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ABSTRACT Dynamic Time Warping (DTW) is a widely used distance measurement in time series cluster-
ing. DTW distance is invariant to time series phase perturbations but has a quadratic complexity. An effective
acceleration method must reduce the DTW utilization ratio during time series clustering; for example,
TADPole uses both upper and lower bounds to prune off a large ratio of expensive DTW calculations.
To further reduce the DTW utilization ratio, we find that the linear-complexity L1-norm distance (Manhattan
distance) is effective enough when the time series only comprise small phase perturbations. Therefore,
we propose a novel time series clustering by Minimizing Dynamic Time Warping Utilization (MiniDTW)
algorithm to accelerate time series clustering. InMiniDTW, the dataset is first greedily summarized into seed
clusters, which comprise time series of small phase perturbations, by L1-norm distance. Then, we develop a
new Sparse Symmetric Non-negative Matrix Factorization (SSNMF) algorithm, which factorizes the DTW
distance matrix of seed cluster centers, to merge the seed clusters into the final clusters. The experiments on
UCR time series datasets demonstrate that MiniDTW, pruning 98.52% of the DTW utilization, is better than
the counterpart method, TADPole, which only prunes 75.56% of the DTW utilization; and thus MiniDTW
is 10 times faster than TADPole.

INDEX TERMS Time series, density-based clustering, dynamic time warping, L1-norm.

I. INTRODUCTION
Time series is one of the most important data in the modern
data-driven society and can be generated from nearly every
aspects in the daily life [1]. Time series analysis can benefit
pervasive applications in different domains, e.g., financial
marketing [2], smart home [3] and autonomous vehicles [4].
Time series clustering is a basic technique for analyzing
time series. It can discover the underlying structure of the
chaotic/raw datasets without the ground truth labels. This
makes it particularly useful for analyzing many unlabeled
real-world datasets, such as common pattern discovery [5],
information retrieval [6] and outlier detection [7].

Time series distance measurement method is essential for
the clustering accuracy, but the precision of simple distance
measurements, such as L1-norm (Manhattan distance) and
cross correlation are undermined by the widely appeared
phase perturbations (e.g., phase shifting, time warping) in
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time series [8]. Dynamic Time Warping (DTW) [9] is a
distance measurement that is robust to time series phase per-
turbations; however, its quadratic complexity greatly impairs
the efficiency of time series clustering. To accelerate time
series clustering with DTW distance, some methods reduce
the DTW utilization ratio by pruning unnecessary DTW cal-
culations with fast calculated upper/lower bounds of DTW,
such as TADPole [5]. Unfortunately, existing methods are
hard to prune most DTW calculations (for example, TADPole
needs 24.43% DTW calculations after pruning), because it
is challenging to define tight lower/upper bounds of DTW
distance, which leads to large runtime for the clustering.

To significantly reduce the DTW utilization ratio for the
acceleration, we only apply the complex DTW calculation
on a summarized time series dataset (rather than the original
dataset). This is inspired by the work [6] that achieves interac-
tive time series retrieval by querying a summarized database,
rather than the original large dataset. Specifically, we find
L1-norm distance is effective to summarize the time series
dataset based on three observations. First, L1-norm distance
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has a linear complexity and is more efficient than DTW
distance. Second, the precision loss of L1-norm distance is
limited when time series have small phase perturbations.
Third, L1-norm distance is an upper bound of DTW distance,
which ensures time series with a small L1-norm distance
always have a small DTW distance. To ‘‘greedily’’ reduce
the DTW utilization ratio, we summarize the dataset into
natural-shaped seed clusters with L1-norm distance. There-
fore, a seed cluster can group 1) two time series with a small
phase perturbation and 2) two time series that comprise a
large phase perturbation but can be related to each other by a
series of slightly perturbed time series. Then, DTW distance
is only used on a small amount of seed cluster centers to
merge the seed clusters into final clusters.

In this paper, we propose a novel time series clustering by
Minimizing Dynamic Time Warping Utilization (MiniDTW)
algorithm to accelerate time series clustering. In MiniDTW,
the original dataset is first ‘‘greedily’’ summarized as a
small amount of natural-shaped seed clusters with the
efficient L1-norm distance. The seed clusters are further
merged to form the final clusters by a new Sparse Symmet-
ric Non-negative Matrix Factorization (SSNMF) algorithm,
which factorizes theDTWdistancematrix of seed cluster cen-
ters. Comprehensive experiments are conducted using UCR
time series datasets [10] to evaluate the proposed MiniDTW
algorithm. Therefore, this paper has three contributions:
1) We propose a novel MiniDTW method to speed up
time series clustering. MiniDTWminimizes DTW utilization
ratio by dataset summarization with the linear-complexity
L1-norm distance.
2) We propose an effective SSNMF matrix factorization
algorithm, which more accurately merges the seed clusters
in MiniDTW than other Non-negative Matrix Factorization
based algorithms (i.e., NMF with L1/L2 constraints).
3) We conduct comprehensive experiments to evaluate the
performance of the proposed MiniDTW, and the result shows
that MiniDTW can effectively avoid 97.90% of DTW utiliza-
tion and thus is 10 times faster than the counterpart, TADPole,
which only prunes 75.73% DTW utilization.

