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ABSTRACT This paper presents the concept of Graph-based Local Resampling of perceptron-like neural
networks with random projections (RN-ELM) which aims at regularization of the yielded model. The
addition of synthetic noise to the learning set finds some similarity with data augmentation approaches that
are currently adopted inmany deep learning strategies.With the graph-based approach, however, it is possible
to direct resample in the margin region instead of exhaustively cover the whole input space. The goal is to
train neural networks with added noise in the margin region, located by structural information extracted from
a planar graph. The so-called structural vectors, which are the training set vertices near the class boundary,
are obtained from the structural information using Gabriel Graph. Synthetic samples are added to the learning
set around the geometric vectors, improving generalization performance. A mathematical formulation that
shows that the addition of synthetic samples has the same effect as the Tikhonov regularization is presented.
Friedman and pos-hoc Nemenyi tests indicate that outcomes from the proposed method are statistically
equivalent to the ones obtained by objective-function regularization, implying that both methods yield
smoother solutions, reducing the effects of overfitting.

INDEX TERMS Classifier, neural network, regularization, training with noise.

I. INTRODUCTION
Many efforts have been made in the last decades in order
to represent the learning problem of Single Hidden Layer
Feed-forward Networks (SLFN) [1]–[3] with convex formu-
lations and to avoid the burden of iterative gradient descent
learning on complex objective functions. Higher dimensional
random projections to the hidden layer is an approach to
convexification [4]. Random projection methods are based on
Cover’s Theorem principles [5] to assure that the projected
data results on a linear problem that can be treated under a
convex optimization perspective. Such an approach became
popular in recent years under the framework of Extreme
Learning Machine (ELM) [6], [7], [8], [9] a two-layer per-
ceptron with large random expansions in the hidden layer.
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A large number of hidden neurons may, however, lead to
neural networks with a far higher capacity than the required
to solve the problem [10]. The network then becomes over-
specialized on the training samples, which may result on
overfitting, and lose its generalization ability. Regularization
methods aim at solving the overfitting problem by smooth-
ing the separation surface, thus leading to an improved per-
formance on unknown data. A regularized surface can be
achieved by combining the objective function with a penal-
ization term, as shown in (1) [11].

Ẽ = E + λ� (1)

where E is the training set error, λ is a regularization param-
eter and � is a model complexity penalty function.

Functions E and� have conflicting behavior [12], so trad-
ing them off by selecting a proper value of λ is essential
to achieve a more general model. Regularization methods
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have been proposed and applied to control the smoothness
of the approximating function in many application prob-
lems. A common choice for the smoothness function is
the norm of the weight vectors [13] as presented in (2),
known as Tikhonov Regularization, L2 penalty and Ridge
Regression [14].

J =
1
2

N∑
i=1

(yi − f (xi,w))2 + λ
L∑
j=1

w2
j (2)

where N is the number of samples of the training set and L is
the number of hidden layer neurons of the network.

Since ELMs tend to be oversized, works in the litera-
ture apply regularization to control the smoothness of the
resulting approximation function. Deng [15] proposed the
Regularized Extreme Learning Machine (ELM-REG), which
implements (2). The Optimally Pruned ELM proposed by
Miche [16] achieves regularization by employing multire-
sponse sparse regression and leave-one-out cross validation
to remove the least relevant neurons. The Tikhonov Reg-
ularized OP-ELM [17], combines L1 and L2 penalties in
order to generate a regularized separation surface. The L2,1-
norm based Online Sequential Extreme Learning Machine
proposed by Preeti [18] creates an iterative bi-objective
optimization algorithm to solve L2,1 norm-based minimiza-
tion problem, dealing with real time sequential data. These
approaches to regularization require that λ is provided prior
to training.

