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ABSTRACT Crowd-sourcing has become a promising way to build a feature-based indoor positioning
system that has lower labour and time costs. It can make full use of the widely deployed infrastructure as
well as built-in sensors on mobile devices. One of the key challenges is to generate the reference feature map
(RFM), a database used for localization, by aligning crowd-sourced trajectories according to associations
embodied in the data. In order to facilitate the data fusion using crowd-sourced inertial sensors and radio
signals, this paper proposes an approach to adaptively mining geometric information. This is the essential for
generating spatial associations between trajectories when employing graph-based optimizationmethods. The
core idea is to estimate the functional relationship to map the similarity/dissimilarity between radio signals
to the physical space based on the relative positions obtained from inertial sensors and their associated radio
signals. Namely, it is adaptable to different modalities of data and can be implemented in a self-supervised
way. We verify the generality of the proposed approach through comprehensive experimental analysis:
i) qualitatively comparing the estimation of geometric mapping models and the alignment of crowd-sourced
trajectories; ii) quantitatively evaluating the positioning performance. The 68% of the positioning error is
less than 4.7 m using crowd-sourced RFM, which is on a par with manually collected RFM, in a multi-storey
shopping mall, which covers more than 10, 000 m2.

INDEX TERMS Geometric constraint, sensor fusion, crowd-sourcing, graph optimization, feature-based
indoor positioning.

I. INTRODUCTION
Benefiting from the emergence and popularity of mobile
devices and wireless communication networks, indoor posi-
tioning services with low-cost and sufficient accuracy
become possible. Mobile devices play the role of receivers,
and can observe various measurements (e.g., GNSS,
IMU data, signals from Wi-Fi/BLE beacons) to indicate
the location-relevant information of pedestrians. Wireless
communication networks provide a large coverage of
location-relevant signals in the environment without addi-
tional expense. One promising way to build such an indoor
positioning system (IPS) is per crowd-sourcing which can
obtain data without the explicit participation of pedestri-
ans. In this way, it can make full use of the large number
of in-use mobile devices and the existence of abundant
location-relevant signals. Through the crowd-sourcing
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process, the goal is to construct a reference feature map
(RFM), which includes the location and its corresponding
location-relevant features, and can be applied to determine
the location of pedestrians in the online phase.

In the case of passively crowd-sourcing relevant data to
build an IPS, the main challenge is how to integrate col-
lected data from multiple contributors at different times,
which is equivalent to simultaneously localizing mobile
devices and generating a (feature) map of the environment
(i.e., SLAM) [1]. The process of RFM generation has
to tackle the problem of multi-modalities originated from
devices (i.e., hardware), pedestrian motions, and signal
sources [2], [3]. Among previous proposals [4]–[13], one
promising approach to achieving data fusion is trajec-
tory alignment1 via graph-based optimization by identifying
data associations (i.e., loop closures) contained in the
crowd-sourced data.

1Herein trajectory alignment denotes the estimation of transformation
matrix between associated trajectories. This term is borrowed from [6].
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When employing graph-based optimization for aligning
multi-trajectories obtained per crowd-souring, it consists two
ends: i) a front-end used to construct associations, which
represent the spatial-temporal connectivity naturally embed-
ded in measurable signals; and ii) a back-end to find the
optimal alignment between multi-trajectories via minimiz-
ing a given loss function. Several well-known open-source
software, such as g2o [14] and Ceres [15], can be utilized to
perform the optimization. However, there is lack of a general
approach to building data associations according to observa-
tions. The construction of spatial-temporal associations using
radio-frequency (RF) measurements is more difficult than
applying visual or range observations (e.g., camera, LiDAR)
[16], [17], because there is no well-defined model that can be
used to constrain the geometric relationship between RFmea-
surements. This paper focuses on automatically mining data
associations, which denote geometric constraints between
crowd-sourced traces.

In order to mitigate the challenge of fusing crowd-sourced
data, we propose an approach to constructing the spa-
tial constraints depending only on IMU values and other
location-relevant signals (mainly from Wi-Fi and BLE
signals). Both measurements are available in crowd-sourced
data. For a given similarity measure between RF features,
we estimate a mapping function to indicate the relationship
between the similarity in feature space and the geometric
distance in geographical space. The mapping function can be
used to approximate both the distance between a pair mea-
sured radio signals and the level of uncertainty of the distance
estimation. Both of them are then used to build the spatial
associations between trajectories. The proposed approach is
to fuse multi-trajectories per graph-based optimization in
order to align relatively located trajectories. It yields a RFM,
which can be applied to feature-based indoor positioning,
with low-cost.

