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ABSTRACT The ride comfort of bus passengers is a critical factor that is recognized to attract greater
ridership towards a sustainable public transport system. However, it is challenging to predict bus passenger
comfort due to the complex non-linear interaction among various factors. In an application-based study,
18 real driving tests were conducted to analyze the correlation between factors induced by motion sickness
and the driving status of the vehicle. We used the user’s feedback module (UFM) to record the feelings of
passengers, and the six degrees of freedom (6-df) motion parameters were obtained by the accelerometer
in the micro electro mechanical system (MEMS) of the smartphone. Then, the data were discriminated and
analyzed, and thresholds of the variables affecting the discomfort of passengers in different conditions were
obtained. Finally, we established a prediction model of motion sickness duration based on the driving status
of vehicles. The result shows that passenger’s comfort is most sensitive to vertical acceleration changes
when the vehicle is decelerated, and the duration of motion sickness (DMS) can be effectively predicted
(79.8%) by the vehicle’s lateral acceleration, roll, and pitch angular velocity indicators. The findings of this
study provide insights into the potential theoretical basis for policymakers to improve the adjustment of the
driving strategies and path trajectory of city buses.

INDEX TERMS Acceleration, Lasso regression, motion sickness, passenger comfort, traffic engineering.

I. INTRODUCTION
Comfort is a significant factor that affects passengers’ choice
of public transportation. Compared with cars, buses will
accelerate and decelerate more frequently because the pas-
sengers get on and off, which may bring challenges to passen-
ger comfort. With the development of public transportation,
the pursuit of buses is no longer limited to safety, and the
improvement of comfort is unavoidable. In addition, there is
a strong correlation between the comfort and utilization of
buses [1]. At present, there are more and more passengers
with motion sickness. According to a new international sur-
vey on motion sickness, about four thousand people from
China, the UK, Brazil, and Germany were surveyed about
their experiences of motion sickness and found that 59% of
them indicated they had experienced motion sickness in the
past five years as a passenger in a car, including childhood
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experiences [2]. The highest and lowest incidence of motion
sickness were reported in China and Germany, respectively.
However, if we can understand the factors affecting passen-
ger comfort, and improve the driving strategy and optimize
the interaction between buses and passengers accordingly,
the frequency and degree of motion sickness of passen-
gers will be effectively reduced, and the riding comfort of
passengers will be improved.

Research on passenger comfort as well as motion sickness
is in full swing. Existing research on passenger comfort
has mainly concentrated on the physiological mechanism of
motion sickness, the driving behavior of the driver, and the
interior environment of the vehicle. Bles et al. [3] put for-
ward the subjective vertical conflict theory, which assumed
that motion sickness is caused by the accumulation of con-
flicts between the vertical direction of the body perceived
by the sensory organs and the movement predicted by the
central nervous system. Based on the theory of sensory con-
flict, Morimoto et al. [4] added visual stimulation to the
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vehicle display, which can reduce the severity of motion
sickness. Wada et al. [5], [7] and Fujisawa et al. [6] derived
a mathematical model of motion sickness caused by head
motion in 3D space based on subjective vertical conflict,
and a vehicle control method for minimizing dizziness was
proposed. These results strongly suggest that the driver’s
head tilt reduces motion sickness. Furthermore, Kuiper et al.
[8] explored the role of anticipation in motion sickness by
comparing three conditions varying in motion predictability.
Then they assessed the effect of anticipation on subsequent
illness ratings using a within-subjects design, which under-
lines the importance of an individual’s anticipation to motion
in motion sickness.

In addition, Newman et al. [9] found that motion sickness
largely depends on the visual scene, and horizontal accelera-
tion with a frequency lower than 0.1Hz will lead to motion
sickness, while Kuiper et al. [10] found that in the lateral
sinusoidal motion, average motion sickness on an 11-point
scale was 2.21 + /- 1.97 for 0.2 Hz and 1.93 + /- 1.94 for
0.35 Hz. Rinaldi et al. [11] evaluated the results by using the
Lilliefors test and discussed the influence of lateral acceler-
ation and angular acceleration on the symptoms and level of
motion sickness of people. Saruchi et al. [12], [13] proposed
an inner-loop lateral control strategy which utilized head
roll angle to generate corrective wheel angle to reduce the
lateral acceleration, and a time delay neural network (TDNN)
was utilized to model the correlation of the occupant’s head
movement and lateral acceleration. However, they don’t pay
attention to the motion of buses except for lateral vection
(Vection refers to various cognitive factors that can influence
self-motion perception in virtual reality), such as vertical and
longitudinal vection, which could cause discomfort to pas-
sengers. The traditional test methods are limited by the pas-
sengers not being able to evaluate the discomfort by different
symptoms, which leads to the inability to analyze the impact
of vehicle motion parameters quantitatively accurately on
passenger comfort. In our test, the subjects can evaluate the
discomfort combined with specific symptoms, which can
accurately analyze the relationship between vehicle motion
parameters and passenger discomfort.