The rest of this paper is organized as follows. In Section 2,
we review related works. In Section 3, we introduce the
preliminary knowledge and the problem definition. The
MiniDTW algorithm is introduced in Section 4 and evaluated
in Section 5. Finally, we conclude this paper in section 6.

II. RELATED WORK
Time series clustering groups similar time series into the same
cluster, while separating disparate time series into different
clusters. There are two essential techniques for effective
time series clustering, i.e., the distance measurement of time
series, and the clustering algorithm.

Many time series distance measurements have been pro-
posed in the literature, such as the basic Norm distance, which
is normally used as L1-norm distance (Manhattan distance)
[11], [12] or L2-norm distance (Euclidean distance) [13],
[14]. Norm distance is intuitive and has a linear complexity,

but it may face significant precision loss when time series
phase perturbation occurs. DTW distance [9] is invariant
to time series phase perturbations. DTW finds the distance
by searching the optimal continuous warping path between
two time series; however, DTW distance has a complexity
quadratic to the length of time series.

Many methods are proposed to accelerate DTW distance
by reducing the complexity of its search space [15]–[17].
For example, SS-PrunedDTW [16] compresses the search
spacewith an continuously updated upper bound; PDTW [14]
reduces the dimension of the search space by compressing
time series (with PAA [18]). Meanwhile, other distance mea-
surements are proposed to resolve specific types of phase
perturbations. For example, SBD [19] is effective for phase
shifting through finding the optimal alignment of two time
series by cross correlation; while LCSS [20] is invariant to
sampling rate by finding the longest common subsequence
(LCSS) between the two time series.

Time series clustering is a well-studied field and the
clustering algorithms can roughly be categorized into
four classes: hierarchical, model-based, partition-based and
density-based time series clustering. HSM [21] is an agglom-
erative time series clustering technique that hierarchically
merge clusters. The cluster distance in HSM is calculated
with cluster representatives, which are estimated by spec-
tral density. TS3C [22] hierarchically cluster time series,
with single-linkage cluster distance, after each time series
is mapped to a representation with the centroids of subse-
quence clusters. Model-based time series clustering normally
assumes that time series are generated following specific
statistical models. For example, GMM [23] assumes that
time series are generated with a mixture of finite Gaussian
distributions; while HMM [24], [25] uses a hidden Markov
process. Hierarchical and model-based clustering algorithms
are relatively complex in terms of calculations, and are usu-
ally used to interpret the clustering results.

Partition-based time series clustering partitions the dataset
into clusters through minimizing the overall distances of time
series to their respective cluster centers. The center of a
cluster, e.g., in Kmeans based time series clustering [26],
[27], is regarded as the point-wise average of the contained
time series; however, such centers may poorly represent the
common temporal pattern when phase perturbation appears.
Other methods are proposed to find more accurate cluster
centers. For example, K-medoids [28] regards the time series
that has the least sum of distances to other time series as
the center of a cluster; KDBA [29] uses a global averaging
technique to generate the centers that adapt to DTW distance;
Kshape [19] and KSC [30] discover the centers as eigen-
vectors by spectral analysis. Compared with density-based
methods, these methods do not demand extensive distance
calculations; however, their performance is highly affected by
the distance measurement adopted.

Density-based clustering finds time series clusters by
grouping time series according to their densities. YADING
[11] adopts DBSCAN to effectively find clusters containing
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FIGURE 1. L1-norm distance and DTW distance of time series X and Y are
demonstrated in (a), and (b) shows the optimal warping path discovered
by DTW.

time series that comprise small phase shifting, with the
efficient L1-norm distance. TADPole [5] uses DPC [31],
another density-based clustering algorithm, with DTW dis-
tance to develop an anytime time series clustering algo-
rithm. In TADPole, the DTW utilization ratio is reduced
by pruning out-of-bounds DTW distances with the efficient
DTW lower/upper bounds. Density-based clustering can find
natural-shaped clusters, and in this paper we utilize this
characteristic to develop the proposed method.

III. PRELIMINARIES AND PROBLEM DEFINITION
A. L1-NORM DISTANCE AND DTW DISTANCE
Time series is a series of real values, denoted as X =

{x1, x2, x3, . . . , xm}, and m is the length. A time series
dataset contains n equal length time series (D =

{X1,X2,X3, . . . ,Xn}). L1-norm distance measures the dis-
tance of two time series, X and Y , as the overall pair-wise
differences as follows:

L1norm(X ,Y ) =
m∑
i=1

|xi − yi|. (1)

L1-norm distance has a complexity linear to m, but the
precision is low for poorly-aligned time series. As shown
in Fig. 1 (a), L1norm(X ,Y ) is large, despite that X and Y
have similar wave shapes, because of the appearance of phase
perturbation.

DTW distance is another measurement that is a widely
used to accurately measure the distance of time series.
DTW distance achieves this by finding the optimal con-
tinuous warping path (the best alignment) between X and
Y . Specifically, a warping path is denoted as W =

{w1,w1,w2, . . . ,wk}, where each wl = |xi − yj|, and the
overall weight of the optimal warping path is used as the
DTW distance:

DTW (X ,Y ) = min
W

k∑
l=1

wl,wl ∈ W . (2)

Dynamic programming is applied to ensure the discovery
of the optimal warping path has a complexity quadratic
to m.