We summarize the main contributions of this paper as
follows:

1) We propose an approach to adaptively modelling the
geometric information embodied in radio signals in
order to characterize the uncertainty of data associa-
tions in a self-supervised manner.

2) We present a framework that integrates crowd-sourced
location-relevant features and dead reckoning infor-
mation from various mobile devices for feature-based
indoor positioning in unknown environments with large
scale.

3) We evaluate our approach in multi-storey shopping
malls with an area over 10,000 m2 (per floor) in the
way of commercialized crowd-sourcing, which does
not require any interaction from data contributors.

In the following sections, we first give a brief overview
on previous work regarding RFM construction and geometric
constraints generation in the field of feature-based indoor
positioning. This is then followed by a formal definition of
the problem of information fusion formulated as graph-based
optimization. In Sec. IV we present the approach to adap-

tively modelling the geometric information using the relative
locations and radio signals in detail. In order to validate
the proposed method, a comprehensive data collection and
experimental analysis have been carried out. Sec. V provides
extensive evaluations and results. Finally in Sec. VI, we con-
clude the paper.

II. RELATED WORK
The main topic of this paper involves the information fusion
using graph-based optimization per crowd-sourcing in order
to build IPS in a low-cost (both in time and labour) manner.
We mainly present the literature related to methods for gen-
erating RFM using RF measurements. More details regard-
ing feature-based positioning approaches and for extracting
relative poses from IMU can be found e.g., in [18], [19]
and [20], [21], respectively.

A. RFM CONSTRUCTION APPROACHES
1) FULLY-SUPERVISED
In the early stage of building a feature-based IPS, RFM
was created by manually marking the reference locations
and measuring the RF measurements in stop-and-go manner
[22], [23]. In [18], Zhou et al. introduced a high precision
tracking system for obtaining the reference locations in order
to collect data kinematically. These approaches yield highly
accurate reference locations, however, they are time-costing
and labour-intensive. These two drawbacks greatly hinder the
widespread deployment of feature-based IPS.

2) WEAKLY-SUPERVISED
Compared to fully-supervised approaches,weakly-supervised
ones incorporate other information to simplify the data col-
lection procedure. The authors in [24], [25] illustrated a
quick RFM creation method, which requires the site surveyor
(or the contributor of the crowd-sourcing) to put starting and
ending points on the map of the indoor region of interest.
The reference locations are interpolated by assuming that the
surveyor is moving along a straight line. This can speed-up
data collection but requires indoor maps as well as the explicit
interaction from surveyors. Another way to reduce the labour
for collecting the RFM is by combining fully-supervised
methods with reconstruction algorithms. A sparse data col-
lection is firstly performed in a fully-supervised way. The
sparsely collected RFM is used to reconstruct a dense RFM
either by spatial interpolation [26], [27], e.g., compressive
sensing [26], Gaussian process regression [28] or by employ-
ing the path-loss model of the RF signals [29]. However,
the former is constrained by the granularity of existing ref-
erence locations, and the latter requires to know the location
of signal sources in prior and to estimate the parameters of the
propagation model for each signal source in different indoor
regions.

3) UNSUPERVISED
There are three types of approaches to marking the reference
locations in an unsupervised manner: i) with the help of floor
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plan [30], [31]; ii) with the help of moving robots [32], [33];
and iii) automatic trajectory fusion [5], [6], [9]–[12]. In [30]
and [31], the reference locations are estimated by matching
RF measurements with geometric features (e.g., connectivity
between rooms, corridors, and corners) of the floor plan.
PinLoc [32] and Slide [33] employed automatically con-
trolled robots to improve the efficiency of site survey.
However, it either requires indoor maps or introduces extra
hardware. For the trajectory fusion approaches, they com-
bined relative pose information, mostly from IMU, with con-
straints derived from measurable radio signals. The reference
locations are obtained via solving an optimization problem.
These methods are efficient and do not require additional
support. However, they need to model constraints between
RF measurements.

Our proposal is in an unsupervised manner. In contrast
to previous work, our approach does not require any known
reference locations as landmarks nor the help of dedicated
surveying devices and detailed indoor maps.