Some authors evaluated the passenger comfort by the adop-
tion of embedded systems or IMU. By integrating subjective
measurements of driving style with objective measurements
of longitudinal and transversal accelerations collected by
intelligent transportation system tools, Barabino et al. [14]
established a comfort scale in a real operational environment
as a tool to regulate driver behavior, i.e., each driver would
be able to recognize when passengers experience conditions
of discomfort and acts to improve comfort. Lin et.al [15] pro-
posed a novel Comfort Measuring System (CMS) for public
transportation systems. Then, it mashed up the sensed data
with the authorized data of the public transportation system
and provided a detailed comfort statistic as a value-added
service. Coni et al. [16] analyzed the correlation between
some geometric and cinematics road parameters that may
affect the comfort and the different passenger’s judgments on

the three acceleration components by age classes and hourly
day. The results generally show weak correlations between
the selected parameters and passenger judgments. To relate
vehicle motion with the comfort of the actual experience,
some scholars studied by using questionnaires as well as
verbal ratings. In Turner and Griffin’s study [17]–[19], self-
report data about motion sickness were limited to overall
symptom ratings obtained from questionnaires, which were
administered only once, near the end of each journey. Bara-
bino et al. [14] evaluated the passenger comfort related to
vehicle motion event, but the vertical component of the accel-
erationwas disregarded, since subjective evaluationswere not
performed.

By means of the spatial oscillatory model of the intercity
bus IK-301 with ten degrees of freedom, Sekulic et.al [20],
[21] assessed oscillatory comfort in the driver and passengers
according to the 1997 ISO 2631-1 standard, as well as the
allowable vibration exposure time in drivers for the reduced
comfort criterion. On the basis, they found that the most
comfortable oscillatory zone is in the middle part of the
bus, whereas the least comfortable oscillatory zone is on the
rear bus overhang. Maternini and Cadei [22] proposed and
gave an initial validation of a comfort scale, putting into
relation a specific comfort index with the dynamic effects
on standing bus passengers and with certain road characteris-
tics. They found a correlation between these indexes and the
dynamic effects felt by bus passengers. By adopting a set of
independent measures, the jerk algorithm was developed by
Castellanos and Fruett [23] to determine the Comfort Index
with Acceleration Threshold Detection (CIATD). According
to the speed, acceleration, and other operating characteris-
tics of the vehicle, a relatively mature embedded system
combined with the CIATD index was established. However,
they provided only qualitatively analysis of these subjective
report data, without independent variables or inferential sta-
tistical tests. That is, their studywas observational, rather than
experimental.

Through the above literature review, we can find that most
of the studies considering passenger comfort, whether it is the
lateral movement or the longitudinal motion of the vehicle,
take vehicle acceleration and jerk as discomfort or motion
sickness indicators. However, when setting the index thresh-
old, the difference in the symptoms of different passengers
to vehicle motion parameters is not considered. Based on
the above research, we accurately record the passenger’s
feeling through the actual driving test, use the smartphone
with MEMS to collect the data of the vehicle’s six degrees of
freedom (6-df) acceleration and angular velocity, and conduct
discriminant analysis and research on the characteristics of
passenger comfort and motion sickness. Motion sickness dis-
cussed in the present article primarily refers to a serious type
of discomfort. It is helpful to answer the following questions:
1. Which vehicle motion parameters change significantly
causing passenger discomfort? 2. What are the thresholds of
the characteristic that affect passenger discomfort? 3. Can the
vehicle motion parameters predict the DMS?
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TABLE 1. Characteristics of the vehicle employed.

The rest of this article is structured as follows.
Section 2 describes the scenarios, materials, implementa-
tion processes, and data processing methods of the test.
Section 3 analyzes the characteristic variables and establishes
a prediction model for the DMS. The results are discussed
in section 4 and the findings of this study are drawn from
section 5.

