
Received March 5, 2021, accepted March 19, 2021, date of publication March 23, 2021, date of current version April 1, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3068129

A Transfer Games Actor–Critic Learning
Framework for Anti-Jamming in Multi-Channel
Cognitive Radio Networks
HUYNH THANH THIEN 1, VAN-HIEP VU 2, AND INSOO KOO 1
1Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, South Korea
2NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam

Corresponding author: Insoo Koo (iskoo@ulsan.ac.kr)

This work was supported in part by the National Research Foundation of Korea through the Korean Government Ministry of Science and
ICT (MSIT) under Grant NRF-2021R1A2B5B01001721.

ABSTRACT Acognitive radio network (CRN) is a novel solution that promises to solve the spectrum scarcity
problem and enhance spectrum utilization. However, unsecured CRN can easily be manipulated in order to
attack legacy users on the communication channel. As a result, the network’s performance significantly
degrades. Therefore, communication channel security is an important issue that needs to be addressed in
a CRN. In this work, we focus on improving the security of multi-channel communication in a CRN,
while various jammers try to access channels of interest to prevent SUs from using them. By using game-
theoretic concepts and by defining states, actions, and players’ rewards, we propose game–based schemes
that find the best channel for the secondary users (SUs) in order to avoid jammer’s attacks on communication
channels. Accordingly, the problem is finding the optimal channel to maximize the long-term reward of
the SU where communication channels are not used by the primary users (PUs) and are not jammed by
attackers. In addition, the idea of transfer learning might be applied to the problem under consideration, and
thus, a transfer Game-Actor-Critic (TGACT) scheme is proposed, which uses the transferred knowledge in
a double-game period to accelerate the learning process and provide performance improvement in channel
selection. Finally, the performance of the proposed schemes is simulated with different configurations. The
simulation results show that the proposed schemes are quite resistant to jammer attacks, and achieve better
performance compared to other channel selection schemes.

INDEX TERMS Actor–critic, cognitive radio networks, game theory, jammer, reinforcement learning,
transfer learning.

I. INTRODUCTION
Nowadays, the demand for communication and entertainment
of users is increasing, leading to a significant increase in
wireless applications and services. As a result, issues such as
spectral scarcity and increasing demand for spectrum sources
pose enormous challenges for network operators. To address
existing issues, the cognitive radio network (CRN) was devel-
oped [1], [2] and is considered one of the most promising
technologies for improving spectrum efficiency. The basic
idea of a CRN is to exploit spectrum holes by enabling
secondary users (SUs) (also called unlicensed users) to sense,
select, and access free channels which are not occupied by
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the primary users (PUs) (also called licensed users). How-
ever, whenever a PU needs those channels, the SU has to
vacate them. For the implementation of efficient spectrum
exploitation in CRNs, selection by users of the appropriate
access channel has a great influence on the performance of the
network. Many channel selection schemes have been investi-
gated in the previous works [3]–[8]. Although the proposed
solutions can utilized the spectrum effectively, they are all
based on the assumption that SUs exploit spectrum holes,
while coordinating together to achieve their common target.
This assumption ignores the scenario in which different ran-
dom attackers could attack communication channels between
SUs that could threaten network security and interfere with
CRN. Physical or media access control layers are vulnerable
to attacks that are a security threat to communication in CRN.
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These threats are not only harmful to commercial networks
but also threaten national defense and national security [9].
Hence, along with the challenges in spectrum management,
secure spectrum utilizing also plays a crucial role for the
development of CRN architecture. For that reason, a consid-
erable amount of research on security techniques has been
investigated for the CRNs [10], [11]. However, the influ-
ence of jammers on spectrum sharing has been still little
considered. Some previous work proposed resource alloca-
tion and intelligent jamming to avoid security threats from
jammers [12], [13]. In [14], the authors proposed an anti-
jamming game in CRNs with multiple channels by model-
ing the interaction between a SU and attackers. Moreover,
the anti-jamming game is redefined as the defense strategy
with randomized power allocation. Most of the researchers
only consider resource allocation and intelligent jamming to
counter jammers attacks.

Recently, the Markov decision process (MDP) and the
game theory approach in CRN have been investigated
[15]–[17]. A stochastic game in [18] considered a competi-
tion and interaction among players, which is an extension of
the MDP proposed in [19]. However, these proposed game
approaches do not exploit the knowledge about the PU status
on the channel, which can be collected via spectrum sensing
on a pre-selected channel. In this work, we also solve the
anti-jamming problem using the game theory approach. First,
we propose a single-game scheme by formulating the prob-
lem of channel selection as a game framework, solving the
problem for finding the best channel by using value iteration–
based dynamic programming. In the paper, anti-jamming
means that there is the absence of PU on the channels under
consideration and further the jammers are not accessing these
channels. Subsequently, jammers do not jam PU but only
jam on the channels of interest. Besides, jammers could be
considered as malicious SUs that try to access channels to
prevent other normal SUs from using them. Malicious SUs
can forge the spectral characteristics of the PU to gain priority
access to wireless channels, known as primary user emulation
(PUE) attacks. To match with the scenario in this paper, it is
assumed that the CRN can easily detect PUE attacks based
on several detection mechanisms such as channel parame-
ters and spectrum decision, feature detection with filter and
cyclostationary and many other detection mechanisms are
mentioned [20]. Therefore, the jamming ability of attackers
on PU is not considered in our work. Second, for the purpose
of improving the performance of the single-game scheme
through gathering the knowledge about the PU status on the
channel, we can use the double-game scheme in our previous
work [21]. In double-game scheme, the first game is solved
to find pre-selected channel for the SU. Then, based on this
channel, the SU performs spectrum sensing to collect PU
status information on the channel. From the sensing results,
the belief and state of the system are updated and used for
the second game to find the final best channel. Note that,
our best channel selection problem against jammer’s attacks
is different from the previous work [21]. In this paper, the

problem of best channel selection against jammer’s attacks is
investigated in the scenario where communication channels
are not used by the PUs and are not jammed by attackers.
Meanwhile, the problem of best channel selection in [21] is
based on maximize the secrecy rate of the SU.