For the example in Fig. 1 (a), DTW distance can properly
measure the distance of X and Y regardless the phase pertur-
bation. The optimal warping path between X and Y found by
DTW distance is shown in Fig. 1 (b).

B. PROBLEM DEFINITION
DTW distance can effectively measure the distance of time
series since it is invariant to phase perturbations; however, its
quadratic complexity confines it availability to applications
that demand high efficiency. To accelerate time series clus-
tering, we seek to reduce the DTW utilization ratio by dataset
summarization using the L1-norm distance, which has the
linear complexity. This strategy is based on two observations,
where the use of DTW distance is not necessary: 1) time
series have small phase perturbations and thus the precision
loss of L1-norm distance is not significant, and 2) time series
of large phase perturbations can be related by a series of
slightly perturbed time series. The following content explains
this two observations.
YADING [11] shows that L1-norm distance has a limited

precision loss for measuring the distance of time series with
small phase shifting. We further extend this finding for gen-
eral phase perturbation, that is, L1-norm distance has limited
precision loss for measuring the distance of two time series
with a small phase perturbation, in which scenario DTW
distance can be replaced with L1-norm distance.
Lemma 1: L1norm(X ,Y ) is arbitrarily small, when λ(t)

(phase perturbation) is arbitrarily small at each tj (1 ≤ j ≤ m).
(Assume X is sampled from f (t) by an equal interval, and Y
is sampled from the f (t + λ(t))).

Proof: An arbitrarily small phase perturbation λ(t)
means that at each tj (1 ≤ j ≤ m), ∃εj s.t. λ(tj) = εj, εj
is arbitrarily small. Therefore, L1norm(X ,Y ) = 6m

j=1|f (tj) −
f (tj + εj)|. ∃σ > 0, s.t. L1norm(X ,Y ) ≤ σ6m

j=1|εj| ≤ σM |ε|,
where |ε| = max(|εj|), 1 ≤ j ≤ m. It is proved. �
Lemma 1 is the building block of our method, and it

shows that X and Y are neighbours, which have a distance
less than the distance threshold, if they have a small phase
perturbation.Meanwhile, the correctness of using L1-norm to
find neighbours is that the neighbours found by L1-norm dis-
tance are always neighbours found byDTWdistance, because
L1-norm distance is an upper bound of DTW distance [5].
Moreover, X and Y , which have a large phase perturbation,
may also be grouped into the same cluster by density-based
clustering algorithm with L1-norm distance. Specifically, X
and Y are not neighbours to each other by L1-norm distance
since the difference of phase perturbation of X and Y (i.e.
λY (t) − λX (t)) is relatively large. However, if there exists
a series of {Z1,Z2, . . . ,Zk} in the dataset so that {λZ1 (t) −
λX (t) = ε1, λZ2 (t)−λZ1 (t) = ε2, . . . , λY (t)−λZk (t) = εk+1},
where each εi is small, X and Y can be related by a neighbour
chain ({X ,Z1,Z2, . . . ,Zk ,Y }), according to Lemma 1.
Now we consider how to group together time series

comprise the same wave shape but with different scales
of phase perturbation by density-based clustering algo-
rithm, which rarely uses DTW distance. Without loss of
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FIGURE 2. PDF (1) (bimodal Gaussian distribution) of the intensity of
phase perturbation (1) is shown in (a); the toy dataset, as shown in (b),
contains the same time series having different phase perturbations with
random 1s following PDF (1). The distance matrices obtained by applying
DTW distance and L1-norm distance are shown in (c) and (d), respectively.

generality, we formulate the distribution of the phase pertur-
bation as a bimodal Gaussian distribution, PDF(1), which
denotes the probability that a phase perturbation with an
intensity λ(t,1) appears in the time series. PDF(1) has
two peaks (1 = 0 and 1 = 8) that represent the
peak probabilities (as shown in Fig. 2 (a)). We create
a toy dataset that contains 300 time series, which have
the simple phase perturbation pattern (f (t + λ(t,1))) fol-
lowing the bimodal Gaussian distribution, as shown in
Fig. 2 (b).

We separately apply DTW distance and L1-norm distance
on the toy dataset, and visualize the respective distance
measurements by Multidimensional Scaling (MDS) [32],
as shown in Fig. 2 (c-d). The result of DTW distance clearly
exhibits its invariance to phase perturbations (Fig. 2 (c)) since
all the obtained DTW distances are small, i.e., the maximum
DTW distance is only 0.03. Differently, the visualization of
the L1-norm distance matrix appears as two long thin arcs as
shown in Fig. 2 (d), with a much larger maximum L1-norm
distance, i.e., 1.33. The L1-norm distance matrix becomes
two long thin arcs because, for each time series, there is
only a limited amount of time series having small L1-norm
distances with it (thin), but have many time series that lead
larger L1-norm distances when the difference of 1 become
larger (long). In addition, the time series that have 1s of the
two peaks in the PDF(1), i.e. 1 = 0 and 1 = 8, also have
peak densities in the two arcs, respectively. Therefore, it is
intuitive to adopt a two-step approach to group these time
series into a cluster. First, the toy dataset is summarized as two
seed clusters, which contain respective time series forming
the two arcs in Fig. 2 (d), based on density calculated with
L1-norm distance. Second, the two seed clusters are merged

into the final cluster by their small DTW distance of centers
(Fig. 2 (c)). In this way, the efficiency to cluster these time
series is greatly improved since 44,849 ( 300×2992 − 1) DTW
calculations are avoided.

