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ABSTRACT Fault tolerant control systems can be used in the process machines such as Internal
Combustion (IC) engines to achieve greater reliability and stability in the fault conditions. Thus, costly loss
of production due to the unusual and unexpected shutdown of these machines can be avoided. The Air Fuel
Ratio (AFR) control system is an important system in IC engines and faults in the sensors of this system will
cause its shutdown creating costly production loss, therefore, fault tolerance is necessary for them. In this
paper, an Active Fault Tolerant Control System (AFTCS) based on Artificial Neural Networks (ANN) has
been proposed for the AFR control system of a Spark Ignition (SI) IC engine to increase its reliability. In the
proposed AFTCS, a nonlinear ANN-based observer is used in the Fault Detection and Isolation (FDI) unit for
the highly nonlinear sensors of the AFR system for analytical redundancy. The Lyapunov stability analysis
has been utilized to design a stable system in normal and faulty conditions. The system has been implemented
inMATLAB/Simulink environment to test its performance. The simulation experimental results demonstrate
that the suggested system stays reliable maintaining the stability well in the fault conditions of sensors with
little degradation in AFR. A comparison with the existing works demonstrates the superior performance of
the proposed AFTCS for the highly nonlinear sensors of the AFR control system. The technique suggested
is very effective in terms of fault robustness and is more specifically based on the nonlinear behavior of the
MAP sensor compared to the existing works.

INDEX TERMS Fault tolerant control, artificial neural network, air fuel ratio control, Lyapunov stability,
nonlinear fault tolerant control.

I. INTRODUCTION
A fault in a system is described as the variation of the param-
eter from the actual value. Fault tolerance is described as the
ability of the system to maintain operation under faulty con-
ditions. Faults in any actual system are possible and reduce
the system’s stability and efficiency. In the references [1]–[3],
detailed descriptions and applications of fault tolerant control
(FTC) are provided. In critical production processes such as
oil and gas facilities, and fertilizers, FTC techniques are now
being applied where production losses cannot be tolerated
and continuous system performance is compulsory [4]–[6].
The description of all the abbreviations used in the paper is
shown in Table 1. The nomenclature of all the symbols is
shown in Table 2.

The associate editor coordinating the review of this manuscript and
approving it for publication was Shen Yin.

TABLE 1. Abbreviations explanation.

The core function for detecting, locating, and isolating
defective components is carried out in an active fault tol-
erant system (AFTCS) by a dedicated Fault Detection and
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TABLE 2. List of symbols.

Isolation (FDI) unit. The algorithm operates on the observer
principle such that the plant parameter is compared with
an estimated value generated by the observer to produce a
residual [7].

No fault is declared by the control system if the residual
is within limits. If the residual is determined to have sur-
passed the specified limit, the FDI unit declares it as a faulty
condition. The controller is then reconfigured to meet new
operational requirements. Degradation of performance can
occur due to defective components in AFTCS, but system
stability is guaranteed [8]–[10].

The AFTCSworking can be demonstrated in state-space in
the analysis by Wang et al. [11] to explain the architecture of
observer:

ẋ = Ax + Bu (1)
y = Cx + Du (2)
˙̄x = Ax̄ + Bu (3)
ȳ = Cx̄ + Du (4)(

˙̄x − ẋ
)
= A (x̄ − x) (5)

(ȳ− y) = C (x̄ − x) (6)
˙̄x = Ax̄ + Bu+ L (ȳ− y) (7)

L is feedback gain,

˙̄x − ẋ = A (x̄ − x)+ L (ȳ− y) (8)
(ȳ− y) = C (x̄ − x) (9)

˙̄x − ẋ = (A− LC) (x̄ − x) (10)

ėx = (A− LC) ex (11)

(ȳ− y) = Cex (12)

No fault is declared by the FDI unit when the residual
‘‘ex’’ goes to zero. If the residual is greater than the threshold,
an error will be declared and the faulty value will be replaced
by the FDI unit with the estimated value obtained from the
observer. AFTCS’ complex structure and sluggish reaction
due to excessive computations reflect its major disadvan-
tage [12].