Furthermore, the dynamic game solutions assume that the
environment’s dynamics (e.g., the jammer’s strategies) is
known in advance, which is rarely true due to the random
attack nature of jammers. Since accurate information about
the dynamics of the environment is sometimes not available,
the problem of stochastic optimization is usually formulated
as the MDP framework [22]. Afterward, the problem was
formulated with MDP could be solved using reinforcement
learning (RL) approaches [23]. In RL, the agent makes
the optimal policy through environmental interactions and
requires no prior knowledge of the dynamic of the environ-
ment [24]. Because of the advantages of a reinforcement
learning approach, a series of studies have been carried out
using the combination of anti-jamming and reinforcement
learning techniques [25]–[29]. Wang et al. [25] proposed an
anti-jamming defensemechanism in CRNbased on a stochas-
tic game framework in which SUs can decide how many
channels are used for a given purpose based on observations
of the jammer’s attack strategy, channel quality, and the spec-
trum availability. To learn the optimal policy, the spectrum-
efficient throughput is maximized using the minimax-Q
learning. Singh and Trivedi in [26] have proposed the anti-
jamming approach using the State-action-reward-state-action
(SARSA) and QV RL algorithm in which the SU can learn
the jammer’s strategy and the characteristics of the channel.
The results show an improvement in the performance of QV
and SARSA algorithm when compared with the minimax–Q
learning algorithm. In these studies, the Q–learning algorithm
is used for most of the anti-jamming mechanisms due to
the advantage of not knowing the model of this algorithm.
However, with high-dimensional or continuous inputs, anti-
jamming problems can face challenges when using traditional
Q–learning algorithms. Therefore, several algorithms have
been proposed to overcome this weakness such as the deep
Q–network (DQN) [27] and double DQN [28], [29] which
leverage a deep neural network to approximate the Q table.
Specifically, Han et al. [27] proposed a two-dimensional anti-
jamming mechanism for CRNs in which the SINR of the
SU signals can be improved based on the exploitation of
usermobility and spread spectrum. Besides, the anti-jamming
scheme used a DQN-based approach to find the optimal pol-
icy of the network. The authors in [28] used the double DQN
algorithm to counter the jammer in a multi-user manner with
frequency hopping strategy attacks. Xu et al. [29] modeled
the encounter between the jammer and the CRN based on
a double DQN design to maximize the users’ transmission
rate. In this paper, for a performance comparison with our
proposed schemes, we can also solve the problem of channel
selection to avoid jammer’s attacks using an RL approach,
called an actor–critic (AC) algorithm. Specifically, based on
the state of the system, the long-term network performance
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is maximized to find the optimal channel policy that can be
used against jammer’s attacks.

In the case of RL, agents must get the information under
a trial-and-error process to find an action in each state,
because in the beginning they have no prior information on
the environment [30]. Therefore, the procedure could take a
considerable amount of time for learning in the AC algorithm
to reach an optimal policy. To address this problem, we use
transfer learning (TL) technique [31]. Regarding to transfer
learning techniques, problems in target task can be effec-
tively solved through the application of information obtained
from source task [32]. Consequently, TL has attracted a lot
of interest from researchers [31]–[36]. Additionally, several
studies of anti-jamming by combining RL and TL have been
investigated recently [37]–[39]. Chen et al. [37] proposed
a RL-based power control scheme in which the WBAN
coordinator and the in-body sensors can communicate with
each other to defend against attacks. The Q-learning algo-
rithm and the transfer learning method are used to obtain
an optimal policy and accelerate the learning speed, respec-
tively. Dai et al. [38] provided a safe version of deep RL
for network security in which the risk level is estimated
and the transfer learning technique is used to reduce initial
random exploration. An anti-jamming scheme with the help
of an unmanned aerial vehicle (UAV) in a cellular network
is proposed in [39] where the deep RL algorithm is used to
find the optimal relay policy. Furthermore, transfer learning
is also used to help cellular networks battle jammers without
knowing system models as well as observed communication
states. In general, in the above-mentioned anti-jamming jobs,
the RL algorithm is used quite commonly, however, these
studies are either considered on basic wireless networks that
are not CRNs or not considered combining with transfer
learning technique. Therefore, the problem of anti-jamming
by combining RL and TL in CRNs is considered in this
paper. Furthermore, the transfer learning technique used to
transfer knowledge from source task where the anti-jamming
problem is solved based on game theory is also a highlight
in this paper. By using the learned knowledge about channel
selection from historical period (the double-game period),
the ongoing learning process can be accelerated in the target
task during the classic AC period, and provide additional
improvements to the channel selection problem. As a result,
the problem of channel selection with the help of transfer
learning technology is proposed based on the transfer of
knowledge learned from double-game scheme into a classic
AC algorithm, which is denoted as the Transfer Game-Actor-
Critic (TGACT) scheme in this work.

In summary, the main contributions of this paper are pre-
sented as follows:

• We investigate anti-jamming approaches for CRN with
a multi-channel and multiple jammer, where an SU
is transmitting data to a receiver SU while multiple
jammers independently perform jamming on transmitter

SU–receiver SU (SUtx–SUrx) transmissions. Each jam-
mer attacks a random channel of interest. To optimize the
security of a CRN, we propose an anti-jamming scheme
by using game-theoretic concepts through definitions of
states, actions, and players’ rewards. The network sce-
nario is modeled as a dynamic game, namely, a single-
game scheme that finds the optimal channel for the SU
in order to protect communication channels from jam-
ming attacks. By using the optimal channel, the SU can
receive maximum long-term reward which can reduce
jammers’ impact on channels. Then, we propose a dou-
ble game–based anti-jamming scheme based on a repeat
game algorithm in our previous work [21], which has
demonstrated an improvement in performance com-
pared to the single-game scheme. After that, the network
performance with the proposed double-game scheme
can be compared with a random-attack, single-game,
and no-jammer schemes.

• Besides, the best channel selection problem with anti-
jamming can be reformulated as an MDP framework.
For a performance comparison with our proposed
schemes, we consider the solution to the formulated
MDP by using the classic AC algorithm, an RL approach
where there is no need to know the jammers’ access
strategy in advance.

• Moreover, TL technology is also applied (namely,
the TGACT scheme), which uses the transferred knowl-
edge in the double-game period to accelerate the
learning process and to provide performance improve-
ments in channel selection, compared with a clas-
sic AC scheme and a transfer Actor-Critic (TACT)
algorithm [35].