B. GEOMETRIC CONSTRAINTS GENERATION
When using graph-based optimization approaches to fuse the
trajectories, the key is to build data associations. In [5], [6],
Gu et al. proposed to build the RFM in a crowd-sourced
way by aligning multi-trajectories using graph-based opti-
mization. But it deployed the foot-mounted IMU, which
can yield accurate relative pose estimations. Nowicki and
Skrzypczyński, [10], [11] and Tan et al. [12] also employed
graph optimization for aligning trajectories but it relies on
known locations as landmarks to build the spatial relation-
ship. These works employ a quasi-linear model to approxi-
mate the spatial constraints between trajectories using radio
signals and cannot estimate the uncertainty of the geometric
constraints. In addition, it requires priorly measured location
of landmarks. In [9] authors employed the path-lossmodel for
estimating the spatial relationship between relative locations.
The main challenge of this approach is that parameters of
the propagation model vary for each signal source as well as
indoor environments. In [1], an approach based on similarity
threshold between radio signals is used to detect data asso-
ciation. It utilizes the relative pose information to estimate
the confidence (i.e., level of uncertainty) of data associations.
However, it cannot model the expected distance between
nodes but simply treats them at the same position if the
similarity between radio signals is higher than the threshold.
Compared to previous work, our proposal is in a
self-supervised manner, namely modelling the geometric
information (both the expected distance and its level of
uncertainty) adaptively using the relative locations and their
associated radio signals.

III. INFORMATION FUSION AS GRAPH OPTIMIZATION
A. REPRESENTATIONS
For one trajectory collected by crowd-sourcing contribu-
tors, it consists data from IMU and RF measurements.

Each of the trajectory is used to extract relative spatial
relationship according to IMU data, e.g., per traditional
pedestrian dead reconking (PDR) [34] or learning-based
approaches [20], [21]. Thus, the i-th trajectory Ti is rep-
resented using a sequence of relative positions and their
associated observations, Ti = {(x

(k)
i , y(k)i , θ

(k)
i ,O(k)

i )}, where
x(k)i , y(k)i , θ

(k)
i is the 2D pose (position plus heading) of the

k-th location in a local coordinate frame of the trajectory,
and O(k)

i is the k-th observation associated to the corre-
sponding location in case of opportunistic RF signals are
measured. Without loss of generality, RF measurements from
Wi-Fi/BLE beacons are taken as examples. Each RF obser-
vation consists a set of paired values, i.e., a unique identi-
fier (e.g., MAC) and its corresponding value (e.g., received
signal strength indicator or channel state information). Thus,
the k-th observation O(k)

i of i-th trajectory Ti is denoted as
O(k)
i := {a : v|O

(k)
i (a) = v, a ∈ A(k)

i }, where A
(k)
i is a set of

identifiers of measurable signals.
In this paper, we represent the trajectory alignment as

a graph-based optimization problem, in which the node
p := (x, y, θ) is the 2D pose of the contributors, and the edge
eij(pi,pj|Oi,Oj) := eij used to link these nodes is either from
IMU measurements (temporal constraints) or from radio sig-
nals associated with each node (geometric constraints). The
goal of trajectory alignment is to estimate the transformation
matrix between associated nodes in order to transform all
trajectories into a common coordinate frame. The approach
to achieving such a goal is via minimizing a defined loss
function associated with all edges.

B. ENERGY FUNCTION AND ITS MINIMIZATION
An observation model h, denoting the function that builds
edges between observations, is used to model expected obser-
vations for updating the nodes, z = h(p) + ε, where ε ∈
N (0, �−1). The gap between modelled observations and
expected ones denotes the error term that needs be mini-
mized via the optimization. Following [14], the error function
defined as negative log-likelihood of Gaussian priors can be
formulated as a non-linear least squares (NLS) problem:

P̂ = argmin
p

(
∑
i

‖h(pi)− zi‖2�i ) (1)

The above NLS problem can be solved efficiently using
well-established solvers, e.g., Gauss-Newton, or Levenberg-
Marquardt per gradient descent and it can be carried
out via open-source libraries, such g2o and Ceres. More
details regarding graph-based optimization can be found e.g.,
in [6], [11], [14].