II. METHODS AND MATERIALS
A. PARTICIPANTS
The volunteers were recruited online and offline in Chang’an
University. A total of 22 volunteers were recruited (mean age
26.1 years, SD= 7.03; 5 women). To better complete the test,
participants were required to be in a healthy physical state,
and they did not have a history of acute heart disease and other
diseases that were not suitable for the test. Participants were
also required to not take alcohol and other neurogenic drugs
that affect the physiological conditionswithin 48 hours before
the test, and they should sign the informed agreement before
the test to show that they clearly understand the content and
purpose of the test.

The test vehicle was driven by professional drivers.
To ensure safety during the test, the driver was required to
hold a valid A1 level license for at least 3 years and drive at
least 9000 km per year.More importantly, there was no record
of major accidents or drunk driving during work. The driver
was not aware of the study as well as the purpose of the test.
The scheme of the test had been approved in advance by the
ethics committee of Chang’an University.

B. DEVICE
To eliminate the influence of uncertain factors such as
weather and accidents in the test and avoid excessive
travel times, the Jinlong XMQ6115AYD5C bus (as shown
in Table 1) was used in the test, and a smartphone (iPhone 7,
Figure 1a) was installed at the vehicle center of gravity, which
can collect location (GPS) and motion data of the vehicle.
The 3-axis coordinate system of the smartphone was aligned
with the 3-axis coordinate system of the vehicle to maintain
consistency with the vehicle’s movement. The application
software (Acceler log, Figure 1b) of the smartphone was used
to call the built-inMEMS sensor (InvenSense 773C) to collect
6-df motion data of the vehicle. During the test, the motion
data of the vehicle were recorded at a frequency of 100 Hz,

FIGURE 1. The fixed location of the IOS smart device (a) and the
operation interface of Acceler log (b).

FIGURE 2. UFM (User’s feedback module).

including linear acceleration (lateral, longitudinal, and verti-
cal) and angular velocity (roll, pitch, and yaw). The change
of motion data indicates the state of vehicle movement.

The user’s feedback module (UFM, Figure 2) was used to
mark the timestamp of the device that the passenger pressed
during the test, which was made based on the programed
K60 single-chip microcomputer, which was then welded
to a circuit board, as depicted in Figure 2. The four keys
(KEY1\KEY2\KEY3\KEY4) of the UFM represent differ-
ent types of discomforts and motion sickness. During the
test, the events recorded by UFM are synchronized with the
acquisition time of motion data. All recorded data will be
saved as a.csv file that can be used for offline analysis.

C. TEST PROGRAM
A route in Xi’an, China (Figure 3) was chosen for a real
driving test. The total length of the route is 28.5km, includ-
ing urban expressway and main roads, with a speed limit
of 60 km/h −80 km/h (Table 2). The tests were conducted
during peak traffic hours. Before the test, participants com-
pleted a questionnaire about their travel history to assess their
initial symptom level and make sure they were familiar with
the symptoms of motion sickness.
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FIGURE 3. Route of real driving test (28.5km, 48min of driving).

TABLE 2. Detailed information of the test route.

TABLE 3. Standard of discomfort.

All participants in each test were divided into 3 groups,
and each with 2 participants. They were distributed in the
front, middle and rear areas of the vehicle. Each member
of the group was required to press the corresponding button
(KEY1\KEY2\KEY3\KEY4) on the UFM according to the
standard in Table 3 when he or she feels discomfort caused
by the vehicle’s motion. Participants were trained uniformly
before the test to ensure familiarity with the standards and
operations.

FIGURE 4. Datum coordinate system.

In Test 1, participants were allowed to press KEY1 and
KEY4 on the UFM. KEY1 corresponds to ‘‘uncomfortable
feelings’’ and KEY4 corresponds to ‘‘MS attack/end’’. If par-
ticipants feel any discomfort to the body, they will press
KEY1. If participants feel that motion sickness occurs or
disappears, they will press KEY4.

In Test 2, participants were allowed to press KEY1,
KEY2, KEY3, and KEY4 on the UFM. KEY1 corresponds to
‘‘discomfort due to rapid acceleration’’. KEY2 corresponds
to ‘‘discomfort due to rapid deceleration’’. KEY3 corre-
sponds to ‘‘discomfort due to vehicle diversion or turning’’.
KEY4 corresponds to ‘‘onset/end of motion sickness’’. Par-
ticipants need to classify the discomfort caused by vehicle
movement and press the corresponding button accurately and
timely, which is different from Test 1.