• To evaluate the performance of the proposed schemes,
we use the average reward metric (also called the
security level in this paper) of the SU in different con-
figurations. The simulation results show that the pro-
posed schemes are quite resistant to jammer attacks,
and achieve better performance compared to other
conventional channel selection schemes. Specifically,
the double-game scheme provides better performance
in comparison with random-attack and single-game
schemes. Furthermore, the performance of the proposed
TGACT scheme is also better than the dynamic game,
classic AC, and TACT schemes.

The remaining of this paper is arranged as follows.
Section II presents the system model and local spectrum
sensing. Section III describes game formulation for channel
selection with anti-jamming for single- and double-game
schemes. The reinforcement learning approach–based anti-
jamming schemes are described in Section IV, which intro-
duce the classic AC, the TACT [35], and the proposed
TGACT schemes. In Section V, we present the simulation
results and discussions. Finally, Section VI provides a con-
clusion.
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FIGURE 1. Markov chain for the PU states.

FIGURE 2. The system model.

II. THE SYSTEM MODEL AND LOCAL
SPECTRUM SENSING
A. SYSTEM MODEL
Consider a CRN systemwhere a transmitter SU tries to access
the licensed channel of the PUs (K licensed channels) by
using local spectrum sensing and send data to a receiver
SU while jammers (E) independently perform jamming on
a random channel of interest, as shown in Fig. 2. The chan-
nels are assumed to be an additive white Gaussian noise
(AWGN) channel. Let K = {1, . . . , k, . . . ,K } and E =
{1, . . . , e, . . . ,E} denote the set of channels and jammers,
respectively. We assume that the SUtx always has data to
transmit to the SUrx. For the convenience of tracking and
formulation terminology, SU will be used instead of SUtx in
the remainder of this paper. The operation of the system is
in a time-slotted manner with slots of equal length and non-
overlap, which are represented with the letter t . In this work,
the operation of a PU on channel k is assumed to follow
a two-state Markov discrete-time process. Let SPU (k) =
{A,P} denote the PU state, in which the notations A and P
represent the absence and presence of the PU, respectively.
The operation of Markov chain states of the PU is shown
in Fig. 1, in which PPA and PAA represent the state transition
probabilities between the two absence and presence states
of the PU. Let Sk denote the PU state on channel k , and
we define PkAA = Pr

(
Sk(t+1) = A|Sk(t) = A

)
and PkPA =

Pr
(
Sk(t+1) = P|Sk(t) = A

)
as the transition probability of the

PU from state A to itself and from state P to state A, respec-
tively.

First, the SU perform local spectrum sensing on a particular
channel by using energy detector. Then, the SU will perform

the data transmission process on this channel when it is free.
On the contrary, the SU is not allowed to occupy the channel
for data transmission, and will wait until the next time slot to
repeat the whole process.

In time slot t , the SU selects a channel for its commu-
nication, x ∈ K, and a denotes the action of the SU with
a = {x |x ∈ K }. Action a will be a distribution over set K,
which is given as:

PSU (k) = Pr {a = k}

s.t.
∑
k

PSU (k) =
∑
k

Pr {a = k} = 1, k ∈ K, (1)

where PSU (k) denotes the probability that the SU accesses
channel k .

In the same way, the jammers select channels for jamming,
Y = {y1, y2, . . . , yE } , ye ∈ K, and be denotes the action
of jammer e where be = {ye |ye ∈ K }. Then, actions by all
jammers in the system are given as b = {b1, b2, . . . , bE }.
Action be will be a distribution over set K, which is given as:

Pe (k) = Pr {be = k}

s.t.
∑
k

Pe (k) =
∑
k

Pr {be = k} = 1, k ∈ K; e ∈ E, (2)

where Pe (k) denotes the probability that jammer e attacks
channel k .

Next, it is necessary to define the payoff function that
characterizes the level of jamming. In this paper, based on the
exploitation of spectrum holes in CRNs, the payoff function
is determined based on the characteristics of channel access
behavior (related to user and jammers) and occupancy status
of spectrum holes (related to PU), not the jamming intensity.
Therefore, the payoff function is determined according to
whether a particular channel is not under jammer’s attacks
and is not occupied by PU. Specifically, when the SU accesses
channel k that is not under jammer’s attacks, and this channel
is not occupied by PU, the payoff function of the SU is
given as:

R (a = k, b, SPU (k))

=

{
1, if SPU (k) = A and a 6= be, ∀e,
0, otherwise.

(3)

B. LOCAL SPECTRUM SENSING
In the CRN considered, we assume the network includes
a transmitter/receiver SU pair. The SU may use an energy
detection method to perform local spectrum sensing. The
binary hypothesis test of the SU is given as follows [40]:{

P : x (t) = hu (t)+ w (t),
A : x (t) = w (t),

(4)

where x(t) is the received signal by SU, h is the channel
gain of the communication link between PU and SU, u(t) is
the signal transmitted by PU, and w(t) is zero-mean AWGN.
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The obtained energy at the SU [41]:

yE =
I∑
j=1

|x (j)|2, (5)

where I is the number of sensing samples during each detec-
tion interval, and x (j) is the received PU signal at the SU in
the jth sample. When I is adequately large (e.g., I > 10 in
practice), we approximate xE as a Gaussian random variable
under the binary hypothesis (P and A) with mean µP, µA and
variance σ 2

P, σ
2
A as [41]:

yE ∼

P : N
(
µP = I (1+ φ) , σ 2

P = 2I (1+ 2φ)
)
,

A : N
(
µA = I , σ 2

A = 2I
)
,

(6)

where φ is the sensed channel’s signal-to-noise ratio (SNR)
in decibels (dB). After that, two states of the PU can be made
a decision as follows:

D (t) =

{
1, when yE (t) ≥ λ,
0, otherwise.

(7)

where 0 and 1, respectively, are binary bits that denote two
states of the PU, absence and presence; and λ denotes a
predefined threshold of decision energy.

III. GAME APPROACH–BASED ANTI-JAMMING SCHEME
Wemodel the problem of channel selection for the interaction
between the SU and the jammers as a game framework by
using game-theoretic concepts through definitions of states,
actions, and players’ rewards [42], [43]. The game formula-
tion of channel selection problem to avoid jammer’s attacks
is represented as follows.
• Players: the number of players joining the game is
(1+ E) players (i.e., an SU and E jammers).