In a passive fault tolerant control system (PFTCS), no FDI
unit is inserted and all failure conditions are anticipated in
the design process. The PFTCS operates with this offline
programming and due to fewer computations, has a quicker
response than AFTCS [13]. However, only certain faults
considered in the design process can be tolerated by this
system [5], [2].

The hybrid features of these two techniques are some-
times utilized called a hybrid fault tolerant control system
(HFTCS). In the HFTCS, the system can react quickly to
defects using the PFTCS feature in safety applications and
then optimize using the AFTCS property later in post-fault
condition [14], [15].

For sensor and actuator combined faults, ANN was used in
the detection and location of faults [16]. In the Li and Tong
analysis, fuzzy logic was employed for the nonlinear feature
estimation, and the adaptive control for the actuator failures
was applied. Tang et al. used the average dwell approach
with neural networks[17]. PFTCS was reported in Patel and
Shah [18], with a single tank level unit, using the fluid,
proportional integral derivative (PI) controller, on a system
defect and process disturbance.

In process conditions, FTC played a vital role to design
a stable control strategy even in faulty conditions [19]. FTC
becomes an integral component to preserve system reliability
and stability for actuator and sensor failures [20]. The NASA
aircraft LPV system is used to set up multilevel reconfig-
uration for actuators and sensors in [21]. NASA has used
FTC, in the current design of the drone control system [22].
A multi-controller approach without an FDI decision-making
unit was proposed in [23]. A hybrid solution was proposed
in [24] to guarantee reliability in case of sensor failure by
restoration with simulated sensor values. FTC for simultane-
ous sensor and actuator faults was discussed for markovian
jump systems in [25].

In the estimation and identification of nonlinear systems,
the ability of the ANN makes it an appropriate candidate
for FDI [26]–[28]. The use of ANN as an active fault com-
pensator in FTC design is limited to compensate the actua-
tor/sensor error analytically based upon the observer-based
system error principle [29]–[31]. The neural FTC design
for failures in actuators of three degrees of freedom (DoF)
helicopter was introduced in [32]. In its architecture, the ANN
observer was designed to observe and redefine the error
in the system with a radial basis function. Related ANN
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observer-based methods have been implemented in various
applications [33].

II. ARTIFICIAL NEURAL NETWORK
The most intelligent and up-to-date solution for data-driven
problems is the Artificial Neural Network that includes the
idea of artificial intelligence, the goal of empowering systems
to decide and learn from experience. The Artificial Neural
Networks (ANN) simulate and use this control technique
in systems or machines [34]–[36]. Figure 1 illustrates the
architecture of ANN.

FIGURE 1. ANN architecture.

In FTC, ANN can be used for non-linear systems because
of the useful features they provide. In [37], the back-stepping
strategy is proposed for underwater vessels with a thruster
fault dependent on the neural network strategy. FTC archi-
tecture for MIMO systems in combination with adaptive
neural networks is proposed in [38]. In [39], a nonlinear,
time-delayed, and unmolded dynamic adaptive NN solution
is suggested. In [17], the NN-based AFTCS is represented
with the RCL circuit implementation using the average dwell
time approach for nonlinear control techniques.

The equation for a neural network is obtained as follows:

al
j=σ

∑
k
wljka

l−1
k +b

l
j

(13)

where the total is k in (l − 1)th layer for all neurons.We define
a weight matrix wl for each layer to rearrange this expression
in a matrix form l. The weight matrix inputs wl are just those
weights that connect to the l th neuron layer. In other words,
the input in row jth and column k th are wljk . We also describe a
vector of bias blj for each layer l. The bias vector components
are the values blj , just one component for each neuron in the
l th layer. Finally, we describe a vector of activation al with
the activation elements alj .

III. AFR CONTROL OF IC ENGINE
An internal combustion (IC) engine is a heat engine, in which
air is required to combust fuel in the combustion chamber.
In industrial processes, IC engines are commonly used as
prime movers. Those engines transform the chemical energy
into the mechanical rotation and then drive compressors and
alternators. There are two types of IC engines: Compression
Ignition (CI) and Spark Ignition (SI). In CI engines, the
combustion takes place with compression, while in the SI

FIGURE 2. The basic architecture of the AFR system of the SI IC engine.

engines spark plugs are used in the combustion process. The
architecture of an internal combustion engine is illustrated
in Figure 2.