Silvestre et al. [19] proposed a method for parameter-free
regularization of extreme learning machines, that uses only
an affinity matrix obtained from the training samples, which
leads to the same Tikhonov Regularization effect. Araujo [20]
proposed a method for automated parameter selection, based
on the linear separability of projected data, that requires
neither user defined parameter nor cross validation. Both
approaches rely on the quality and representability of training
samples in order to be effective.

Another regularization approach that focuses neither on
the dataset structure nor on pre-setting hyperparameters was
given by Bishop [21], which consists of adding noise to
the training set and is shown to be equivalent to Tikhonov
Regularization. Training with noise has been applied to the
training of deep neural networks, under the framework of data
augmentation and dropout regularization [14], [22] and also
as noise injection in hidden units to yield stochastic behav-
ior that exploits a probabilistic formulation for optimization
[23]. Furthermore, this approach has also been used for gen-
erative adversarial networks (GAN) applied to machinery
fault diagnosis, so as to add synthetic samples based on the
distribution of the original samples, avoiding training with
imbalanced data [24]. The most widely used data augmenta-
tion strategy for deep neural networks consists of randomly
applying operations such as rotations, cropping andmirroring
to images. While leading to improvements in performance,
this strategy has been further explored with more specific
approaches: dataset augmentation in feature space is explored

by DeVries and Taylor [25], a multiphase blending method
is proposed by Quan et al. [26] and Lemley et al. [27] use
a GAN to generate samples with features that improve per-
formance. Adding local noise to border regions can also be
viewed as analogous to boosting, a robust machine learn-
ing approach that combines multiple weak classifiers and
assigns higher relevance to those patterns located near the
border regions [28]. Boosting has already been applied to
ELMs learning, especially in problems involving imbalanced
data [29].

Resampling over an unconstrained input space can be pro-
hibitive, particularly in higher dimensions which is mostly
the case of current applications. So, local resampling in the
margin region may yield regularization effects without the
need to exhaustly cover the whole input space. The margin
region can be identified by considering the geometry of the
dataset given by proximity graphs such as the Gabriel Graph
(GG) [30]. Torres et al. [31] proposed a geometric approach
that uses GG to build a large margin classifier based on the
edges between points of different classes, defining a bound-
ary region. These edges can be used in order to define the
border region for local resampling.

The proposed method explores both the geometric infor-
mation of the dataset and the regularization effect obtained
when training with noise. Structural information is extracted
from the GG in the form of structural vectors (SVs), which
are vectors that share edges with vertices from the opposite
class [31], [32]. The SVs are then used to generate synthetic
noise samples in the separation region in order to smooth the
decision surface. It is shown, that the generated noise samples
lead to a Tikhonov regularization effect. Those noise samples
are added to the training set and used to train an ELM.

The proposed method, Regularization with Noise of
Extreme Learning Machines (RN-ELM), is compared to the
standard ELM algorithm and to ELM-REG in 18 real-world
datasets. The datasets differ in size, dimension, class overlap
and imbalance. The values of the norm of the weights and
accuracy are used to evaluate the models. Statistical tests
have shown a significant difference between RN-ELM and
the standard ELM, which indicates that local resampling in
the border region yields the expected regularization effect.
Furthermore, no significant statistical difference was also
observed between RN-ELM and ELM-REG, which rein-
forces the expected regularization behavior of the model
training with the resampling approach. It is also formally
shown in this paper that local resampling in convex networks
is equivalent to Tikhonov regularization. As a combination of
different concepts, such as training with noise, data augmen-
tation and graph-based margin resampling, this paper adds
up to the formal proofs of regularization a new perspective to
neural networks training.

This paper is organized as follows: section II presents
a review of relevant literature, in section III the proposed
method is explained, section IV details the experimental
setup, section V presents the results, and in section VI is the
conclusion of the work.