• State: the system state is defined as:

S = {P0 (k) ,Pe (k) |k ∈ K; e ∈ E } , (8)

where P0 (k) is the probability (also called the belief)
that the state of channel k is A (i.e., not used by the PU).
If we consider the operation of the SU, the state will be
approximated as:

Sch = {Pch (k) |k ∈ K} , (9)

where Pch (k) denotes the probability that the state of
channel k (Sch) is free (i.e., not jammed and not being
used by the PU), which is given as:

Pch (k) = P0 (k)

(
1−

∏
e

Pe (k)

)
. (10)

• Action: in each time slot t , the SU should select a channel
for its communication, and a denotes the action of the
SU with a = {x |x ∈ K }.

• Reward: the reward for the SU, R (PSU (a) ,Sch),
is given by:

R (PSU (a) ,Sch) = E [R (a, b, SPU (a))]

= PSU (a)Pch (a)R (a,−a, A) , (11)

where E [R] denotes the expected value of the SU’s
payoff function R.

In this paper, the goal of choosing the best channel for SU
is to maximize long-term reward (also called the accumulated
reward of the SU) of the system, aR

(
PSU (a) ,S0

ch

)
, which is

defined as follows:

aR
(
PSU (a) ,S0

ch

)
=

∞∑
t=m

γ tR
(
PSU (a) ,S tch|S

m
ch = S0

ch

)
,

(12)

where m is the current time slot, t is the t th time slot, Smch
is the system state in time slot m, γ is a discount constant
(γ ∈ (0, 1)).
Then, the problem of choosing the optimal channel for SU

to protect communication channels from jammers attacks is
identified as follows:

aopt = arg
a
max

(
aR
(
PSU (a) ,S0

ch

))
. (13)

A. SINGLE GAME–BASED ANTI-JAMMING SCHEME
The problem in (13) can be solved by maximizing the accu-
mulated reward of the SU. Through SU and jammers’ channel
access strategies, we can determine the state of the system.
Therefore, the accumulated reward of the SU can be easily
calculated based on its state action space. Besides, using a
value iteration-based dynamic programming (DP) approach
can obtain closed-form solutions for the value function
[44]–[46]. Therefore, we consider our game model in
which value iteration-based dynamic programming can be
employed to come up with optimal strategies for the SU in
order to find the optimal channel and protect communication
channels from jamming attacks. The single game–based anti-
jamming scheme is represented in Algorithm 1.

Algorithm 1 Single Game–Based Anti-Jamming Scheme
Input: K ,E,P0 (k) ,T ,PAA,PPA, γ
Output: the optimal channel for the SU, aopt .
1: Given the system state:

S = {P0 (k) ,Pe (k) |k ∈ K; e ∈ E }, as expressed in (8)
2: Determine the local decision for the state of the PU based

on Section II-B, local spectrum sensing.
3: for t = 1 to T do
4: for a = 1 to K do
5: Calculate:
6: The payoff function: Rt (a)← (3)
7: The probability: Ptch (a)← (10)
8: The reward for the SU: Rt

(
PtSU (a) ,S

t
ch

)
← (11)

9: end for
10: Calculate the accumulated reward:

aR (PSU (a) ,Sch)← (12)
11: Find the optimal channel, atopt :

atopt = arg
a
max

(
aR (PSU (a) ,Sch)

)
12: end for
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FIGURE 3. A block diagram of the proposed double-game scheme.

B. DOUBLE GAME–BASED ANTI-JAMMING SCHEME
In this section, we propose a double game–based anti-
jamming scheme for a CRN. The basic idea of the double-
game scheme is to exploit the knowledge about the PU status
on the channel [21], which can be determined by solving the
best channel selection problem from the single-game scheme.
Specifically, the double-game scheme utilizes single-game
scheme two times. One is for pre-selected channel, and the
other one is for the best channel after spectrum sensing. That
is, we first choose a most preferable channel, which is called
as the pre-selected channel, without spectrum sensing using
the Algorithm 1. After performing spectrum sensing on the
pre-selected channel, we choose the best channel using the
Algorithm 1, again. The double-game scheme is composed
of 4 phases of the first game, spectrum sensing, the second
game and environment updating, which are shown in Fig 3.
Specifically, the four phases of the proposed double-game
scheme are presented as follows.
• The First Game Phase (Line 3 in Algorithm 2): solving
the problem in (13) based on initial state of the system
to find the pre-selected channel, apreopt .

• Spectrum Sensing Phase (Lines 4-6): based on pre-
selected channel, spectrum sensing is carried out by SU
to exploit the knowledge about the PU status on channel.
Depending on the sensing result for the state of the PU
signal is A or P (i.e., the channel is free or busy, respec-
tively), the system belief will be updated accordingly
using Bayes’ rule [47]. Specifically, if the channel is

free, the belief, P
apreopt
0 , is updated as follows:

P
apreopt
0

=
P
apreopt
0

(
1−Pf

(
apreopt

))
P
apreopt
0

(
1−Pf

(
apreopt

))
+

(
1− P

apreopt
0

) (
1−Pd

(
apreopt

)) ,
(14)

where Pd and Pf are the probabilities of correct detection
and false alarm, respectively. Otherwise, the belief is
updated as follows:

P
apreopt
0 =

P
apreopt
0 Pf

(
apreopt

)
P
apreopt
0 Pf

(
apreopt

)
+

(
1− P

apreopt
0

)
Pd
(
apreopt

) .
(15)

The state of the system is updated based on the estimated
belief from either (14) or (15), which is denoted by Su.

According to the updated state, Su, the system update
the rewards and the accumulated rewards by (11) and
(12), respectively.

• The Second Game Phase (Line 7): solving the prob-
lem in (13) based on the updated accumulated reward
from spectrum sensing phase to find the final best
channel, a∗opt .

• Environment Updating Phase (Line 8): the optimal
reward can be obtained by using optimal channel of the
SU, a∗opt . Based on the observation of channel status,
we need to update the system state for use in the next
time slot. Specifically, if communication with channel
a∗opt is successful (i.e., the channel is not occupied

by PU), the belief P
a∗opt
0 is updated as:

P
a∗opt
0 = P

a∗opt
AA . (16)

Otherwise, if communication fails (i.e., the channel is
occupied by the PU), the belief is updated as:

P
a∗opt
0 = P

a∗opt
PA . (17)

The system state in (9) will be updated using the updated

belief, P
a∗opt
0 , for use in the next time slot.

