and achieved the best performance.

D. ABLATION STUDY: EFFECTIVENESS OF HPB
To verify the effectiveness of the proposed HPB strat-
egy, we replaced our HPB-based loss functions of stage1
(pretrain) and stage2 (finetune) with the Weighted Cross
Entropy loss (more details, see [11]), respectively; and trained
the model till converge. Table.2 and Fig.11 show a compari-
son of the ablation study of HPB-based loss functions.

In Table.2, we can see that themodel trained byHPB strate-
gies both in stage1 and stage2 (row 3 of Table.2) achieved
the best scores of OIS, ODS, and AP. Meanwhile, we can
also observe that the model trained only by the stage1 HPB
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FIGURE 10. The user study shown that our method outperformed the
other methods and achieved the best performance. 50 professional
evaluators (experts and students of Thangka art) and 150 general
evaluators are invited to evaluate Thangka line drawings generated by the
5 methods. 10 Thanka mural images are randomly chosen from the
Thangka testset for the invited participants to evaluate. The numbers in
the figure are the averaged percentages of the votes on the edge maps
that are regarded to be the best ones. 57% of the 150 general evaluators
believed that our results have the best visual performance while 48% of
the 50 professional evaluators chose our edge maps as the best ones.

FIGURE 11. The proposed 2-stage HPB loss functions enabled our
RITE-Net to produce visually clearer and thinner edges by focusing on
those hard pixels near edges (see the third column), while there are grey
shadow areas appear in both the first column (without any HPB strategy)
and the second column (only with stage1 HPB strategy). These grey
shadow areas are caused by the lack of focuses on hard pixels. While
comparing the first and the second columns, it’s not hard to observe
there are some visual improvements in the edge maps of the second
columns as well due to the stage1 HPB strategy we deployed.

strategy (row 2) outperformed the model deploying no HPB
strategy (row 1).

In Fig.11, the proposed 2-stage HPB loss functions enabled
our RITE-Net to produce visually clearer and thinner edges
by focusing on those hard pixels near edges (see the third
column of Fig.11), while there are grey shadow areas appear
in both the first column (without any HPB strategy) and

TABLE 2. Ablation study validated the effectiveness of the proposed Hard
Pixel Balancing strategies. The model trained by HPB strategies both in
stage1 and stage2 (row 3 of Table.2) achieved the best scores of OIS,
ODS, and AP. We can also see that the model trained only by the
stage1 HPB strategy (row 2) outperformed the model deploying no HPB
strategy (row 1).

the second column (only with stage1 HPB strategy). These
grey shadow areas are caused by the lack of focuses on hard
pixels. While comparing the first and the second columns,
it can be obviously observed that there are some visual
improvements in the edge maps of the second column as well
due to the stage1 HPB strategy we deployed.

V. CONCLUSION
We proposed an edge detection method RITE-Net based on
cross dense residual architecture and hard pixel balancing
for generating accurate line drawings of Thangka murals.
The proposed method consists of two parts: 1) a novel Cross
Dense Residual architecture (CDR) to stabilize the training of
deeper networks and propagate edge features correctly with
a long-range feature memory; 2) a new Hard Pixel Balanc-
ing (HPB) based loss function strategy to focus on hard pixel
distinguishment and training. For the first time, line drawings
of the traditional Thangka mural images are successfully pro-
duced by an end-to-end learning-based method. Experiments
on different datasets show that our method is able to produce
more visually plausible and richer thin edge maps comparing
to the existing methods. Both objective and subjective evalu-
ations validated the performance of our method.
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