Proper mixing of air and fuel in the combustion process
in a definite ratio is termed as Air Fuel Ratio (AFR) and is
very important for increased engine efficiency, fuel energy
savings, and lower emissions. The mathematical equation of
AFR is:

AFR =
mair
mfuel

(14)

The chemical equation is given as:

25O2 + 2C8H18→ 16CO2 + 18H2O+ Energy (15)

The AFR according to this equation is termed as stoichio-
metric ratio and its value for the gasoline is 14.6:1. AFR
can vary from 6:1 to 20:1 during the combustion of gasoline.
A mixture with a lesser value compared to the stoichiometric
ratio is known as a rich mixture and a mixture with a greater
value than this ratio is known as a lean mixture. For instance,
the 16.5:1 AFR is lean and the 13.7:1 AFR is rich in gasoline
fuel. Both rich and leanmixtures are considered to be harmful
to the engine because it damages the catalyst as well as
decreases engine efficiency and fuel economy. For various
kinds of fuels, the value of AFR is distinct, for example,
the value for methanol amounts to 6.47:1, ethanol to 9:1,
and hydrogen to 34.3:1. Four sensors play a major role in
maintaining AFR control of the SI IC engines:
Manifold Absolute Pressure (MAP) Sensor: It provides an

accurate pressure value of suction air to the controller.
Throttle Sensor: It gives an air throttle position to the

controller.
Exhaust Gas Oxygen (EGO) Sensor: It measures the

exhaust-gas concentration of oxygen and controls fuel supply
for optimum combustion.
Speed Sensor: It measures the speed of the engine

crankshaft.
Faults in these sensors cause a shutdown of the engine,

therefore, fault tolerance is necessary for them. Since the
system is highly non-linear, we have used the ANN-based
estimation technique in the design of AFTCS.

In this paper, our contribution is the development of an
AFTCS based on ANN for the highly nonlinear sensors of
the AFR control system of SI IC engines. In the proposed
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AFTCS, a nonlinear ANN-based observer is used in the
FDI unit for analytical redundancy. The Lyapunov stability
analysis has been utilized to design a stable system in normal
and faulty conditions. The system has been implemented
in MATLAB/Simulink environment. The simulation exper-
iment results demonstrate that the suggested system stays
stable in the fault conditions of sensors with little degradation
of AFR. A comparison with the existing works demonstrates
the superior performance of the proposed AFTCS for the
highly nonlinear AFR control system. The technique sug-
gested is very effective in terms of fault robustness and is
more specifically based on the nonlinear behavior of theMAP
sensor compared to the existing works.

The following is the remaining structure of this paper.
Section IV comprises of research methodology. Results and
discussions are elaborated in section V. In section VI, a com-
parison with the existing works is discussed and finally,
the conclusion is provided in the last section.

IV. RESEARCH METHODOLOGY
The proposed AFTCS was implemented in MATLAB/
Simulink using the available AFR model of the IC gasoline
engine [40]. This model has been further modified according
to the proper AFTCS architecture with ANN-based FDI unit
and its findings are presented. A fault is introduced in each
sensor one by one keeping other sensors at normal condition.
For this study, the engine speed is set to 300 rpm as per the
design speed of the MATLAB model and the same value
is given to the controller by the FDI unit when the speed
sensor becomes faulty. The MAP and throttle sensor data are
extracted from the MATLAB model lookup tables (LTs) for
300 r/min [41]. The neural network technique is applied to
data to obtain nonlinear relations between MAP and throttle.
The FDI unit uses such nonlinear relationships to estimate the
value of the defective sensors.

A. SYSTEM MODELLING
The air-fuel ratio control is classified into various dynamics:
fuel dynamics, air dynamics, and the sensor model [42].