In short, the double game–based anti-jamming scheme is
represented in Algorithm 2.

Algorithm 2 Double Game–Based Anti-Jamming Scheme
Input: K ,E,P0 (k) ,T ,PAA,PPA, γ
Output: the optimal channel for the SU, a∗opt .
1: Given the system state:

S = {P0 (k) ,Pe (k) |k ∈ K; e ∈ E }, as expressed in (8)
2: Determine the local decision for the state of the PU based

on Section II-B, local spectrum sensing.
3: Find the optimal pre-selected action (the channel) of the

game, apreopt : a
pre
opt = arg

a
max

(
aR (PSU (a) , Sch)

)
, which

can be solved with Algorithm 1.
4: Implement spectrum sensing and update the belief about

the system: P
apreopt
0 ← (14) or (15)

5: According to updated belief P
apreopt
0 , update the state of the

system: Su← (8)
6: Update the accumulated reward, aRu, based on the

updated state, Su: aRu← (12)
7: Solve the problem in (13) with updated accumulated

reward aRu to find optimal channel a∗opt for the SU.
8: The optimal reward can be obtained by using optimal

channel of the SU, a∗opt . According to the observation of
the communications link in the channel, update the sys-
tem state for use in the next time slot by using (16) or (17).

IV. REINFORCEMENT LEARNING APPROACH–BASED
ANTI-JAMMING SCHEMES
We reformulated the best channel selection problem in a
multi-channel CRN system as the framework of an MDP.
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Since the strategies of the jammers on communication chan-
nels are unknown, we employ the RL approach, which finds
the optimal channel selection policy to reduce the jammer’s
influence and enhances the long-run network performance.
In a model-free RL framework, RL agents can learn the
optimal policy through trial-and-error learning during their
interaction with the environment.

A. MARKOV DECISION PROCESS
A basic RL model is composed of two factors, environ-
ment and agent, in which these two elements interact over
time. Furthermore, based on an environment states, the agent
does a process of trial-and-error learning, and then the agent
can make a suitable action and maximize the accumulated
rewards. Regarding theMDP framework, we need to consider
objects like state space (Sch), action space (A), the state-
transition probability function (P), and the reward function
(R). Therefore, the MDP framework of the channel selec-
tion problem for anti-jamming can be defined as a tuple
〈Sch,A,P,R〉.
• States: for the operation of the SU, the state is
defined as Sch = {Pch (k) |k ∈ K}, where Pch (k) as
defined in (10).

• Actions: at the time slot t , the agent observes state S tch
in state space Sch of the environment, and then chooses
action at in action space A following a probability of
taking action,π . In this work, the SU (the network agent)
chooses the best channel that it can access (i.e., the chan-
nel which is not occupied by the PU and not being
jammed). Therefore, action at is set as at = {x}x∈K,
which is defined as explained in Section II-A.

• Rewards: then, the environment will return a reward to
the agent, R

(
S tch, at

)
. The reward of the network can be

defined as in (11), and transforms to the new state S t+1ch .
The next state, S t+1ch , is updated following (9), which is
based on the action (channel k).

• The State-Transition Probability Function: once the SU
selects an action, the system changes from the current
state, S tch, to the new state, Sch′, based on the probability
of state-transition as follows:

P
(
Sch′|S tch, a

t)
=

{
1, if Sch′ = S t+1ch ,

0, otherwise.
(18)

The purpose of the RL approach is to learn to select actions
based on the states of the system through learning from expe-
rience to maximize the accumulated reward (also called the
state-value function) of the system. The state-value function
is expressed as follows [24]:

V (Sch) =
∞∑
t=0

γ tR
(
S tch, π

(
S tch
) ∣∣∣S0

ch = Sch
)

= R (Sch, π (Sch))
+ γ

∑
Sch ′∈S

P
(
Sch′|Sch, π (Sch)

)
V
(
Sch′

)
, (19)

where π (Sch) : Sch 7→ a denotes the stochastic policy which
SU can take an action, a, based on the state of the envi-
ronment, Sch, and P

(
Sch′|Sch, π (Sch)

)
denotes the state-

transition probability from the current state Sch to the next
state Sch′. The Bellman equation is used to maximize the
state-value function, and find the optimal policy, π∗, which
is given as follows [24]:

π∗ (Sch)

= arg
a
max

R (Sch, a)+γ ∑
Sch ′∈S

P
(
Sch′|Sch, a

)
V ∗
(
Sch′

) .
(20)

Through determining the optimal policy, we can find the
optimal channel for SU which can avoid jamming from
attackers in a multi-channel CRN.

B. THE AC–BASED CHANNEL SELECTION SCHEME
Traditionally, the MDP problem can be solved with a value
iteration-based dynamic programming approach. However,
this approach needs to know the dynamic environment in
advance. In addition, the agent will face more challenges in
the process of finding the optimal policy when using dynamic
programming approach to solve the Bellman equation in a
high-dimensional space of state and action. Therefore, for a
performance comparison with our proposed schemes, we also
consider using an RL approach, called the classic AC algo-
rithmwhich requires no prior knowledge of the environment’s
dynamics. Regarding this approach, the agent can learn the
optimal policy through trial-and-error learning during their
interaction with the environment. Basically, an agent for the
AC algorithm consists of two separate components [23]: the
actor, which observes the environment state and selects an
action by stochastic policy π ; and the critic, which evaluate
an actor’s action based on the value function and reward,
as shown in Fig. 4.

FIGURE 4. A block diagram of the classic actor–critic algorithm.

When an SU and jammers connect to the network, the ini-
tial state of the system is S. In order to optimize performance
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FIGURE 5. A block diagram of the TACT scheme [35].

and maximize the accumulated reward, the SU chooses suit-
able actions in which the selected channels are not used by
the PU and are not being attacked by jammers. The learning
process of the AC algorithm to find the optimal channel
selection policy is presented as follows. In the time slot t ,
the SU selects an action, at , following a policy, π t

(
S tch
)
.