C. TEMPORAL SPATIAL ASSOCIATION FROM
IMU MEASUREMENTS
As presented in above section, the key to formulating the
information fusion problem as graph-based optimization is
to build associations between nodes. In this paper, we mainly
take two types of edges into account: i) (local) temporal
constraints between sequential positions obtained using IMU
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data; and ii) (global) geometric constraints between arbitrary
positions from the RF measurements. The former type only
exists intra-trajectory between consecutive nodes and the
latter can be establish in both intra-/inter-trajectories. In order
to build each type of edges, an observation function has to be
provided for computing the expected measurements and its
uncertainty.

For the local spatial association, we follow [5], [6] and for-
mulate it as motion control input from inertial navigation sys-
tem (INS). The observation model hIMU extracts the motion
control input zIMU

i+1 from a given pair of sequential nodes, pi
and pi+1, within one trajectory, i.e. zIMU

i+1 = hIMU(pi,pi+1)+
εIMU
i,i+1, where

hIMU(pi,pi+1) =

 cos(θi) − sin(θi) 0
sin(θi) cos(θi) 0

0 0 1

1pi,i+1 (2)

1pi,i+1 =

 xi − xi+1
yi − yi+1
θi − θi+1

 (3)

and εIMU
i,i+1 ∈ N (0, (�IMU

i,i+1)
−1), where

�IMU
i,i+1 =

 a 0 0
0 a 0
0 0 b

 . (4)

The expected control input is obtained according to an
INS calculated using IMU measurements and current control
input is computed per optimized value of nodes. The informa-
tion matrix in (4) is related to performance of the INS. In this
paper, we adopt the state-of-the-art learning-based approach,
RoNIN [20], for inferring the relative position. The value of
coefficients a and b are set to 500 and 70, respectively. In this
way, the information matrix does not take the diversity of
devices and motions into account. Diversity consideration is
relevant to improving the generality and is left for the future
work.

D. SYSTEM FRAMEWORK
Fig. 1 illustrates the proposed solution for generating
RFM using crowd-sourced trajectories. It starts with
crowd-sourcing raw measurements, including IMU readings
and radio signals, from various mobile devices. These raw
data are processed on a server. Relative poses are extracted
per learning-based dead reckoning approach using IMUmea-
surements. Their corresponding radio signals are associated
according to the temporal information. The core module is
the geometric information modelling (presented in Sec. IV),
which takes extracted relative positions and radio signals as
input and approximate geometric constraints according to
similarity between radio signals. The adaptively estimated
model is then used to build loop closures between trajectories
in order to form a properly connected graph. The RFM is
obtained per optimizing the graph using well-established
graph optimizers.

FIGURE 1. The scheme of proposed framework.

IV. SPATIAL ASSOCIATION CONSTRUCTION
USING RADIO SIGNALS
Regarding the geometric constraints, they are constructed
using RF measurements based on the fundamental assump-
tion that different locations can be identified by measurable
radio signals. However, mining global spatial associations
from radio signals is difficult due to three factors: i) although
the propagation of RF signals in free-space follows the
log-path loss model, it is difficult to estimate the attenuation
factor of each signal source in the indoor environment; ii) it
requires the absolute location information to estimate the
propagation model but it is not available in crowd-sourced
trajectories; and iii) the estimation of the covariance matrix
of RF measurements is complicated because the RF feature
is in hyper-dimension.

Our proposal tackles the RF measurement-based associ-
ation construction problem according to the findings that a
proper metric g between radio signals can reflect the dis-
tance in geometric space. We downgrade the problem of
estimating the observation model for each RF signal source
at each location into a problem of approximating the spatial
constraint according to the metric between each pair of RF
measurements. In this way, it canmake full use of the distance
between relative positions inferred from IMU data.

Given a batch of crowd-sourced trajectories {Ti}Mi=1, a fix
number of paired relative positions, which have the associated
RF measurements, are arbitrarily sampled from each trajec-
tory. It yields a set of paired positions and RF measurements
D := {(p(l)i ,p

(l)
j ,O

(l)
i ,O

(l)
j )}Nl=1. These pairs are used to

approximate the observation model hRF to build the spatial
constraints based on RF measurements such that:

zRFij = hRF(pi,pj,Oi,Oj|d, g)+ εRFi,j (5)
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where εRFi,j ∈ N (0, (σRF
ij )−1). d and g are distance

metrics between relative positions and similarity measure
between RF measurements, respectively. Since to estimate
the geometric information model using radio signals only
requires information embodied in crowd-sourced trajectories,
we can build geometric constraints in a fully-unsupervised
(self-supervised) way. As the global spatial relationship is
approximated according to the similarity measure, only the
expected distance and its level of uncertainty is quantified.
Namely, the spatial constrained between a pair of relative
positions is defined on a circle in 2D-space (or a sphere
in 3D-space). The proposed approach consists following key
steps (summarized in Table 1):

TABLE 1. Summary of the proposed approach.