We set the Test 1 (north to south) as the controlled trial
of Test 2 (return, south to north). More specifically, under
the condition of the same test route, period, vehicle, partic-
ipants, we found that the proportion of discomfort caused
by environmental factors is very small (8.8%) in Test 1,
which means that the discomfort caused by environmental
factors had very limited influence on the discomfort caused
by vehicle movement.

Participants were free to talk to each other during the test.
They were required to follow local regulations and fasten
their seat belts. If participants feel unwell and cannot proceed
with the test, the test should be stopped. At the end of the
test run, the data were exported and checked to confirm the
synchronization and validity of the time.

D. DATA PROCESSING
This study establishes a datum coordinate system based on
ISO 2631-1 [24], with the vehicle horizontally to the right as
the X-axis positive direction, the vehicle forward direction as
the Y-axis positive direction, and the vehicle vertical upward
direction as the Z-axis positive direction (Figure 4).

The function of the acceleration/angular velocity sensor is
to measure the acceleration and angular velocity of an object
along the axis. In practical applications, the moving status of
the object can be determined, and it has high dynamic char-
acteristics. The basic calibration of the acceleration/angular
velocity sensor found that its output has a floating of 1%
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FIGURE 5. Acceleration of X-axis unfiltered.

FIGURE 6. Acceleration of X-axis filtering.

(fixed error), and we used a digital filter to eliminate the fixed
error.

It cannot be ignored that continuous testing for a long
time will raise the temperature of the sensor and cause
zero drift, which will affect the accuracy of data collection.
Besides, the random noise generated by the engine vibration
of the vehicle also has a large impact on the accuracy of
the sensor. Therefore, we use the global threshold denois-
ing based on wavelet analysis to filter the data. Continuous
Wavelet Transformation (CWT) is a multi-scale, low-entropy
signal analysis method with strong recognition capabilities
in both time and frequency domains. The function is as
follows:

CWT (s, τ )

=
1
√
|s|

∫
∞

−∞

f (t) ∗ exp−

[
iω0 (t − τ)

s
+
(t − τ)2

2s2

]
dt

(1)

where s represents the scale of the wavelet function; τ repre-
sents the translation of the wavelet function; f (t) represents
the original input signal; ω0 represents the centre frequency;
t represents the time; i is a constant, taking 1, 2. . . , n.

By transforming the original signal data to the wavelength
domain, the small wave coefficient with random noise was
suppressed as the subject. The signal was reconstructed by
using the processed wave coefficient to obtain the signal after
suppressing random noise. Part of the data before and after
filtering is shown in Figure 5 and Figure 6.

III. RESULTS
A total of 157 key-presses were recorded. According to dif-
ferent causes of passenger’s discomfort, 52 key-presses due
to sharp acceleration (KEY1), 62 key-presses due to sharp
deceleration (KEY2), and 23 key-presses due to sharp turn-
ing/ lane changing (KEY3). 20 events of passenger motion
sickness (KEY4) were recorded. We extract the 6-df acceler-
ation and angular velocity data fragments within the first 3s of
each key-press, and after removing 5% of the maximum and
minimum at both ends of the 3s data segment, the average of

TABLE 4. Some records of raw data collected.

FIGURE 7. Bivariate Pearson correlations between 6-df variables (The size
of circle represents the correlation coefficient of two variables,
corresponding to the number displayed in the circle.)

the rest is taken as the sample value. Table 4 provides some
records of raw data collected.

A. DISCRIMINANT ANALYSIS
We take the passenger’s discomfort (determined by the type
of key) as the observation variable and take the acceleration
and angular velocity of each axis of the vehicle as the influ-
encing factors. Based on Table 1, the variable corresponding
to pressing KEY1 is determined as the positive longitudinal
acceleration (ay+), and the variable corresponding to pressing
KEY2 is determined as the negative longitudinal axis accel-
eration (ay−).

However, the variable corresponding to KEY3 cannot be
simply determined as linear acceleration or angular velocity.
Therefore, Pearson correlation analysis was performed on the
collected 6-df motion data (Figure 7). The results show that
the X-axis acceleration ax has a strong correlation with Y-axis
acceleration (ay) and angular velocity (ωy) (| r | > 0.9), and
there is a strong correlation between ay and ωy (| r | > 0.8).