The probability of taking action at in state S tch is given as
follows [24]:

π t
(
S tch, a

t)
= Pr

(
at
∣∣S tch) = eh

t(S t
ch,a

t)∑
a′
eh

t(S t
ch,a
′)
, (21)

where ht
(
S tch, at

)
is the tendency to select action at in state

S tch. Once the SU selects action at , the current state, S tch, will
transit to the next state, S t+1ch , according to the state-transition
probability, which is given in (18), and returns an immediate
reward,R

(
S tch, at

)
. Afterward, based on the calculation of the

temporal difference (TD) error value, the critic will evaluate
the selected action from the actor. The TD error value is
calculated from the value of R

(
S tch, at

)
+ γV t

(
S t+1ch

)
at

the critic and the state-value function in the previous state,
V t
(
S tch
)
, which is given as follows:

δt = R
(
S tch, a

t)
+ γV t

(
S t+1ch

)
− V t (S tch) . (22)

Thereafter, based on the TD error, the critic will update its
state-value function in the next time slot to improve the state-
value function and policy. The state-value function is updated
as follows:

V t+1 (S tch) = V t (S tch)+ αcδt , (23)

where αc denotes the step-size parameter of the critic.
Besides, the policy at the actor is also updated as follows:

ht+1
(
S tch, a

t)
= ht

(
S tch, a

t)
+ αaδ

t , (24)

whereαa denotes the step-size parameter of the actor. Overall,
the system performance can be improved by updating func-
tions of the state-value and policy based on the TD error with
appropriate step-size parameters by the actor and critic.

C. THE TACT–BASED CHANNEL SELECTION SCHEME
The previous section addresses the problem of finding the
best anti-jamming channel using the classic AC algorithm.
In this section, we present a methodology where the con-
troller utilizes information on the strategies learned during
the historical period to find the best anti-jamming channel.
First, state, action, reward and value function definitions are
also defined as described in Section IV-A. For a performance
comparison with our proposed schemes, a TACT algorithm
in [35] can be applied to our channel selection problem.
The block diagram of the TACT scheme is shown in Fig. 5.
For a TACT-based approach, the information on the policy,
h (Sch, a), from a source task (left side in Fig. 5) is transferred
to a target task (right side in Fig. 5). However, there might
be some differences although the target task and the source
task have similarities. For example, the source task has a
higher reward than the target task even though these two
tasks use the same state. Therefore, action a can be taken
by the controller in the target task in an aggressive direction
for channel selection. As a result, the transferred policy can
have a negative effect on the action selection process. Hence,
by reducing the effects of the transferred policy, we can
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FIGURE 6. A block diagram of the transfer Game–AC scheme.

mitigate these negative effects. In general, the basic idea of
the TACT algorithm is to avoid the negative effect of the trans-
ferred policy on the action selection process [35]. From this
idea, we can update the overall policy with transfer rate where
the transfer rate should be decreased over time to reduce the
impact of transferred policy on the overall policy. As can be
seen in Fig. 5, the overall policy, ho, is a combination of an
exotic policy (also called transferred policy), he, and a native
policy, hn. The overall policy is updated as follows [35], [36]:

ht+1o
(
S tch, a

t)
= (1− ζ ) ht+1n

(
S tch, a

t)
+ ζhe

(
S tch, a

t) ,
(25)

where ζ ∈ (0, 1) denotes the transfer rate which represents
the exotic policy contribution to the overall policy. During
the initial training process, the overall policy update strategy
with the dominance of the exotic policy over the native policy,
so the performance of the system can be improved. However,
the goal is still learning at the target task, so we need to reduce
the impact of transferred policy on the overall policy. There-
fore, the transfer rate should be decreased over time with
decay factor dζ , and thus, ζ 7→ 0 as the number of iterations
reaches infinity. Besides that, the native policy updates itself
according to the classic AC algorithm as defined in (24).

D. THE PROPOSED TGACT–BASED CHANNEL
SELECTION SCHEME
Transfer learning method in the TGACT–based channel
selection scheme consists of two phases: i) transferring
information from using the optimal channel, which can be

obtained from the double-game period; and ii) training the
target task based on the updated state and strategy distribu-
tion. More specifically, in the first phase of transfer learning,
the Algorithm 2 is exploited to get the knowledge about the
PU status on the channel to find the optimal channel. The
communication link status on this channel can then be deter-
mined to be either occupied or not occupied by the PU.
As a result, the PU state, P0, should be updated according
to (16) and (17) and will be transferred to the second phase
of transfer learning. In the second phase, the learning pro-
cess is implemented by using the classic AC algorithm as
described in Section IV-A and Section IV-B with the updated
state, P0, from the first phase. The TGACT block diagram
is shown in Fig. 6, and the proposed TGACT-based anti-
jamming scheme is presented in the Algorithm 3 in which
the first phase of transfer learning is from line 1 to line 4
and the learning process of the classic AC algorithm is from
line 5 to line 14.

V. SIMULATION RESULTS AND DISCUSSION
In this section, we show simulation results to demonstrate
the efficiency of the proposed schemes for anti-jamming in
multi-channel CRNs. We also compare the performance of
our proposed schemes, which include single-game, double-
game, and TGACT schemes, against the performance of
other baseline schemes, such as the classic AC scheme,
the TACT scheme [35], a random-attack scheme, and a
no-jammers scheme. We sometimes use terms like learning
and non-learning. The learning schemes include classic AC,
TACT, TGACT, and double-game schemes. The double-game
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Algorithm 3 The Proposed TGACT–Based Anti-Jamming
Scheme
Input: K ,E,P0 (k) ,T ,PAA,PPA, γ, αc, αa, ζ, dζ
Output: the optimal channel selection policy, π∗opt .
1: Determine the local decision for the state of the PU based

on Section II-B, local spectrum sensing.
2: Find the optimal channel for the SU, a∗opt , which can be

determined with Algorithm 2.
3: Based on the optimal access channel, update the state of

the system as seen in (16) or (17).
4: Determine the system state in (8) based on the updated

state.
5: Initialize the lookup table for policy π (Sch, a), tendency
h (Sch, a), and state-value function V (Sch).