50728 VOLUME 9, 2021



A. D. Assis et al.: Neural Networks Regularization With Graph-Based Local Resampling

II. THEORETICAL BACKGROUND
A. GRAPH-BASED STRUCTURAL INFORMATION
Computational Geometry methods allow dataset patterns to
be represented by a planar structure. One example is the
Gabriel Graph (GG) [30]; a planar connected graph, built
from geometric information of a dataset x ∈ Rm, defined
by a set of vertices V = {xi}Ni=1 and a set of edges A =
{(xi, xj) |i 6= j}, which satisfy inequality (3):

δ(xi, xj)2 ≤ [δ(xi, xn)2 + δ(xj, xn)2],∀xn ∈ V, i 6= j 6= n

(3)

where δ(.) is the euclidean distance between vectors.
Edge (xi, xj) defined by inequality (3) is represented

in Fig. 1, whereas Fig. 2 shows two edges that do not satisfy
the inequality.

FIGURE 1. Edge that belongs to the GG.

FIGURE 2. Edge that does not belong to the GG.

Given GG edges of a particular dataset, those connecting
samples from different classes can be considered for generat-
ing synthetic samples in the border region. Fig. 3 depicts the
GG of a two moons problem and synthetic samples added to
the border region.

The expected value E[y|x] tends to the separation region
where the effects of labels from opposite classes in the
error function are balanced. According to Geman et. al [33],
the function f (x,w) that approximates E[y|x] minimizes the
general approximation error. Local resampling with equally
probable labels from opposite classes in the region tends to
approximate f (x,w) to E[y|x], thus minimizing the approxi-
mation error. Once synthetic samples are added to the border
region, models with a large number of neurons are less likely
to present overfitting, since these new samples smooth the
separation surface.

B. EXTREME LEARNING MACHINE AND REGULARIZATION
ELM is a learning algorithm for SLFN [6] that is based on the
random projections approach. ELM is easily implemented:
bias and weights of the hidden layers are randomly assigned
and the weights of the output layer are determined by a
generalized inverse matrix.

FIGURE 3. Gabriel graph of the two moons dataset together with
synthetic samples generated in the hyperspheres of the separation
surface.

Given a set of N distinct samples (xi, yi) where xi =
[xi1, xi2, . . . , xim]T ∈ Rm and yi ∈ R for i = {1, . . . ,N },
the network output is given by (4)

ŷi =
L∑
j=1

wjgj(xi) =
L∑
j=1

wjg(vjxi + bj) i = 1, . . . ,N (4)

where L is the number of hidden layer neurons, g(.) is the
activation function, vj = [vj1, vj2, . . . , vjm]T is a weight that
connects the input and the hidden layer and wj is a weight
that connects the hidden layer and the output. Finally, bj is
the bias term of the j-th hidden neuron. For a SLFN with L
hidden layer neurons, which is capable of approximating a
function from N samples, there exists wj, vj and bj such that
(5) is satisfied.

Hw = y (5)

where

H =

g(v1x1 + b1) . . . g(vLx1 + bL)
. . . . . . . . .

g(v1xN + b1) . . . g(vLxN + bL)


N×L

(6)

The output weights matrix w is calculated using the
Moore-Penrose [34] pseudoinverse:

w = (HTH)−1HT y = H+y (7)

Regularization can be employed to smooth the effects
of overfitting in oversized networks, as in ELM-REG [35].
Equation (8) shows the expressions for obtaining the weight
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matrix for N smaller than L and vice-versa.

w =


HT

(
I
C
+HHT

)−1
y, if N < L(

I
C
+HTH

)−1
HT y, if N � L

(8)

Regularization effects can also be achieved by resampling
as shown by Bishop [21]. In his original work he demon-
strates that the addition of small amplitude synthetic samples
leads to a penalty term which is equivalent to the regular-
ized sum-of-squares error. Hence, the method proposed in
this paper is based on the same principle, however with a
GG-based local resampling in the border region.