To prevent the redundancy of variables, we analyzed an
ANOVAof other motion variables without considering ay and
ωy to determine the variables that have the most significant
effect on the press of KEY3. The results of ANOVA show
that ax , F (44,45) = 108.142, p < 0.001, and ωz, F (44,45)
= 39.006, p < 0.001, have a significant effect on the press
of KEY3. Therefore, we choose ax and ωz as the variable
corresponding to the press of KEY3.
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FIGURE 8. Distribution of the variables.

The data are statistically analyzed based on the above vari-
ables (ay+ and ay− in the state of acceleration/deceleration,
ax and ωz in the state of turning/ lane changing), as shown in
Figure 8.

By the distribution of the variables (Figure 8), there is an
outlier (1.0722g) in ax in the state of turning/ lane changing.
The distribution of the three acceleration variables, with a
maximum of nomore than 0.0862g (ax), is more concentrated
than that of ωz. After cutting 5% data of the maximum
and minimum ends, the average value of ay− (0.1749g) is
the largest, while that of ay+ (0.0323g) is the least, i.e. the
passenger’s sensitivity at acceleration is significantly higher
than at deceleration.

B. DISCOMFORT LEVEL EVALUATION
Based on discriminant analysis, we introduce a method of
predicting the level of passenger discomfort which compares
the type of discomfort perceived on board by the passengers
with the instantaneous accelerations recorded by smartphone.
Eboli et al. [24] developed a related method, in which using
subjective and objective data to define the level of bus com-
fort. However, they did not define independent variables for
different motion states, and did not take the effect of angular
velocity into consideration.

Specifically, as we stated above, we create a cumulative
frequency graph using SPSS (Version: IBM SPSS Statistics
26.0) for variables (ay+, ay−, ax , ωz), which related to differ-
ent motion states. The graph reflects the functional relation-
ship between variables and cumulative frequency, as reported
in Figures 9 and 10.

The relationship between cumulative frequency and linear
acceleration is shown in Figure 9, where there are two con-
centrated distribution intervals of ay+ and ay− in the vehicle
acceleration and deceleration state. After the last distribu-
tion interval (ay+ = 0.11g, ay− = 0.18g), the proportion
of passenger’s discomfort events in both states has reached
more than 80%. In other words, at least 80% of the pas-
sengers in this state are uncomfortable and associated with
αy (−0.18g, 0.11g).
The cumulative frequency in the state of turning/lane

changing is shown in Figure 10, 96% of the discomfort

FIGURE 9. Cumulative frequency of αy.

FIGURE 10. Cumulative frequency of αx /ωz.

events occur in the interval (0.08g-0.2g). The curve of ωz
has two large jump intervals, (0.046rad/s-0.112rad/s) and
(0.159rad/s-0.206rad/s). At an angular velocity of 0.206rad/s,
the proportion of discomfort events reaches 90%.

Based on the above analysis of the data, we can con-
clude that the threshold of ay+, ay−, ax , ωz is: 0.11g, 0.18g,
0.2g, and 0.206rad/s, which could be adopted for indicating
a limit situation distinguishing between a low and a high
level of discomfort on board linked to the driving behavior
(Sharp acceleration/ deceleration/ turning/ lane changing).
More specifically, if for a certain ride, the value of the above
motion variable is higher than the threshold value, we can
conclude that the level of discomfort onboard is bad; on the
contrary, if the value of the above motion variable is lower
than the threshold value, the level of discomfort is good.

C. PREDICTION OF PASSENGER MOTION SICKNESS
DURATION
To determine the factors influencing the DMS, a Pearson
correlation analysis was carried out with the 6-df acceleration
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FIGURE 11. The coefficient regression path of the model.

TABLE 5. Prediction model coefficient for the DMS.

and angular velocity variation amplitude A(i), stability D(i),
and the number of direction change N (i) as independent
variables (i = ax , ay, az, ωx , ωy, ωz). The results show that
there is no significant correlation between the DMS and A(i)
(r < 0.4, p > 0.001). In addition, there is no significant
correlation between DMS and D(i) (r < 0.3, p > 0.01).
However, there was a strong correlation between DMS and
N (i) (r > 0.8, p < 0.01), which could be expressed by a
quantitative model.

Since the sample we have is limited, it is likely to be
insufficient if we want to estimate too many coefficients with
limited information, so it is necessary to filter the variables to
improve the estimation. We performed Lasso regression with
N (i) as the independent variables and DMS as the dependent
variable to identify the suitable predictor. Lasso regression
was implemented via Stata SE 15 (64-bit). The coefficient
regression path of the model is shown in Figure 11.