6: for t = 1 to T do
7: Select action at based on temporal policy π t

(
S tch, at

)
8: Calculate immediate reward: R

(
S tch, at

)
← (11)

9: Update the state of the system from S tch to S t+1ch , and
calculate TD error: δt ← (22)

10: Update the state-value function: V
(
S tch
)
← (23)

11: Update the tendency to select an action:
ht+1

(
S tch, at

)
← (24)

12: Update the policy: π
(
S tch, at

)
← (21)

13: end for
14: Return the optimal policy: π∗ (Sch) =

arg
a∈A

max {π (Sch, a)}

scheme is seen as an improved method of the single-game
scheme; it exploits the action in the current time slot to
update the system belief when using in the next time slot.
Therefore, we consider the double-game scheme as one of
the learning schemes. The non-learning schemes include
the single-game, the no-jammers, and the random-attack
schemes.With a single-game scheme, in the current time slot,
the player selects an action and tries to maximize the accu-
mulated reward of the system. When using the no-jammers
scheme, there are no jammer attacks on the channels.With the
random-attack scheme, jammers randomly attack the chan-
nels, and there are no anti-jamming efforts applied to the
system.

A. SIMULATION SETTINGS
In this paper, we compare the performance of the proposed
schemes under various configurations. First, we show the
convergence property for each of the proposed schemes in
terms of the average rewards metric, ave_R, which are calcu-
lated as follows:

ave_R =
1
T

T∑
t=1

Re (t), (26)

where T is the number of time slots, Re (t) is the reward
for the SU in the t th time slot which is calculated by (11)
without effect of the channel selection probability of SU.

Then, we validate the network performance in terms of aver-
age rewards under three conditions: varying the number of
channels, varying the number of jammers, and varying SNR
value of the sensed channel. In the first scenario, simulations
are performed when the number of jammers was fixed at
E = 5 while the number of channels changed from three
to 11. In the second scenario, we consider the performance
of the proposed schemes when the number of channels is
K = 5 while the number of jammers changes from one to
five. The SNR of the sensed channel is φ = −6 dB in both
first and second scenarios. In the last one, the SNR of the
sensed channel changes from −18 dB to −2 dB, while the
number of jammers and the number of channels are each fixed
at 5. In all cases, we assume that the initial values of the
state transition probabilities are PAA = 0.8 and PPA = 0.2.
The value of discount factor, γ = 0.99. To provide the best
performance from the proposed schemes, the simulations are
performed several times to achieve the most suitable step-size
parameters (αa and αc). Then, we set αa = 0.1 and αc = 0.1.
As seen in previous work [35], [36], higher transfer rates
resulted in a faster convergence rate and better performance.
Therefore, the transfer rate is set to ζ = 0.9 with a decay rate
of dζ = 0.99. Simulations are performed with T = 2, 000
timeslots. All of the schemes are implemented using Matlab.

FIGURE 7. Accumulated rewards with five channels (K = 5) and five
jammers (E = 5) when the SNR of the sensed channel is −6 dB
(φ = −6 dB).

B. CONVERGENCE PROPERTY
In this section, we check the convergence property in terms
of the accumulated rewards from our proposed schemes
when the number of time slots, T , increases gradually from
1 to 2,000. The number of channels and jammers are fixed at
K = E = 5, while the SNR of the sensed channel is set to
φ = −6 dB. Fig. 7 shows the improvement of the accu-
mulated reward as the number of time slots increases.
We observe that the accumulated rewards from the schemes
increase rapidly over the first 400 time slots, and reach opti-
mal value with more time slots. The convergence speed in
the game schemes is faster than the random-attack scheme
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with no anti-jamming. The convergence speed of the double-
game scheme is faster than the single-game scheme owing to
information exploitation about the PU status on the channel
that is collected via sensing on the optimal channel obtained
from the single-game scheme. However, with the single-
game scheme, the selected action is not affect the future
reward, the player only try to choose the action in the current
time slot which maximize the accumulated reward of the
system. Therefore, the convergence speed in dynamic pro-
gramming schemes like the random and single-game schemes
is much lower than in reinforcement learning schemes like
the AC scheme and the transfer learning schemes (TACT and
our proposed TGACT). The convergence speed of transfer
learning–based reinforcement learning schemes is faster than
the AC scheme owing to the advantage of transfer learning,
which transfers information from the source task to the target
task. Fig. 7 also shows that schemes using transfer learning
(TGACT and TACT) can accelerate learning process of con-
ventional RL algorithm,AC scheme. Specifically, to reach the
value of the accumulated rewards of 8, the TGACT and TACT
schemes need 70 and 160 time slots, respectively.Meanwhile,
to get this value of the accumulated rewards, the classic AC
scheme needs about 210 time slots. From this result, we can
see transfer learning can accelerate reinforcement learning
process.

FIGURE 8. Average rewards with five channels (K = 5) and five jammers
(E = 5) when the SNR of the sensed channel is −6 dB (φ = −6 dB).

Afterward, we verify the convergence property of the pro-
posed schemes in terms of the average reward. As seen
in Fig. 8, the convergence rate of the schemes significantly
decreases over the first 200 time slots, then, the average
reward continues to decrease but at a slower rate. Finally,
the schemes reach to an optimal reward to use for channel
selection after about 1,000 time slots. The reward for the
SU that used the classic AC scheme is lower than for SUs
using the transfer learning schemes. This is because the agent
of the transfer learning schemes can learn faster by exploit-
ing transferred knowledge from source task. In addition,
the agent in classic AC scheme needs to be trained from
scratch, and therefore, it needs more trials-and-errors to learn.

The convergence rate of the TGACT scheme outperforms in
most learning schemes. The random-attack scheme provides
the lowest convergence speed, and thus, got the smallest
rewards. For most of the schemes, the performance is the
best in a favorable environment with no jammer attacks on
the system. In the convergence process, if the agent uses too
many time slots for training, a local optimal policy might be
obtained. However, the training process might take a very
long time. Therefore, the total number of time slots for train-
ing should be neither too large nor too small.

FIGURE 9. The left Y-axis shows average rewards according to the
number of channels when the number of jammers is E = 5 and the SNR
value of the sensed channel is φ = −6 dB. The right Y-axis represents the
Kullback-Leibler (KL) divergence in which KL divergence 1 represents the
KL divergence of TGACT scheme over Double-game scheme and KL
divergence 2 represents the KL divergence of TACT scheme over classic AC
scheme.