III. PROPOSED METHOD
Structural information is extracted from a planar graph (GG),
as defined in section II-A [36]. The addition of synthetic
patterns to the training set can be seen on Fig. 4. In this
example, two classes sampled fromGaussian distributions are
represented as empty and filled circles. Synthetic samples are
triangles and upside down triangles. The geometric vectors
and mean points are indicated by thick black circles and a
‘‘x’’ mark, respectively.

FIGURE 4. Addition of synthetic samples around the structural vectors
mean.

The general expression for the sum of squared errors (SSE)
is given in (9).

Je =
N1∑
i=1

(yi − f (hi,w))2 (9)

where N1 is the number of samples in the training set. Once
the synthetic samples are added, the error function can be

rewritten as in (10).

Je =
N1∑
i=1

(yi − f (hi,w))2 +
N2∑
k=1

(vk − f (rk + εk ,w))2 (10)

where N2 is the number of samples added to the training set,
(rk+εk ) is the k-th synthetic sample, composed of rk selected
from the geometric vectors, εk is a random noise and vk is the
label of the sampled pattern, which is the same as rk .

The additional term in (10) shifts the solution to the direc-
tion of the synthetic samples added (rk +εk ), so the larger N2
is, the more influential the synthetic samples become.

Considering that conditions of linear separability are met
by ELM, function f (hi,w) = wThi, and consequently f (rk +
εk ,w) = wT (rk + εk ) is considered, leading to (11).

Je =
1
2

N1∑
i=1

(yi − wThi)2 +
1
2

N2∑
k=1

(vk − (wT rk + wT εk ))2

(11)

So, if ŷi = wThi, v̂k = wT rk and ûk = wT εk , (11) can be
rewritten as (12).

Je =
1
2

N1∑
i=1

(yi − ŷi)2 +
1
2

N2∑
k=1

(vk − (v̂k + ûk ))2 (12)

Output weights that describe the separation hyperplane are
obtained by deriving (11) and equating it to zero.

∂Je
∂wj
= −

N1∑
i=1

yihij +
N1∑
i=1

ŷihij −
N2∑
k=1

vkrkj

−

N2∑
k=1

vkεkj +
N2∑
k=1

v̂krkj +
N2∑
k=1

ûkεkj

+

N2∑
k=1

ûkrkj +
N2∑
k=1

v̂kεkj = 0 (13)

Now (13) can be rewritten as (14).

N1∑
i=1

ŷihij +
N2∑
k=1

v̂krkj +
N2∑
k=1

ûkεkj +
N2∑
k=1

ûkrkj +
N2∑
k=1

v̂kεkj

=

N1∑
i=1

yihij +
N2∑
k=1

vkrkj +
N2∑
k=1

vkεkj (14)

which is further developed into (15).

N1∑
i=1

wThihij +
N2∑
k=1

wT rkrkj +
N2∑
k=1

wT εkεkj

+

N2∑
k=1

wT εkrkj +
N2∑
k=1

wT rk εkj

=

N1∑
i=1

yihij +
N2∑
k=1

vkrkj +
N2∑
k=1

vkεkj (15)
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Finally, (15) is represented in its matrix form (16), which
leads (16) to (17) and (18).

HTHw+ RTRw+ ETEw+ RTEw+ ETRw

= HT y+ RT v+ ET v (16)

(HTH+ RTR+ ETE+ RTE+ ETR)w

= HT y+ (RT
+ ET )v (17)

w = (HTH+ RTR+ ETE+ RTE+ ETR)−1

(HT y+ (RT
+ ET )v) (18)

Training set and target values are represented bymatrixH and
vector y.

H =


h11 h12 . . . h1L
h21 h22 . . . h2L
...

...
. . . . . .

hN11 hN12 . . . hN1L

 y =


y1
y2
. . .

yN1

 (19)

Data noise samples are represented by matrix P, which is
the sum of matrices R (composed of the reference vectors)
and E (random noise). Target values for these samples are
given in matrix v.

P = R+ E (20)

R =


r11 r12 . . . r1L
r21 r22 . . . r2L
...