IV. THE PROPOSED METHOD
We propose a novel time series clustering algorithm,
MiniDTW, to minimize the DTW utilization ratio by dataset
summarization with L1-norm distance. MiniDTW includes
the following two steps:
1) Summarize the dataset with L1-norm distance as
natural-shaped seed clusters, i.e. time series comprise small
phase perturbations.
2) Discover the final clusters on the summarized dataset by
merging seed clusters with the DTW distances among their
centers.
In the following contents we detail the two steps of
MiniDTW.

A. DATASET SUMMARIZATION WITH L1-NORM DISTANCE
To efficiently summarize time series comprising small phase
perturbations as seed clusters with L1-norm distance, we take
the advantage of density-based clustering algorithms. For
time series Xi, we define its density (ρi) with a distance
threshold (dc) as follows:

ρi =
∑

j:L1norm(Xi,Xj)≤dc

(
1−

L1norm(Xi,Xj)
dc

)
. (3)

The density in Eq. (3) emphasizes the weight of time series
with smaller phase perturbations, which have smaller dis-
tances.
Lemma 2: L1norm(X ,Z ) > L1norm(X ,Y ), w.r.t λY (tj) ≤

λZ (tj) (1 ≤ j ≤ m) and λY (t) and λY (t) are arbitrarily small
at each tj. (Assume X , Y and Z are respectively sampled from
f (t), f (t + λY (t)) and f (t + λZ (t)).)

Proof: Arbitrarily small phase perturbations λY (t) and
λZ (t) means that at each tj (1 ≤ j ≤ m), ∃εYj, εZj, s.t. λ(tYj) =
εYj, λ(tZj) = εZj and εYj ≤ εZj (since λY (tj) ≤

λZ (tj)), when εYj, εZj are arbitrarily small. 1l1 = L1norm
(X ,Z ) − L1norm(X ,Y ) = 6m

j=1|xj − zj| − 6m
j=1|xj − yj|.

Considering the values of xj, yj and zj at tj, 1l1 = 6j∈G1

(2xj − yj − zj) + 6j∈G2 (yj + zj − 2xj) + 6j∈G3 (yj − zj) +
6j∈G4 (zj − yj). ∀j ∈ G1 ∪ G2, there is f ′(tj) ≈ 0 (stationary
point), which means |G1 ∪ G2| � m; and (2xj − yj − zj) =
(f (tj) − f (tj + εYj)) + (f (tj) − f (tj + εYj)) is arbitrarily small
since it is proportional to εYj and εZj (proved in Lemma 1).
Therefore, 1l1 ≈ 6j∈G3 (yj − zj) + 6j∈G4 (zj − yj). ∀j ∈ G3,
there is xj ≥ zj, xj ≥ yj, that means f ′(t) ≤ 0 when tj ≤ t ≤
tj + εZj and yj − zj = f (tj + εYj)− f (tj + εZJ ) ≥ 0. Similarly,
∀j ∈ G4, i.e. xj ≤ zj, xj ≤ yj, there is zj − yj ≥ 0. Thus
1l1 ≥ 0. It is proved. �

We define the center of a seed cluster as the time series
with a local density peak to approximate the relative peak of
PDF(1) as follows:
Definition 1: Xi is the center of a seed cluster if ρi >

ρj,∀j ∈ {j : L1norm(Xi,Xj) < dc}.

46592 VOLUME 9, 2021



B. Cai et al.: Efficient Time Series Clustering by MiniDTW

We borrow the heuristic of DPC [31] to group time series
with small phase perturbations into seed clusters, with the
centers having the largest local densities (see Fig. 2 (d)).
For Xi, we find a time series ni = Xj as follows:

ni = argmin
Xj,s.t.ρi<ρj,

L1norm(Xi,Xj)<dc

L1norm(Xi,Xj). (4)

Apparently,Xi is the center of a seed cluster if ni does not exist
according to Definition 1. Then, the dataset is summarized
as seed clusters in a two-step process: 1) assign an unique
seed cluster label to each center; 2) spread the seed cluster
label from the centers to time series that have lower densities,
i.e., Xi acquires seed cluster label from its ni.

B. MERGE THE TIME SERIES SEED CLUSTERS
After the original dataset is summarized as seed clusters,
we further merge seed clusters into the final clusters, based
on the DTWdistances of their centers. Specifically, wemerge
the centers of seed clusters into final clusters, and then assign
the non-center time series to the same clusters as their centers.