1) AIR DYNAMICS
The air intake dynamics are defined in the following terms
using the theory of mass conservation and the ideal air gas
hypothesis:

Ṗin =
RTin
vin

(
ṁth − ṁCyt

)
+ Pin

Ṫin
Tin

(16)

Ṗin = 9 (φth,Pin,Tin,Ne) (17)

where Tin is input temperature, Pin is manifold pressure,
and vin is input volume; ṁth is the mass flow through the
valve; ṁCyt is the mass flow into cylinders; R is the gas
constant; Ne is the engine speed and φth is the throttle
opening position. The time derivative of the intake tem-
perature is considered to be zero. Then, the differential

equation (16) becomes:

Ṗin = k̇in
(
ṁth − ṁCyt

)
(18)

with k̇in =
RTin
vin

(19)

The air mass flow through the valve is [43]:

ṁth = Cd
Pid
√
RT id

Ses (φth) g(Pr ) (20)

Cd the coefficient of discharge. The variable Pid is the over-
head loading pressure and the load ratio Pr is defined as
Pr =

Pin
Pid

. Ses (φth) is the throttle opening area. The product
CdSes (φth) is specified as an effective opening throttle area.
This variable is represented as:

Sett (φth) = CdSes (φth) = σ1{1− cos (σ2φth + σ3)} + σ4
(21)

where g (Pr ) is considered to a non-linear term as:

g (Pr ) =


√

2γ
γ−1 (Pr )

1
γ

√(
1− P

γ−1
γ

r

)
if Pr >

(
2

γ+1

) γ
γ−1

√
γ
(

2
γ+1

) γ+1
2(γ−1)

if Pr ≤
(

2
γ+1

) γ
γ−1

(22)

With: γ =1.4 the specific heat ratio of the air.

2) FUEL DYNAMICS
The dynamics of fuel is demonstrated as:

m̈ff (t) = 1
τf

(
−ṁff (t)+ xṁfi (t)

)
ṁfv = (1− x) ṁfi (t)
ṁf (t) = ṁfv (t)+ ṁff (t)

(23)

where τf is the fuel vapor process at constant time [s], ṁfi (t)
the fuel flow injection [kg/s], ṁf (t) the fuel flow in the
cylinders [kg/], ṁfv the vapor fuel flow [kg/s], and m̈ff (t)
the liquid mass fuel flow [kg/s], it is possible to include as
a vector depending on the throttle opening or engine rpm Ne,
to achieve a more detailed model [44]. The second solution
has been chosen in our case:

τf (Ne) = σ5N−σ 6e (24)

(Ne) = σ7 + σ8Ne (25)

The air-fuel ratio is then obtained:

λcyl =
ṁcyl (t)
λsṁf (t)

(26)

3) SENOR MODEL
The lambda sensor model is given by:

λ̇ (t) = −
1
τλ
λ (t)+

1
τλ
λcyl (t − τ (Ne (t))) (27)

with the constant time delay τλ = 0.1s.
An engine speed Ne (t)with time delay τ is shown in

equation 29 :

τ (Ne (t)) =
60

Ne (t)

(
1+

1
ncyl

)
(28)
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4) STATE-SPACE REPRESENTATION
The state-space model is represented as:[

ẋ1
ẋ2

]
= A

[
x1
x2

]
+ B

[
u1
u2

]
(29)

y = C
[
x1
x2

]
+ D

[
u1
u2

]
(30){

ẋ1 = f1 (.) x1 (t)− f2 (.) u (t)
ẋ2 = − 1

τλ
λ (t)+ 1

τλ
λcyl (t − τ (Ne (t)))

(31)

With x1 (t) = λcyl , x2 (t) = λ (t), and u (t) = ṁfi (t):

f1 (.) = −
1

τλ (Ne)
−

m̈cyl
mcyl (Ne,Pin)

(32)

f2 (.) = λs
χ (Ne)
τf (Ne)

mcyl (Ne,Pin) (33)

Bounded as follows: f
i
≤ fi (·) ≤ f i, for i ∈ {1, 2}.