• Metric computing: for each data point in D, the dis-
tance between relative position and similarity measure
are computed using the given d and g. In this paper,
d is defined as Euclidean distance between x-y coordi-
nates of pi and pj. It represents the geometric distance
by assuming the local consistency of the coordinate
frame within one trajectory. The corresponding simi-
larity between RF measurements is computed using a
compound similarity measure, motivated by [35], which

combines Jaccard similarity [36] and kernelizedL1 sim-
ilarity via harmonic mean (β-score):

g(Oi,Oj) =
(1+ β2) · gJac(·, ·) · gL1(·, ·)
β2gJac(·, ·)+ gL1(·, ·)

(6)

where gJac(·, ·) denotes the Jaccard similarity:

gJac(Oi,Oj) =
|Ai ∩Aj|

|Ai ∪Aj|
, (7)

and gL1(·, ·) is defined as mapping the average of L1
distance to a similarity measure using Gaussian kernel
function:

gL1(Oi,Oj) = exp(−(

∑
a∈Aij

(|vi − vj|)

|Aij|
)2/(2σ 2)). (8)

Aij := Ai ∪ Aj. In case of a /∈ Ai or a /∈ Aj, its
corresponding value is set to amissing indicator. As both
of the measured value of radio signals and estimated
relative locations are affected by measurement noise,
the relationship between distance and similarity is highly
scattered as illustrated in Fig. 2.

• Similarity binning: According to (6), the similarity is
in [0, 1]. In order to approximate the distribution of the
geometric distance for a given similarity, a binning step
is applied to divide thewhole range into several binswith
equal size. Each bin is denoted as [ci −1, ci +1). The
geometric distance whose corresponding similarity is
within a given bin is assigned into the corresponding bin.
Distances between relative positions lying in a certain
bin are used to approximate the distribution.

• Distribution approximating: For each bin, we esti-
mate the expected geometric distance and its uncertainty
(i.e. standard deviation). We approximate its distribution
under Rayleigh distribution assumption parametrized
with ζ [37]. Under this assumption, the approxi-
mated expected geometric distance and its variance is

FIGURE 2. Examples of the relationship between similarity and distance.
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defined as:

µd = ζ

√
π

2

σ 2
d =

4− π
2
· ζ 2 (9)

where ζ is the parameter for the Rayleigh distribution of
the geometric distances in a given bin. The value of ζ
is estimated via a density estimator (e.g., kernel density
estimation [38]) owing to the fact that the maximum
value of probability is achieved at the value of ζ when
assumed as the Rayleigh distribution or maximum like-
lihood estimator [37].

• Parameter estimating: Assuming that the similarity
range is divided into C bins, we can have a set of paired
the similarity and its distribution parameter {ci, ζ̂i}Ci=1.
From which, we would like to estimate a parametric
model f such that given a similarity value g(Oi,Oj),
it maps to an estimated ζ value, i.e. f : g(Oi,Oj) 7→ ζ .
Thus, the expected geometric distance and its variance
can be calculated using (9). This parametric model is
assumed as log-linear for avoiding negative approxima-
tion of ζ as well as the linearity between logarithm of
ζ and the similarity as shown in Fig. 3. The parameters
are obtained per linear fitting. These estimated param-
eters can be applied to infer geometric constraints in a
continuous space (see Fig. 4).

FIGURE 3. Example of log-linear relationship between ζ and similarity.

FIGURE 4. Example of fitted model of geometric constraints.

V. EXPERIMENTAL ANALYSIS
A. EXPERIMENTAL SETUP
1) DATASET
In order to evaluate the performance of proposed approach,
the crowd-sourcing procedures have been carried out in two
shopping malls illustrated in Fig. 5. Each of them consists
multi-storey and each floor covers an area over 10,000 m2.
The data were collected by a custom-developed application
which can obtain readings from all built-in sensors of the
mobile device. Without losing the generality, only radio sig-
nals from WiFi access points (BLE beacons are omitted
but includes mobile hotspots) are used for building the data
associations as well as for indoor positioning.

FIGURE 5. Floor plan of test areas (Green parts indicate the accessible
areas.).