Assume we merge τ seed clusters into K clusters by DTW
distances of seed cluster centers. We propose a Sparse Sym-
metric Non-negative Matrix Factorization (SSNMF) algo-
rithm to merge seed cluster centers, due to the non-negative
and symmetric properties of the DTW distance matrix (M ∈
Rτ×τ ). SSNMF is able to discover the latent structure of the
relationships among the seed cluster centers. Specifically,
in SSNMF, M is factorized as the multiplication of two
matrices, i.e., H ∈ Rτ×K and S ∈ RK×K (S = ST ), which
have non-negative entries, as follows:

M = HST T . (5)

H is the feature matrix that represents the latent structure
of data derived from M , and it also implies the center
assignment, i.e., the ith center belongs to the jth cluster
if argmax1≤k≤K hik = j. SSNMF imposes a L 1

2
sparse

constraint for H to ensure the assignment weights of each
center to the K clusters are exclusive, i.e., each center only
has seldom non-zero weights. We choose L 1

2
norm since it

is differentiable and can produce sparser solutions than the
L1 norm regularization [33]. Therefore, the cost function of
SSNMF is defined as follows:

` = min
H≥0,S≥0

‖M − HSHT
‖
2
F + η‖H‖ 12

, (6)

where ‖∗‖F is the Frobenius norm, η is the weight of sparsity
and ‖H‖ 1

2
is the L 1

2
sparse constraint ofH defined as follows:

‖H‖ 1
2
=

∑
i

∑
j

h
1
2
ij . (7)

The cost function in Eq. (6) is non-convex, and we obtain
local minima by an iterative multiplicative updating process
akin to [34]. Let 3 ∈ Rτ×K and 0 ∈ RK×K be the Lagrange
multipliers subject to λij ≥ 0 and γij ≥ 0, respectively.

Algorithm 1Merge Seed Clusters
Input: Seed clusters seeds, cluster number K , η,
1: Calculate DTW distance matrix (M ) for the centers of
seeds.

2: Initialize H and S with random positive values.
3: while not converge do
4: Update H :

5: H = H �
MHS

HSHTHS + 1
8ηA

6: Update S:

7: S = S �
HTMH

HTHSHTH
8: end while
9: Initialize clusters as K empty sets
10: for 1 ≤ i ≤ c do
11: j = argmax1≤k≤K hik
12: clustersj = clustersj ∪ seedsi.
13: end for
Output: clusters

Combining Lagrange multipliers with the cost function in
Eq. (6), we have the Lagrangian problem as follows:

`` = Tr(MM )− 2 Tr(MHSHT )+ Tr(HSHTHSHT )

+ η‖H‖ 1
2
+ Tr(3HT )+ Tr(0S). (8)

The partial derivative of `` with respect to H is given by:

∂``

∂H
= −4MHS + 4HSHTHS +

1
2
ηA, (9)

where A ∈ Rτ×K and aij = h
−

1
2

ij . The partial derivative of ``
with respect to H is given by:

∂``

∂S
= −2HTMH + 2HTHSHTH . (10)

Using the Karush-Kuhn-Tucker conditions that λijhij = 0 and
γijsij = 0, we obtain the final multiplicative updating rule for
H and S, respectively, as follows:

H = H �
MHS

HSHTHS + 1
8ηA

, (11)

S = S �
HTMH

HTHSHTH
. (12)

We initialize H and S with random positive values, and the
optimalH and S are obtained after the updates ofH (Eq. (11))
and S (Eq. (12)) reach convergence.

The pseudo code of seed cluster merging is demonstrated
in Algorithm 1. At line 1, the DTW distance matrix of seed
cluster centers (M ) is obtained. At lines 2-8,M is decomposed
into H and S by the iterative updating process. The final
clusters are obtained at lines 9-13.

C. TIME COMPLEXITY
The computation of L1-norm distance matrix is O(n2 ∗ m),
where n is the size of dataset and m is the length of time
series. The complexity to find time series seed clusters by
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DPC is O( 12n
2
+ n(φ + log n + 1)), where φ � n is the

average number of neighbours. Thus the overall complexity
to find seed clusters isO(n2(m+ 1

2 )+n(φ+ log n+1)). In the
seed clusters merging phase, the complexity to calculate dis-
tance matrix with DTW among dense clusters is O(τ 2m2),
where τ is the number of seed clusters. The iterative updating
process to obtain optimal H and S requires a complexity of
O(lτ 2K 4), where l is the number of iterations and τ andK are
normally far smaller than n. Therefore, the overall complexity
of MiniDTW is approximately O(n2 ∗ m).

V. EVALUATION
In this section, we design the following experiments to com-
pare the runtime efficiency and clustering accuracy of the
proposed MiniDTW algorithm with the counterpart methods.
All the experiments are implementedwith Python 3.2, and run
on a Linux platform with 2.6G CPU and 132G RAM.

A. EXPERIMENT SETUP
We use all the datasets in the UCR time series achieve
[10] for the evaluation. These datasets have different sizes
(ranging from 40 to 16637) and different lengths of time
series (ranging from 24 to 2709). Each dataset contains a
training set and a testing set (with labels), and we use both for
clustering.

Since MiniDTW is proposed to accelerate time series clus-
tering by reducing the DTW utilization ratio, TADPole [5] is
the counterpart method most related to ours because it aims
at accelerating time series clustering by pruning a fraction
of DTW distance use based on faster DTW upper/lower
(L1-norm/LB_Keogh [35]) bounds. SS-PrunedDTW [16]
is another method that directly accelerate DTW distance.
KDBA [29] uses Kmeans for clustering and designs a
DTW-adaptable center discovery method. Two state-of-the-
art time series clustering algorithms, i.e., Kshape [19] and
TS3C [22], are also included in the evaluation. We brief the
counterpart methods as follows:
– TADPole uses density-based clustering algorithm (DPC

[31]) with DTW distance measurement for clustering,
and it accelerates the clustering process by pruning a
significant proportion of DTW use with fast calculated
lower/upper bounds of DTW.