B. CONTROLLER DESIGN
The description is briefly listed below for mathematical fault
modeling and observer configuration. The types of sensor
faults are generally classified as noise, drift, bias, gain,
and hard fault. State-space representation is used to design
AFTCS to minimize the effects of these faults. The state-
space representation of the IC engine has been illustrated
in [45] and given below:

y = u+ αx1 + βx2 (34)

u = yd + αx1 + βx2 (35)

x1 = f1 (.) x1 − f2 (.) u (t) (36)

x2 = −
1
τλ
λ (t)+

1
τλ
λcyl (t − τ (Ne (t))) (37)

where x1 and x2 are state variables, and u, y, and yd denote
the inputs, actual outputs, and desired output of the system
respectively. α and β are the parameters of the engine which
are calculated through engine speed Ne.
Using state observers, we get:

u = yd + αx̄1 + β x̄2 (38)

where x̄1 and x̄2 are the estimated values of observer design.
A gradient descent algorithm is used to estimate the states

in this ANN observer. The root mean square error is used to
design an observer that precisely predicts the actual output y.
The root mean square error is demonstrated as,

E =
1
2
(y− ȳ)2 (39)

where ȳ shows the estimated output, E represents the root
mean square error and last but not least actual output is y.
The predicted output is presented as,

ȳ = u+ αx̄1 + β x̄2 (40)

In a steady-state, the desired output yd must be equal to the
predicted output. So,

E =
1
2
(y− yd )2 (41)

The error function can be defined in the previous equation,
so its partial derivative is

∂E
∂x1
= −α (y− yd ) (42)

∂E
∂x2
= −β (y− yd ) (43)

The state variables are changed when we utilize a gradient
descent algorithm,

x̄1 (k + 1) = x̄1 (k)− η
∂E
∂x1

(44)

x̄2 (k + 1) = x̄2 (k)− η
∂E
∂x2

(45)

where x̄1 and x̄2 are the predicted values, at (k) and (k + 1)
are cycles and η is the learning rate. After putting the values
of equations (42), and (43) into the (44), and (45) we get,

x̄1 (k + 1) = x̄1 (k)+ ηα (y− yd ) (46)

x̄2 (k + 1) = x̄2 (k)+ ηβ (y− yd ) (47)

∴ η =
1

α2 + β2
(48)

where learning rate provides low settling time, low percent-
age overshoot, and better stability. Substituting the value of η
in the (46), and (45) equations:

x̄1 (k + 1) = x̄1 (k)+ η
α

α2 + β2
(y− yd ) (49)

x̄2 (k + 1) = x̄2 (k)+ η
β

α2 + β2
(y− yd ) (50)

We check the stability of the controller with the help of
Lyapunov proof to make sure that it works properly.

C. LYAPUNOV STABILITY ANALYSIS
The stability of the control system needs to be maintained
for practical operation. A direct Lyapunov approach is used
with this neural network-based control method to prove the
system’s stability. The Lyapunov function is:

V (x (k)) = (yd − y)2 (51)

If actual output y is equal to the desired output yd then
V (x (k)) is equal to 0. Put the values of actual and desired
outputs in the Lyapunov function as discussed earlier:

V (x (k)) = [α (x1 (k)− x̄1 (k))+ β (x2 (k)− x̄2 (k))] (52)

The state estimation errors are presented below after solving
the previous equation,

x̃1 (k) = (x1 (k)− x̄1 (k)) (53)

x̃2 (k) = (x2 (k)− x̄2 (k)) (54)

So the Lyapunov function is,

V (x (k)) =
[
αx̃1 (k)+ β x̃2 (k)

]
(55)

If we change (t) cycle into (t + 1) cycle then the equation is,

V (x (k + 1)) =
[
αx̃1 (k + 1)+ β x̃2 (k + 1)

]
(56)
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where,

x̃1 (k + 1) = (x1 (k + 1)− x̄1 (k + 1)) (57)
x̃2 (k + 1) = (x2 (k + 1)− x̄2 (k + 1)) (58)

Inserting the values of estimated state variables (49), and (50)
into the (57), and (58) as follows,

x̄1 (k + 1) = x1 (k + 1)− x̄1 (k)− η
α

α2 + β2
(y− yd ) (59)

x̄2 (k + 1) = x2 (k + 1)− x̄2 (k)− η
β

α2 + β2
(y− yd ) (60)