The crowd-sourcing is carried out using various type of
mobile devices2 by different volunteers without constraining
walking poses (e.g., static hold or swing) and attachments of
mobile devices (e.g., handheld or in-pocket). We denote the
data collection as commercialized-crowd-sourcing (CCS).
Although it requires volunteers to report their walking poses
and attachment of mobile devices as well as roughly mark
the area where they have crowd-sourced (e.g., the floor and

2The crowd-sourcing is carried by recruiting beta-test participants among
all Huawei mobile service users under their agreement.
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TABLE 2. Summary of collected data.

passed-by accessible areas), these data are only used for the
purpose of validation. Knowing the floor of each trajectory
in advance is to reduce the influence of mis-identification of
the traces’ floor. Automatically identification of the floor of
trajectories (or a bunch of traces) is relevant for generating
the RFM. However, it is out-of-scope of this paper and left
for future work.

For quantitative evaluation of the positioning accuracy,
we manually collected the RFM (denoted as manually
site surveying (MSS)) and test points in both test areas
using an unmanned ground vehicle, which is mounted with
LiDAR and the mobile device. It is capable of performing
visual-SLAM in centi-meter accuracy. The mapped test areas
are used to obtain the reference locations and the ground
truth of test points for evaluating the positioning performance.
The detail information of collected data is summarized
in Table 2.3

2) SHORT ON POSITIONING APPROACH
After using graph-based optimization to align the crowd-
sourced trajectories, all relative locations can be mapped into
a common coordinate frame. These locations and their asso-
ciated radio signals are used as the RFM for feature-based
indoor positioning. Herein we employ k-nearest neighbour
search [22], [36], a widely used deterministic feature-based

3The summary of APs takes all measured ones into account without e.g.,
identifying mobile APs or detecting changes of fixed APs.

positioning method, to evaluate the positioning performance.
The distance metric used to match radio signals is defined as
1− g(Oi,Oj) and the parameter k equals to 5 and 10 for test
area 1 and 2 via grid search, respectively.

3) EVALUATION METRICS
For the geometric information modelling, we mainly eval-
uate and compare the generality qualitatively by modelling
geometric constraints using different data sources, which
are obtained in various walking poses, placement of mobile
devices and indoor regions. In addition, we also evaluate the
trajectory alignment qualitatively via visualizing it with the
floor plan of indoor regions. Regarding the positioning per-
formance, Euclidean distance between the estimate position
and the corresponding ground truth is computed. The empir-
ical cumulative distribution function (ECDF) of positioning
error and its statistical values (e.g., circular error probable
(CEP)) are used as the quantitative evaluation metrics.

B. GEOMETRIC CONSTRAINT MODELLING
In order to validate the proposed approach to modelling the
geometric constraints, we evaluated and compared geomet-
ric information modelling results in case of various walk-
ing poses, indoor regions and the number of sampled pairs.
As shown in Fig. 6 the impact of walking poses on the
estimated geometric constraints regarding the given value
of the similarity varies over different indoor regions, how-

FIGURE 6. Impact of walking poses on geometric information modelling.
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FIGURE 7. Impact of indoor regions on geometric information modelling.

ever the range of the variation is limited, especially when
the similarity is higher than 0.6. Regarding the impact of
indoor regions, the results illustrated in Fig. 7 depict that the
consistency of geometric constraint models is high in most
indoor regions over different floors and buildings. It means
that the pre-estimated model can be transferred from one
indoor region to another for improving the generalizability.
Compare to the impact of walking poses and indoor regions
on the geometric modelling, the sampling of the paired rela-
tive position and RF measurement has much less influence as
shown in Fig. 8. It reveals the characteristic of the robustness
of the proposed approach against arbitrary sampling. In the
following experimental analysis, the geometricmodel estima-
tion is carried out using crowd-sourced trajectories for each

floor with diverse walking poses. The resampling number is
set to 100.