SS-PrunedDTW
– accelerates the DTW distance measurement by prun-

ing outbound search operations with an upper bound.
Single-linkage hierarchical clustering is used to cluster
time series with their efficiently calculated DTW dis-
tances.

– KDBA extends the conventional Kmeans clustering
algorithm to support the use of DTW distance measure-
ment. KDBA adopts a DTW-adaptive center discovery
method to ensure the non-center time series in clusters
have small DTW distances to the respective centers.

– Kshape is proposed to cluster time series invariant
to time series phase shifting. Kshape measures
the distance of two time series by a shape-based

measurement (SBD). After time series that have phase
shifting are re-aligned by SBD, Kshape discovers clus-
ters by minimizing the distances of the re-aligned time
series to the cluster centers.

– TS3C clusters time series by the temporal patterns of
time series segments. TS3C first finds segment clusters
for each time series, which contains time series segments
of different lengths. Then, time series are represented
as the segment clusters to discover the final clusters by
hierarchical clustering.

We apply the above clustering algorithms on all the UCR
time series datasets, and the clustering accuracy is measured
by Rand Index (RI) following [19], [22]. RI penalizes false
positive and false negative clustering results and is defined as
follows:

RI =
TP+ TN

TP+ TN + FP+ FN
, (13)

where TP is the number of time series pairs that have the
same ground truth label and are correctly clustered in the
same cluster; TN is the number of pairs that have different
labels and are correctly separated into the different clusters;
FP means the number of pairs that have different labels but
are wrongly clustered in the same cluster; FN is the number
of time series pairs that have the same label but are wrongly
separated into different clusters. Note that RI ∈ (0, 1], and a
higher RI means the better clustering accuracy.

B. ACCURACY ANALYSIS
Though this paper focuses on improving the efficiency of
time series clustering, we first show that the acceleration
of MiniDTW does not necessarily sacrifice clustering accu-
racy by comparing with TADPole, SS-PrunedDTW, KDBA,
Kshape and TS3C. The warping window for DTW, which is
used by MiniDTW, TADPole, SS-PrunedDTW and KDBA,
is fixed as 5% in all the algorithms. Except SS-PrunedDTW,
Kshape and KDBA that only require the number of clusters,
we use grid search to find optimal parameters for TADPole
and MiniDTW. For TADPole, the optimal dc is obtained
by a grid search ranging from 0.01 to 1 (multiplied with
the largest DTW distance in the dataset), with grid size as
0.01. For MiniDTW, the optimal dc is obtained the same
as TADPole, and the optimal η (the weight of sparsity) is
searched among {0.1, 1, 10, 100, 1000}. We directly use the
published accuracy results of TS3C [22].

1) OVERALL CLUSTERING ACCURACY
We first compare MiniDTW with algorithms that use DTW
distance for clustering, i.e., TADPole, SS-PrunedDTW and
KDBA, in terms of clustering accuracy. KDBA is used as
the baseline and the results are shown in Table 1. Appar-
ently, MiniDTW and TADPole, which are density-based
time series clustering algorithms, perform better than KDBA
(the partition-based)on most datasets, while SS-PrunedDTW
(hierarchical) achieves lower accuracy than KDBA in more
than half datasets. Moreover, the average RI of MiniDTW is
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TABLE 1. Comparison of clustering accuracy between MiniDTW and
clustering algorithms that use DTW distance (TADPole, SS-PrunedDTW and
KDBA), with the baseline as KDBA. >, < and = indicate the number of
datasets in which the clustering results are better, worse or equal to
KDBA, respectively.

TABLE 2. Comparison of clustering accuracy between MiniDTW and
clustering algorithms that do not use DTW distance (Kshape, TS3C and
Kmeans), with the baseline as Kmeans. >, < and = indicate the number
of datasets in which the clustering results are better, worse or equal to
Kmeans, respectively.

FIGURE 3. Statistical comparisons of MiniDTW with counterpart
clustering algorithms on the datasets, and a lower rank score indicates
the better performance.

0.7685, which improves the accuracy of TADPole (average
RI is 0.7322) and SS-PrunedDTW (average RI is 0.6479) by
around 5% and 19%, respectively.

MiniDTW is further compared with Kshape, TS3C and
Kmeans, which do not use DTW distance measurement
for time series clustering. We use Kmeans as the base-
line for comparison, and the results are shown in Table 2.
Specifically, MiniDTW wins or equals to Kmeans in most
(80 out of 84) datasets, and achieves the highest average RI
(0.7685). Kshape achieves slightly better clustering results
than Kmeans, while TS3C performs the worst among the
four algorithms and achieve accuracy lower than Kmeans
in 57 datasets (out of 84). MiniDTW improves the accuracy
of Kshape by 11% and that of TS3C by 16%.