Similarly, if we take the difference between actual and
predicted (desired) (because they both are the same in
steady-state as stated earlier) output,

y− yd = α (x1 (k)− x̄1 (k))+ β (x2 (k)− x̄2 (k)) (61)

Substituting the values of state estimation errors (53), and
(54) into the (61) equation,

y− yd = αx̃1 (k)+ β x̃2 (k) (62)

Now again put the values of difference equation (62) into
(59) and (60),

x̄1 (k + 1) = x1 (k + 1)− x̄1 (k)
−

α

α2 + β2

[
αx̃1 (k)+ β x̃2 (k)

]
(63)

x̄2 (k + 1) = x2 (k + 1)− x̄2 (k)

−
β

α2 + β2

[
αx̃1 (k)+ β x̃2 (k)

]
(64)

As we discuss earlier,

x1 (k + 1) = x1 (k) (65)
x2 (k + 1) = x2 (k) (66)
x̄1 (k + 1) = x1 (k)− x̄1 (k)

−
α

α2 + β2

[
αx̃1 (k)+ β x̃2 (k)

]
(67)

x̄2 (k + 1) = x2 (k)− x̄2 (k)

−
β

α2 + β2

[
αx̃1 (k)+ β x̃2 (k)

]
(68)

Again substituting the values of equations (53), and (54) into
previous equations (67) and (68) we get,

x̄1 (k + 1) = x̃1 (k)−
α

α2 + β2

[
αx̃1 (k)+ β x̃2 (k)

]
(69)

x̄2 (k + 1) = x̃2 (k)−
β

α2 + β2

[
αx̃1 (k)+ β x̃2 (k)

]
(70)

The Lyapunov function can be written as,

V (x (k + 1)) =

α
[
x̃1 (k)− α

α2+β2

[
αx̃1 (k)+ β x̃2 (k)

]]
+β

[
x̃2 (k)−

β

α2+β2

[
αx̃1 (k)+ β x̃2 (k)

]]


(71)

After solving this equation, we have,

V (x (k + 1)) = 0 (72)

So, the difference between (k) cycle and (k + 1) cycle of
Lyapunov function is,

V (x (k + 1))− V (x (k)) = − (yd − y)2 (73)

∴ V (x (k)) = (yd − y)2 as discussed earlier in equation (51),
put this in equation (73)

V (x (k + 1))− V (x (k)) = −V (x (k))

∴ V (x (k)) = V̇ (x (k)) (74)

V (x (k + 1))− V (x (k)) = V̇ (x (k)) (75)

This shows that the difference between the k cycle and the
(k + 1) cycle of the Lyapunov function is negative definite.
Lemma: Let the equation for the observer design for a

nonlinear system would be as follows:

x̃1 (k) = Ax̄ + Bu+ g (x̄,u, k)+ L̄ (Cx̄ − y) (76)

where, A, B, and C arematrixes and g is a function of x, u, and
y, and finally, L̄ is a feedback gain for the nonlinear observer.
Let ex (t) be the error,

ex (k) =̂x̃1 (k)− x1 (k) (77)

The error equation for nonlinear system observer is:

ėx =
(
A− L̄C

)
ex (k)+ (g (x̄1, u, k)− g (x1, u, k)) (78)

The error ex (k) approaches to zero asymptotically if there
exists a matrix R, X, and scalar µ such that R = RT > 0 and
µ > 0 to satisfy the following linear matrix inequality (LMI):[

RA+ ATR+ XC + CTXT + µλ2I R
R −µI

]
< 0 (79)

where R is the reliability of each sensor. The observer gain
matrix can be selected as follows:

L̄ = R−1X (80)

To prove it, consider the following Lyapunov function to
prove its derivative to be zero:

V (k) = eTx Rex (k) (81)

Now we will check V̇ (x) < 0∀xεD−{0}as described below:

V̇ (k) = eTX
(
RA+ RL̄C + ATR+ CTL−TR

)
ex

+2eTx R (g (x̄,u, k)− g (x, u, k)) ≤ e
T
X

×

(
RA+ RL̄C + ATR+ CTL−TR

)
ex

+1/µeTx R
2ex + µ ‖g (x̄,u, k)− g (x, u, k)‖2

≤ eTX
(
RA+ RL̄C + ATR+ CTL−TR

)
ex

+1/µeTx R
2ex + µλ2 ‖ex‖2

= eTX
((
RA+ RL̄C + ATR+ CTL−TR

)
+ µλ2I + 1/µR2

)
ex (82)

Substituting observer gain equation into the above equation
to get:

V̇ (k) ≤ eTX
((
RA+ RL̄C + ATR+ CTL−TR

)
+ µλ2I + 1/µR2

)
ex (83)
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If the following inequality holds, ex converges asymptotically
to zero.((
RA+ RL̄C + ATR+ CTL−TR

)
+ µλ2I + 1/µR2

)
< 0

(84)

The last equation becomes equivalent to the first equation
which completes the proof.

FIGURE 3. Flowchart of proposed AFTCS.

The working of the proposed AFTCS is shown in Figure 3.
Firstly, the system checks the sensor values and computes
the threshold between the sensor and observer value. If there
is no fault, the engine works in an appropriate way. On the
other hand, if any single sensor fault is occurred, the error
signal becomes out of threshold. The FDI unit replaces the
faulty sensor value with the estimated value obtained from
the observer model based on ANN and it is fed to the Engine
Control Unit (ECU). The production of the estimated virtual
value of the faulty sensor provides the analytical redundancy
in the model.

In this model, the engine is assumed to operate at a constant
speed of 300 r/min as per the design speed of the MATLAB
model used in the study. The time in the switching and
reconfiguration process has also been assumed zero seconds.
Practically, a certain delay will occur in the controller com-
putations. The limitations of the work are that only complete
failure type faults are considered for the sensors without
considering partial faults which will be covered in future
works.

FIGURE 4. AFTCS for AFR control system with FDI unit.

FIGURE 5. FDI unit.

V. RESULTS AND DISCUSSION
The implementation of the proposed AFTCS in theMATLAB
IC Engine model is illustrated in Figure 4. Four sensors
(throttle, MAP, EGO, speed) have been used in this model.
The fault is injected in the system manually by supplying fail
low value through the fault injection unit. The estimated value
is generated by the ANN-based observer using the values
from other healthy sensors in the FDI unit and is supplied
to the controller.

The FDI block is designed to locate, isolate, and recon-
figure the faulty value parameter. The FDI block contains a
reconfiguration and estimation block as shown in Figure 5.

The schematic for the internal block of the estimation block
and reconfiguration block are shown in figures 6 and 7.

The reconfiguration unit is designed to calculate the resid-
ual and determine its bound. If the value of the sensor remains
within bounds, no fault is registered. In the case of a fault,
the sensor value exceeds its residual value, and is replaced by
the estimated value obtained from the estimation unit.

All the estimations have been designed through an artificial
neural network-based observer. The fault estimate unit is con-
structed using an advanced ANN approach based on the data
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FIGURE 6. Internal diagram of estimation block.

FIGURE 7. Internal diagram of reconfiguration block.

obtained from the model’s lookup tables. Table 3 provides
MAP sensor data set for 300 r/min.

The equation for a neural network for theMAP and throttle
is obtained as by the following expression:

al
j=σ

∑
k
wljka

l−1
k +b

l
j

(85)

The regression plot for the MAP estimator is shown
in Figure 8. The regression line indicates the individual net-
work outcomes in terms of the corresponding targets. If the
network has learned to match the data correctly, it should
overlap the left and right upper corners of the plot. If not,
further training or learning would be advisable for a network
of more unknown neurons. The neural network training plot
is shown in Figure 9.

The first graph in Figure 9 shows the gradient descent of
the proposed observer. 7e-12 shows that we find local minima
after 6 iterations. Secondly, mu is a momentum update that is

TABLE 3. MAP and throttle angle relationship for 300 r/min.