...
. . . . . .

rN21 rN22 . . . rN2L

 (21)

E =


ε11 ε12 . . . ε1L
ε21 ε22 . . . ε2L
...

...
. . . . . .

εN21 εN22 . . . εN2L

 (22)

v =


v1
v2
. . .

vN2

 (23)

Matrix 3 corresponding to the regularization term is
expressed in (24).

3 = RTR+ ETE+ RTE+ ETR (24)

Finally, (24) is taken to (18), leading to the new weight
update equation shown in (25).

w = (HTH+3)−1(HT y+ (RT
+ ET )v) (25)

Thus, (25) shows the new least squaresweight update equa-
tion when local resampling is applied. As can be observed
in (24), the regularization term3 is composed by resampling
terms E andR, leading to smoothing effects of the separation
surface. In the absence of noise, E and R are null and (25) is
reduced to the standard least squares (7).

Suppose N = Np + Nn, Np the number of positive labeled
samples and Nn the number of negative labeled samples.

N∑
k=1

(rk+εk )vk=
Np∑
k=1

(rpk+εpk )(+1)+
Nn∑
k=1

(rnk+εnk )(−1) (26)

rpk = rnk = r is constant.

N∑
k=1

(rk + εk )vk = Npr +
Np∑
k=1

εpk − Nnr −
Nn∑
k=1

εnk (27)

If the sampled set is balanced, i.e., Np = Nr = M :

N∑
k=1

(rk + εk )vk =
M∑
k=1

εpk −

M∑
k=1

εnk =

M∑
k=1

(εpk − εnk ) (28)

If the synthetic samples are generated according to gaussian
distributions, εp ∼ N (µ = 0, σ 2) and εn ∼ N (µ = 0, σ 2),
εd = (εp − εn) ∼ N (µ = 0, 2σ 2),

N∑
k=1

(rk + εk )vk =
M∑
k=1

εdk (29)

Finally, according to the Law of Large Numbers [37], since
variables εd are indepedent identically distributed, when
M →∞, 1

M

∑M
k=1 εdk converges in probability to µ,

N∑
k=1

(rk + εk )vk =
M∑
k=1

εdk = Mµ = M (0) = 0 (30)

The result shown in (30) proves that, for a sufficiently large
amount of generated samples, the term (RT

+ET )v in (25) is
equal to zero and (25) can be rewritten as (31).

w = (HTH+3)−1(HT y) (31)

Analyzing (31), it can be seen that the addition of sufficient
synthetic samples is equivalent to Tikhonov’s Regularization.
In order to avoid the need for asymptotically large number of
samples, symmetry can be achieved as long as each sample
generates a mirrored one, with the same label, in relation to r ,
as defined by (32) and (33).

P′ = R− E (32)

v′ = v (33)

For this synthetic set, (34) holds.

PT v+ P′T v′ = 0 (34)

IV. EXPERIMENTS
The experiments were performed on binary classification
problems. The first one was carried out on the two moons
synthetic problem for visualization purposes. The second one
was accomplished on real world datasets and compared to the
standard regularized ELM [35].

A. TWO-DIMENSIONAL PROBLEM
In order to compare the standard ELM with RN-ELM, both
methods were applied to the two-moons dataset. ELM sepa-
ration surface with 500 hidden layer neurons results on over-
fitting, as shown in Fig. 5, whereas the RN-ELM separation
surfacewith the same number of hidden neurons after regular-
ization with local resampling is shown in Fig. 6. The addition
of noise samples to the training set leads to regularization and
to smaller norm values of the weights.

VOLUME 9, 2021 50731



A. D. Assis et al.: Neural Networks Regularization With Graph-Based Local Resampling

FIGURE 5. ELM separation surface for the two moons dataset with
500 hidden layer neurons results on overfitting.