C. TRAJECTORY FUSION AND INDOOR POSITIONING
1) QUALITATIVE EVALUATION OF TRAJECTORY FUSION
The trajectory fusion is achieved using graph optimization
based on the open-source framework provided by g2o and the
data associations between relative locations are built accord-
ing to the estimated geometric information model for each
indoor region.4 The key to aligning crowd-sourced trajec-
tories is to build the spatial association between them. The
number of generated edges between nodes is balanced by
choosing the value of threshold on similarity between radio
signals. Once data associations were established, graph-based
optimization5 can be employed to align relative trajecto-
ries into a common reference frame (following the pro-
cedures presented in Fig. 1). The value of the threshold
determines the connectivity between trajectories. The higher
the threshold on similarity, the less the number of edges
between trajectories. We threshold the similarity from 0.05 to
0.95 with interval of 0.1. As presented in Fig. 9, we can
obtain that there are too many false edges between trajec-
tories, the crowd-trajectories are condensed too much when
the threshold is small (e.g., 0.25). With a high threshold
(e.g., 0.65), it results in low connectivity between trajectories,
which cannot provide adequate geometric constraints for esti-
mating the transformation matrix between them. Therefore,
the crowd-sourced trajectories cannot be aligned properly.
By performing the grid search, the suitable value of the
threshold equals to 0.45 for both test areas.

As shown in Fig. 10, the mis-aligned raw trajectories
(1st column), which are in separate local reference frames,
seem very noisy and without clear relations. After performing
graph optimization according to the geometric constraints
between different pairs of trajectories by thresholding on
the similarity, these raw trajectories can be fused together
and aligned properly into one common reference frame
(2nd column). Qualitatively, these aligned trajectories are

4https://github.com/RainerKuemmerle/g2o/tree/master/g2o
5In the implementation of g2o, a built-in edge pruning based robust kernels

is also used to remove the false connections.

FIGURE 8. Impact of the number of sampled pairs on geometric information modelling.
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FIGURE 9. The impact of the threshold on trajectory alignment (Top: F3 of test area 1/Bottom: F5 of test area 1).

FIGURE 10. Qualitative evaluation of aligned trajectories (Top: F5 of test area 1/Bottom: F1 of test area 2).

well-matched to the floor plan of the indoor region permanual
projection as illustrated in 3rd column of Fig. 10.

2) EVALUATION OF POSITIONING PERFORMANCE
Employing the RFM generated per information fusion using
the crowd-sourced trajectories or the RFM by site surveying,
the location of pedestrian can be determined by matching
online measured radio signals with them. The statistical posi-
tioning results of two test areas are presented in Table 3 and
the ECDF of the positioning error is visualized in Fig. 11.
Regarding floor identification accuracy, the overall accuracy

is about 97% and 96% using crowd-sourced RFM in both
test areas. Compared to the floor detection accuracy using the
RFM by MSS, the retreat is only 2 percentage point. For the
location-wise positioning performance, the mean positioning
error and CEP68 using crowd-sourced RFM are on a par
with that using manually collected RFM in both test areas.
The mean positioning error in test area 1 using CCS RFM
is 4.3 meters, which falls back only 0.3 meters comparing
to that of using MSS RFM. As in test area 2, the mean
positioning error using CCS RFM is decreased by 0.4 meters
when comparing using MSS RFM, whose mean positioning
error is 6.4 meters.
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TABLE 3. Statistical of positioning performance.

FIGURE 11. ECDF of the positioning results (Top: Test area 1/Bottom: Test area 2). Number in the bracket denotes the floor
identification accuracy. The dashed grey line in each figure indicates the CEP68.

VI. CONCLUSION
In this paper, we propose an approach for adaptively mod-
elling the geometric information in a self-supervised man-
ner using the crowd-sourced relative locations (e.g., from
inertial sensors or vision-inertial odometer) and their asso-
ciated radio signals. The key to building the model is to map
the similarity between radio signals to the physical distance
under the assumption of Rayleigh distribution. Geometric
constraints obtained from radio signals can be used to fuse

crowd-sourcing trajectories per solving an optimization prob-
lem. Through comprehensive experimental analysis, we val-
idate the generalizability of the proposed approach and its
applicability to trajectory alignment, which can generate the
RFM for feature-based indoor positioning. Using the RFM
generated from the crowd-sourced trajectories, the average
floor identification accuracy is over 96%, which is on a par
with the one using manually collected RFM. The retreat is
only about 2 percentage point. The mean positioning error is
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about 4.3 meters and 6.0 meters using crowd-sourced RFM
in test area 1 and area 2, respectively. This is at the same
level of using site surveyed RFM. In order to alleviate the
limitations of our proposal, the continuative research would
focus on: i) the quantification of the uncertainty of relative
positions obtained from IMUmeasurements; ii) the adaptive-
ness to long-term variations and device diversities; and iii)
refinement of the crowd-sourced RFM.
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