The statistical comparison of MiniDTW and the
counterpart algorithms is shown in Fig. 3. In general,
the density-based clustering methods using DTW dis-
tance measurements, i.e. MiniDTW and TADPole, achieve
better clustering accuracy than other algorithms; while
SS-PrunedDTW, which uses the same DTW distance values
(but a fast calculated version) as MiniDTW and TADPole,
performs the worst due to the use of hierarchical clustering.
MiniDTW achieves the lowest rank score, that is, it sta-
tistically achieves the best clustering accuracy. Meanwhile,
the hypothesis that these algorithms are significantly different
is rejected by Holm-Bonferroni method, and the horizontal
lines connect algorithms that are not significantly different.
Kmeans and KDBA, both adopt the same strategy to group
clusters and are not significantly different on these datasets.
Similarly, SS-PrunedDTW and TS3C (both are hierarchical
clustering) are not significantly different. Although the paper

FIGURE 4. An example of clustering a real-world time series dataset
using MiniDTW. The Italy.Dem. dataset contains time series of two classes
as shown in (a). The seed clusters discovered by MiniDTW are shown in
(b), and the time series (with their densities) of the two largest seed
clusters are shown in (c). The final clustering result is shown in (d).

focuses on speeding up the clustering of time series, the above
results show that the clustering accuracy of MiniDTW is
at least comparable with state-of-art time series clustering
algorithms.

2) CASE STUDY
Weuse the Italy.Dem. dataset as a real-world example to show
how MiniDTW effectively clusters time series with phase
perturbations. In contrast to MiniDTW that approximates the
toy bimodal distribution with two seed clusters in Fig. 2,
the complex distribution of ItalyPowerDemand dataset is
approximated as a combination of multiple unimodal distri-
butions (seed clusters) shown in Fig. 4. Italy.Dem. contains
two classes of time series that represent the Italy power
consumption in winter and summer, respectively, as shown
in Fig. 4 (a). MiniDTW first discovers several seed clus-
ters, visualized by Multidimensional Scaling [32], as shown
in Fig. 4 (b). As discussed in Section 4.1, we use the density
(defined by L1-norm) of time series to approximate the PDF
of phase perturbation. Fig. 4 (c) shows two seed cluster exam-
ples (S1 and S2) effectively group time series with small phase
perturbations, and each seed cluster uses the density distri-
bution to approximate a unimodal distribution. For example,
the center time series in S1 has the largest density, while the
densities of the rest time series gradually decrease with larger
phase perturbations (to the center time series). With these
fine seed clusters, the final merged clustering results (Fig. 4
(d)) show that MiniDTW correctly clusters most time series
and achieves the highest accuracy (RI = 0.8134) among the
compared methods.

3) VARIANTS OF SEED CLUSTER MERGING ALGORITHMS
To understand the effectiveness of the proposed SSNMF
algorithm in MiniDTW for seed cluster merging, we replace
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TABLE 3. The statistics of datasets [10] used for efficiency analysis.

FIGURE 5. Statistical comparison of MiniDTW with counterpart clustering
algorithms on the datasets, and a lower rank score indicates the better
performance.

SSNMF with other variants for comparison. We develop
a MiniDTW-HAC method that uses hierarchical clustering
(complete linkage), and MiniDTW-L1 and MiniDTW-L2
methods that use NMF with L1/L2 constraint [36] for
seed clustering merging. The optimal clustering results
of MiniDTW-HAC, MiniDTW-L1 and MiniDTW-L2 on
UCR time series datasets are obtained using the same
grid search as MiniDTW. The results in Fig. 5 shows that
MiniDTW achieves better statistical clustering results than
MiniDTW-HAC, MiniDTW-L1 and MiniDTW-L2. Mean-
while, the results also show that NMF based methods all
perform better than the seed clustering merging method using
hierarchical clustering.

C. EFFICIENCY ANALYSIS
For the convenience of demonstration, we generate one syn-
thetic dataset similar to [37] and choose six UCR datasets
of different sizes and time series lengths to compare the
efficiency of MiniDTW. The statistics of the UCR datasets
are shown in Table 3. We especially compare MiniDTWwith
TADPole and SS-PrunedDTW, because they all aim at accel-
erating time series clustering using DTW. The calculation of
the LB_Keogh lower boundmatrix (for TADPole) is regarded
as the setup-time the same as [5].

1) PERFORMANCE ON UCR DATASETS
The running time results, which are obtained under their opti-
mal parameters, provide the best accuracy in the first experi-
ment, as shown in Fig. 6. The results show that both methods
reduce the usage of DTW, i.e., TADPole (using lower/upper
bound pruning) and MiniDTW (summarizing datasets with
L1-norm distance) are more efficient than SS-PrunedDTW
that accelerates DTWcalculations.Moreover, it further accel-
erates MiniDTW and TADPole by replacing the DTW used
with the more efficient SS-PrunedDTW.

So, MiniDTW is around 10 time faster than TADPole on
the six datasets. We further compare the DTW utilization
ratios of MiniDTW and TADPole to show why MiniDTW
is more efficient. DTW utilization ratio of an algorithm is
defined as 2x

n(n−1) , where x is the number of DTW calculations

FIGURE 6. Running time of MiniDTW, TADPole and SS-PrunedDTW on the
six datasets.

TABLE 4. DTW utilization ratios (= 2x
n(n−1) ) of MiniDTW and TADPole.

FIGURE 7. Convergence analysis of MiniDTW.

the algorithm adopted and 1
2n(n − 1) is the baseline (the

DTW distance matrix). The results of DTW utilization ratios
are shown in Table 4. The average DTW utilization ratio
of MiniDTW (1.58%, i.e., 98.42% DTW calculations are
avoided) is one magnitude smaller than that of TADPole
(24.44%). This observation roughly explains why MiniDTW
is much faster than TADPole (due to the quadratic complexity
of DTW calculation). Moreover, MiniDTWonly requires less
than 1% DTW calculations on four datasets; while TADPole
uses more than 10% DTW utilization ratio on most datasets.