FIGURE 6. RN-ELM separation surface of Fig 5 with the same number of
hidden neurons after regularization with local resampling.

B. MULTIDIMENSIONAL DATASET
The performance of the proposed regularization algorithm,
RN-ELM, was evaluated on 18 datasets with different num-
bers of variables and sizes. Ten datasets were obtained on
the UCI Repository [38] (Audit Data (aud), Australian Credit
Approval (aca), Wisconsin Diagnostic Breast Cancer (bcr),
Diabetic Retinopathy (drp), Ionosphere (ion), Parkinsons
(pks), Pima Indians Diabetes (pid), QSAR biodegradation

TABLE 1. Dataset characteristics.

TABLE 2. Friedman test results (p-value) for different numbers of hidden
layer neurons (L).

(qsr), Sonar (snr), Statlog Heart (sth) ), six datasets were
obtained on the KEEL Repository [39] (Appendicitis (apd),
Bupa (bpa), Ecoli1 (ec1), Haberman (hbm), Monk2 (mk2),
Breast CancerWisconsin Original (wcs) ), and, finally, Golub
(glb) [40] and Hess (hes) [41]. All datasets are binary classifi-
cation problems. Instances of the datasets containing missing
values were discarded. Table 1 summarizes dataset sizes and
number of variables.

The performance of the proposed method (RN-ELM) was
compared to two other ELM learning approaches. Input data
were standardized to zero mean and unity standard devia-
tion and the output was assigned to +1 and −1 labels. The
hyperbolic tangent function was used on hidden neurons and
initial weights sampled from an uniform distribution within
the interval [−0.5, 0.5]. The numbers of neurons on the hid-
den layer were 10, 30, 100, 500, and 1000 [19]. The dataset
was randomly split into training and test sets with 70% to 30%
ratio, respectively. The number of samples for resampling
was obtained by 10-fold cross-validation within the range
n = {1 . . . 10}. Local resampling was obtained from a normal
distribution with standard deviation defined by (35), which
guarantees that all data is within three standard deviations
from the mean.

σ 2
=

(
D
6

)2

(35)

where D is the distance between border vertices of opposite
classes.
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TABLE 3. Accuracy of the test set (mean ± standard deviation). Results are shown according to the model, number of neurons in the hidden layer (L) and
dataset.

For ELM-REG the regularization parameter is selected
within the range C = {2−24, . . . , 215} [19] with 10-fold
cross-validation [35]. For each dataset, three different ELM
training methods were used (ELM, ELM-REG, and RN-
ELM). Overall performance was assessed by comparing
mean accuracy (Table 3) and weight norm ||w|| (Table 4). For
each network configuration, average values were obtained
in 30 trials. Finally, Friedman and pos-hoc Nemenyi tests
were adopted for comparing multiple models and multiple
domains [19], [42].

V. RESULTS
For 18 datasets of real world classifications problems,
RN-ELM was compared with the standard ELM and ELM-
REG. As expected, regularization on networks with a small
number of hidden neurons (10 or 30) did not lead to better
results, so that standard ELM accuracy was within one stan-
dard deviation of the other two methods and even performed
better for apd, bcr, bpa, ec1, ion, hes, mk2, pks, qsr, snr,
sth, and wcs datasets. However, when the number of hidden
neurons is greater than 100, as expected, regularization plays
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TABLE 4. Model weight norms (mean ± standard deviation). Norms are presented according to the model, number of neurons in the hidden layer (L) and
dataset.

a major role, as for most datasets ELM-REG and RN-ELM
had better results than ELM. Furthermore, it can be seen that
the proposed method led to similar results when compared
to ELM-REG, and both were within one standard deviation
from each other, except for the apd, mk2, and pks datasets.
The only dataset for which regularization did not improve
results, with outcomes mostly within one standard deviation,
was snr. The results of obtained mean accuracies are pre-
sented in Table 3.