C. THE PERFORMANCE OF THE SYSTEM ACCORDING TO
THE NUMBER OF CHANNELS, THE NUMBER OF
JAMMERS, AND THE SNR OF THE
SENSED CHANNEL
In Fig. 9, we observe the performance of the proposed
schemes under the influence of the number of channels.
In this case, the number of channels is set at K ∈

{3, 5, 7, 9, 11} while the number of jammers and the SNR
of the sensed channel are fixed at E = 5 and φ = −6,
respectively. As seen in Fig. 9, the average reward increases as
the number of channels increases. In fact, the more channels
are used, the weaker the ability to attack a particular channel,
and thus obtain higher system rewards. The average reward
from the single-game scheme dominated the random-attack
scheme. To explain this, with the single-game scheme, the SU
maximizes the accumulated reward based on the action selec-
tion at the current time slot, whereas there are no anti-
jamming solutions used in the system with the random-attack
scheme. The double-game scheme is better than the single-
game scheme owing to exploitation of PU status information,
which can be collected via sensing based on the optimal
channel from the single-game scheme. Moreover, the aver-
age reward of the proposed TGACT scheme outperforms
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the classic AC and TACT schemes. In particular, when the
number of channels is five, the average reward of the TGACT
scheme provides improvements of 10.51 % and 15.94 %
over TACT and classic AC schemes, respectively. This is
because, in the proposed TGACT scheme, agent can exploit
information transferred from double-game period, and thus,
learn effectively the optimal policy. Therefore, the TGACT
scheme provides the best performance in comparison with
the remaining schemes, except for the no-jammers scheme.
With the no-jammers scheme, system performance is the best
compared to most other schemes. However, in this scheme,
jammers are not allowed to attack the channels. Moreover,
although the number of channels changes, the local decision
for the state of the PU is specified only once for the ini-
tial parameter. Hence, the system reward from this scheme
remains unchanged. The average reward is lowest in case
of the random-attack scheme. This is because the SU does
not use channel selection schemes with anti-jamming and
channels can be randomly attacked by jammers.

Fig. 9 also shows the Kullback-Leibler (KL) diver-
gence [48] in which KL divergence 1 represents the KL diver-
gence of TGACT scheme over Double-game scheme and KL
divergence 2 represents the KL divergence of TACT scheme
over classic AC scheme. Comparing KL divergence 1 and KL
divergence 2, the implementation of a transfer learning from
a double-game scheme to classic AC scheme (i.e., TGACT
scheme) provides a significant improvement in performance
over performing a transfer learning from an AC scheme to
AC scheme (i.e., TACT). Furthermore, the properties of KL
divergence show that the smaller the DL divergence value,
the more similar the two distributions are. Therefore, with a
small improvement in average rewards, the KL divergence
2 achieves a relatively low gain when the TACT scheme and
the classic AC scheme are compared. Likewise, KL diver-
gence 1 with a significantly large value can be explained. As a
result, the higher KL divergence between the target task and
the source task, the more efficient it is in performing transfer
learning. The simulation results also show that the average
rewards improve with increasing the number of channels,
the value of KL divergence also increases.

In the same way, we evaluate the efficiency of proposed
schemes under varying numbers of jammers, E , and compare
the results with the classic AC, the TACT, the random-attack,
and the no-jammers schemes, as shown in Fig. 10. While
the number of jammers ranges from one to five, the number
of channels and the SNR of the sensed channel are fixed at
K = 5 and φ = −6 dB, respectively. When the number
of jammers is high, the channel becomes more vulnerable
to attack due to the large number of jammers. Therefore,
with an increase in the number of jammers, the average
reward in the system decreases significantly. In addition,
the performance of proposed schemes is dominant than the
conventional channel selection schemes because the channel
can be selected effectively by maximizing the system reward
in the current time slot, as in the game schemes, or by learning
the variations in the environment and transferring information

FIGURE 10. Average rewards according to the number of jammers when
the number of channels is K = 5 and the SNR of the sensed channel is
φ = −6 dB.

FIGURE 11. Average rewards according to the SNR of the sensed channel
when the number of channels and jammers are K = 5 and E = 5,
respectively.

from double-game period, as done in the TGACT scheme.
Again, the system performance is also remained unchanged
in no-jammers scheme because jammers are not allowed to
attack the channels in this scheme.

We further inspect the impact of the SNR of the sensed
channel on the security level of the channel selection
schemes, which is shown in Fig. 11. To verify this, we evalu-
ate the results based on the following SNR values (in deci-
bels), φ ∈ {−18,−14,−10,−6,−2}, while keeping the
number of channels and jammers at K = 5 and E = 5,
respectively. As observed in Fig. 11, the achieved average
reward increases with an increase in the SNR of the sensed
channel, which enables SU to effectively spectrum sensing
and local decision-making. Obviously, a better SNR provides
better detection accuracy. The result is that the larger SNR of
the sensed channel may provide a better overall performance.
Again, the TGACT scheme provides the highest average
reward, whereas the random-attack scheme shows the lowest
average reward. This is because the TGACT scheme is able
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to choose the effective channel in each time slot by the
combination of estimating the future reward and the exploita-
tion of the transferred information from double-game period.
Meanwhile, the random-attack scheme does not use a chan-
nel selection scheme against jammer’s attacks to enhance
the security level. Consequently, we verify that the TGACT
scheme can provide effective communication channels in
terms of security level.

VI. CONCLUSION
In this work, we proposed anti-jamming approaches for a
CRN in which the SU works multi-channel communications,
and various numbers of jammers randomly attack. We first
designed a single game–based anti-jamming scheme that
solves the problem ofmaximizing the accumulated reward for
the SU in order to find the optimal channel. Then, a double
game–based anti-jamming scheme is considered, in which
the pre-selected channel is determined by using a single-
game scheme. Afterward, through the pre-selected channel,
the SU performs spectrum sensing to collect the PU status
information, then, the second game will be solved using the
updated accumulated reward. In addition, we adopted the
transfer learning technique into the double-game scheme to
accelerate the learning speed and improve network perfor-
mance by exploiting the information learned in the double-
game period. The simulation results show the efficiency of the
proposed solutions in improving the long-term performance
of the network. Through the proposed schemes, the optimal
channel will be provided for SU to avoid jamming from
attackers and significantly improve the security level of the
CRN. The channel selection problem with anti-jamming can
be extended with multiple SUs in the future work. Conse-
quently, the model and learning parameters would need to be
modified. Even the state and action spaces will be larger, and
thus, the problem becomesmore complicated. For this reason,
combining both transfer learning technology and a deep RL
approach could be considered, in which deep neural network
can be used as an approximation function for mapping the
system input (e.g., the system state) and the output in the RL
task (e.g., the optimal policy).
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