We further apply the convergence analysis for SSNMF,
which merges seed clusters in MiniDTW, and the results are
shown in Fig. 7. The proposed SSNMF converges fast in all
datasets, i.e., less than 25 iterations are required for most
datasets; and this fast convergence also contributes to the
runtime efficiency of MiniDTW. Specifically, MiniDTW on
Car dataset requires only 4 iterations to reach convergence.
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FIGURE 8. MiniDTW, TADPole and SS-PrunedDTW are compared on
19 synthetic datasets with increasing phase shift intensities (from 0.1 to
1.9). The two datasets with the smallest (0.1) and the largest (1.9) phase
shift values are shown in (a) and (b), respectively. The running time results
changing with phase shift intensities are shown in (c), and the DTW
utilization ratios changing with phase shift intensities are shown in (d).

This fast convergence is attributed to the small number of seed
clusters, which determines the size of the factorized matrix.

2) PERFORMANCE ON SYNTHETIC DATASET
We compare MiniDTW with TADPole and SS-PrunedDTW
on synthetic datasets that comprise different levels of phase
perturbations. We generate 19 synthetic datasets using the
method in [37] and each dataset contains 100 time series
(length = 50) of two classes, which have sinusoidal and
rectangular shapes, respectively. We use phase shift as an
example of phase perturbation due to its pervasiveness. Phase
shift that is randomly selected from a normal distribution
is added to each time series. Different datasets select phase
shift intensity from different distributions; these distribu-
tions have mean values of 0 and {0.1, 0.2, . . . , 1.9} varia-
tions, with respect to the 19 datasets. An Gaussian noise
(µ = 0.1 and δ = 0.5) is further added to each time
series. The two datasets that have the smallest and the
largest phase shift intensities are shown in Fig. 8 (a) and (b),
respectively. The running time and DTW utilization ratio
results are obtained using the same grid search as above
experiments. The running time result in Fig. 8 (c) shows
that MiniDTW and TADPole (reduce the DTW utilization
ratio) constantly run faster than SS-PrunedDTW (accel-
erates the DTW distance). Meanwhile, the running time
of MiniDTW increases with phase shift intensity but is
smaller than TADPole before the intensity becomes too large
(≥ 1.6); this trend is consistent with the trend of DTW
utilization ratio shown in Fig. 8 (d). Specifically, the DTW
utilization ratio of MiniDTW increases with phase shift
intensity and is larger than TADPole, which has a DTW
utilization ratio fluctuating around 20%, when the intensity
exceeds 1.6.

FIGURE 9. The running time comparison between MiniDTW and TADPole
with datasets of different sizes (n) and time series lengths (m), using
StarLightCurves dataset. The results show that MiniDTW is more efficient
than TADPole, and the acceleration rate increases with larger datasets
(a) and higher dimensional time series (b).

D. SCALABILITY ANALYSIS
We use StarLightCurves dataset, the largest dataset, consid-
ering both dataset size (n = 9236) and time series length
(m = 1024), in the UCR time series archive, to compare
the scalability of MiniDTW and TADPole with respect to the
different dataset sizes and time series lengths. For fairness,
we use the same dc, i.e., 0.2 multiplied with the largest DTW
distance in the dataset, for both MiniDTW and TADPole, and
set η = 100 for MiniDTW to produce the near optimal clus-
tering accuracy on StarLightCurves dataset. The calculation
of LB_Keogh lower bound matrix (for TADPole) is regarded
as setup time as the previous efficiency analysis [5].

To compare MiniDTW with TADPole for clustering
dataset of different sizes, we generate 9 subsets, the size
of which vary from 1000 to 9000, by randomly selecting
time series from StarLightCurves dataset. The running time
results in Fig. 9 (a) show that MiniDTW is more scalable
than TADPole in large datasets. Even though MiniDTW and
TADPole achieve close running time on the smallest dataset
(n = 1000), the running time of MiniDTW increases much
slower than TADPole on larger datasets. We further compare
MiniDTW and TADPole using 7 subsets that have 1000 time
series of different lengths, i.e., from 200 to 800, which are
segments of time series in StarLightCurves dataset. As shown
in Fig. 9 (b), the running time of MiniDTW is nearly linear to
the length of time series, while that of TADPole is quadratic
since TADPole uses more quadratic DTWcalculations during
clustering. Therefore, MiniDTW is more scalable than TAD-
Pole on large datasets.

VI. CONCLUSION
We propose a novel MiniDTW algorithm, which minimizes
the DTW utilization ratio by applying DTW on summarized
datasets (with L1-norm distance), to accelerate time series
clustering. MiniDTW first uses density-based clustering with
L1-norm distance to efficiently summarize the datasets as
natural-shaped seed clusters, which contain time series com-
prising small phase perturbations; and then form the final
clusters by merging seed clusters using an effective SSNMF
decomposition of the DTW distance matrix of seed cluster
centers. The experimental results conducted on the UCR time
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series datasets show that MiniDTW reduces 98.52% of DTW
utilization and is better than its counterpart, TADPole, which
reduces only 75.56% of DTWutilization; and thusMiniDTW
is 10 times faster than TADPole, without sacrificing cluster-
ing accuracy.
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