For most datasets, especially for a large number of hidden
neurons (L = 500 and L = 1000), RN-ELM and ELM-REG
were both capable of reducing the norm of the weight vector
(used as a measure of network complexity), indicating that
the network outputs are smoothed. These results can be seen
on Table 4. The proposed method (RN-ELM) has achieved
performance similar to that of ELM-REG in terms of mean
accuracy and norm of the weight vector, which indicates that
local resampling also leads to regularization.
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FIGURE 7. Critical difference diagram of the model with 10 neurons in
the hidden layer.

FIGURE 8. Critical difference diagram of the model with 30 neurons in
the hidden layer.

FIGURE 9. Critical difference diagram of the model with 100 neurons in
the hidden layer.

FIGURE 10. Critical difference diagram of the model with 500 neurons in
the hidden layer.

In order to compare the three classifiers in the multi-
ple datasets evaluated, the Friedman test and the Nemenyi
post-hoc test were used [42], [43]. The results of the Friedman
test can be seen on Table 2. For a significance level α =
0.05, the null hypothesis of equality between ELM training
approaches can be rejected for L = {10, 30, 100, 500, 1000}.
The Nemenyi post-hoc test was applied next, yielding the
results summarized on Fig. 7 to 11. It can be seen that, for
mean accuracy values, RN-ELM is not statistically different
from ELM-REG, as, for all cases, even though ELM-REG
is ranked higher, both methods are less than one Critical
Difference (CD) apart.

FIGURE 11. Critical difference diagram of the model with 1000 neurons in
the hidden layer.

Regarding time complexity, according to [44], the hidden
layer matrix has a time complexity of O(NLm) whilst the
output matrix has O(L3 + L2N + LNC), where C = 2 for
binary classification problems, L is the number of hidden
layer neurons,m is the number of variables andN the number
of samples. The time complexity of Gabriel Graph [31]
algorithm isO(mN 3) for the worst case scenario andO(mN 2)
for the best case.

Due to the lack of standardization to run experiments
and to compare model performances on different datasets,
10-fold cross-validation, adopted in this work, seems to
provide the most general methodology for benchmarking
and comparing different models in the literature. Although
there is no guarantee that the considered folds were exactly
the same on different publications, statistical properties of
10-fold cross-validation yields a reliable approximation to the
global performance [45]. The results presented in the bench-
marking paper by Gestel et al. [46], which adopted 10-fold
cross-validation and grid search, are very similar to the ones
obtained in this work. For instance, performances obtained
by the authors in the following datasets were: aca (87,00%),
bpa (70,20%), ion (96,00%), pid (76,80%), snr (73,10%), sth
(84,70%) and wbs (96,40%). As can be observed in Table 3,
the results are quite close, what may suggest that, since
grid-search was also adopted by Gestel et al. [46], the out-
comes obtained with RN-ELMmay provide a reliable general
approximation without the need to make an exhaustive search
on parameter’s space. Comparisons with results from papers
that did not adopt 10-fold cross-validation also suggest that
the performance obtained with RN-ELM on the remaining
datasets is within the expected range reported in the literature
[47]–[50].

VI. CONCLUSION
It has been shown formally in this paper that ELM training
with local sampling leads to Tikhonov regularization. This
outcome follows Bishop’s developments presented in the
mid 1990’s [21], however, the graph-based local resampling
approach presented in this paper leads the separation function
to the margin region, without the need to exhaustively cover
the whole input space.

The results presented in this paper also show that such
an approach reduces the norm of the weights, indicating
that the methods yields smoother solutions, reducing the
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effects of overfitting. Performance metrics also indicate that
outcomes are statistically equivalent to the ones obtained
by ELM-REG with regularization parameters obtained with
cross-validation.

Directed resampling with the graph-based approach may
reduce costly input space exploration in higher dimensional
problems involving data augmentation. Although the graph
needs to be generated in order to locate resampling, it is based
on pairwise information which can be fully parallelized.
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