FIGURE 8. MAP regression plot.

FIGURE 9. Training state plot for MAP estimator.

included in the weight update expression to avoid the problem
of local minima. Sometimes network may get stuck to the
local minima and convergence does not occur. The range of
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TABLE 4. MAP and throttle angle relationship for 300 r/min.

FIGURE 10. Throttle regression plot.

mu is between 0 and 1. Lastly, validation errors have been
monitored, if any error in the dataset then validation checks
are equal to the number of errors but in our case, no error has
appeared, therefore, the validation checks are equal to zero.
The throttle sensor data at 300 r/min are shown in Table 4.

And their corresponding regression (line fit) and train state
plots are shown in Figures 10 and 11.

The regression line indicates the individual network out-
comes in terms of the corresponding targets. If the network
has learned to match the data correctly, it should overlap the
left and right upper corners of the plot similarly with the
linear fit for this output objective relationship. If not, further
training or learning would be advisable for a network of more
unknown neurons. The neural network training plot is shown
in Figure 11.

The first graph in Figure 11 shows the gradient descent of
the proposed observer. 3e-09 shows that we find local minima
after 7 iterations. Secondly, mu is a momentum update that
is included in the weight update expression to avoid the

FIGURE 11. Training state plot for throttle estimator.

TABLE 5. Map sensor estimation by ANN-based observer.

problem of local minima. The range of mu is between 0 and 1.
Lastly, validation errors have been monitored, if any error in
the dataset then validation checks are equal to the number
of errors but in our case, no error has appeared, therefore,
validation checks become zero.

The performance of the proposed AFTCS in normal and
faulty conditions is shown in Figure 12.

The fault is injected in each sensor one by one keeping
others in a healthy state. The mixture AFR ratio is maintained
at 14.6 in normal conditions and drops to 11.7 (rich mixture)
in the faulty condition. However, the stability of the system
is ensured despite degraded performance in the faulty condi-
tions achieving the purpose of fault tolerance.

VI. COMPARISON WITH THE EXISTING WORKS
In this section, a comparison of the proposed work with
existing works is carried out. In this work, we have devel-
oped a proper AFTCS architecture with a dedicated ANN-
based FDI unit. Previously the work was done only for linear
systems using Kalman filter, Linear regression, and lookup
tables. It was limited to the linear range of the MAP sensor.
In this paper, we have utilized the ANN technique to cover
the entire nonlinear range of MAP sensor that also has less
computational cost than lookup tables and hence, preferable.
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FIGURE 12. Performance of ANN based AFTCS for AFR control system
sensors of IC engine.

TABLE 6. Throttle sensor estimation by ANN-based observer.

ANN approach is now becoming a preferable approach
in fault diagnostics due to its useful functions of learn-
ing, self-organization, and non-linear modeling capabilities.
A comparison of ANN estimation performance is shown
in Tables 5 and 6. These tables show the estimated values
of throttle and MAP sensors and their corresponding mean
square errors (MSE) that are much lower with ANN.

VII. CONCLUSION
In this paper, a novel AFTCS based on ANN for the highly
nonlinear sensors of the AFR control system of SI IC engines
was developed. In the proposed AFTCS, a nonlinear ANN-
based observer was used in the FDI unit for analytical redun-
dancy. The Lyapunov stability analysis was utilized to design

a stable system in normal and faulty conditions. The sys-
tem was implemented in MATLAB/Simulink environment.
The simulation experiment results demonstrate that the sug-
gested system stays stable with slightly degraded AFR in the
fault conditions of sensors. A comparison with the existing
works demonstrates the superior performance of the proposed
AFTCS for the highly nonlinear sensors. The technique sug-
gested is very effective in terms of fault robustness and is
more specifically based on the nonlinear behavior of theMAP
sensor compared to the existing works.

Future research work may include the use of advanced ana-
lytical redundancy such as recurrent neural networks (RNN)
and convergence theory to support experimental results. The
nodes of each RNN layer, unlike conventional ANNs, are
interconnected. This self-connection allows RNNs to mem-
orize more data from a sequence over time.
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