After obtaining the regression model, we performed a
K-fold cross-validation (K = 10) of the model using the
dataset to obtain the parameter, Lambda (187.950), which
minimizes the mean square prediction error (MSPE) of the
model.

As shown in Table 5, the regression model finally identi-
fied N (ax), N

(
ωy
)
, and N (ωz) as significant predictors with

P < 0.01, yielding the following prediction model for the
DMS:

T = 0.666N (ax)+ 0.606N
(
ωy
)
+ 1.632N (ωz)− 15.219

(2)

where T represents the DMS (s), N (ax) represents the direc-
tion mutation number of X-axis positive acceleration per unit

time, N
(
ωy
)
is the number of direction change of Y-axis

axial angular velocity per unit time, and N (ωz) is the number
of direction change of Z-axis axial angular velocity per unit
time. Theweight of different coefficients in themodel reflects
that N

(
ωy
)
has the greatest impact on the DMS. By this

model, 79.8% of the original cases are correctly predicted (the
error is less than 10%).

IV. DISCUSSION
As in many previous studies [17]–[19], drastic changes in
space for passengers are the direct causes of discomfort and
motion sickness. Therefore, understanding how to monitor
the discomfort and determine the DMS plays an important
role in improving passenger comfort. We investigate the asso-
ciation between 6-df acceleration, angular velocity, and the
discomfort and DMS of passengers during the driving of
buses, so as to propose a possible method or tool to determine
the threshold of discomfort and the DMS.

Through 18 round-trip tests of 22 passengers on a com-
muter bus, it is shown that acceleration, deceleration, lateral
movement, and change of forwarding direction of the vehi-
cle will cause discomfort and symptoms of motion sickness
significantly. It verifies the Hoberock’s conclusion that only
vertical, roll, and pitch vibrations are considered in human
riding comfort analysis [25].

Thresholds for ay+, ay−, ax , ωz are obtained. The threshold
of vehicle lateral acceleration is 1.96 + / −1.96, which is
consistent with the acceleration threshold (1.9 3 + /- 1.94)
obtained by Kuiper [10]. Compared with the results obtained
by Barabino et al. [14] (2.12 + /-2.12), the threshold is
smaller, which may be due to different route conditions and
traffic management measures. It is not difficult to conclude
that passengers are most sensitive to the deceleration of the
vehicle. We speculate that due to the high speed of the
expressway when the vehicle encounters a change of lane
in front of the vehicle, a sharp break, etc., the head of the
passenger cannot hold a fixed position (by leaning against the
back of the chair) as when the vehicle is decelerating, which
is consistent with the statement of Willem that relevant fac-
tors accelerate the sensitivity of body balance organs called
vestibular [3].

Further, by incorporating the relevant statistics of vehicle
motion variables into Pearson correlation analysis, the num-
ber of direction changes N (i) of 6-df acceleration and angu-
lar velocity are clearly screened out. Then a quantitative
regression model is proposed to describe the relationship
between the changes of the above variables and the DMS
of he or her. The results show that it is feasible to pre-
dict the DMS by the N (ax) ,N

(
ωy
)
,N (ωz). Specifically,

the analysis proves that frequent acceleration caused by
accelerating or braking and angular changes caused by turn-
ing lanes both increase the DMS, whereas the direction
change of vehicle yaw angular velocity has the greatest
impact on the DMS. Motion sickness is highly likely to
occur when sudden changes in vehicle lateral acceleration,
yaw, and roll angular velocity are at a certain level, which
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is consistent with the conclusion of Turner and Griffin
[17], [18].

In data analysis using ANOVA, it is found that when the
vehicle is in a turning or lane changing state, the lateral
acceleration and yaw angular velocity of the vehicle has a
significant impact on the passenger’s comfort, i.e., compared
with other driving status, passengers in turning or lane chang-
ing state are more likely to experience discomfort, which is
consistent with the conclusion of Saruchi et al [12], [13].

Further analysis shows that the length of time between
the start of the test and the discomfort occurs for the first
time is significantly correlated with the DMS (r = 0.583,
p < 0.001, N = 20), i.e. earlier discomfort the passenger
experience in the test means a greater probability of longer
DMS further indicate more conflicts between the direction
of motion perceived by the sensory organs and the predicted
movements of the central nervous system, which leads to
more severe motion sickness [3]. Correlation analysis also
excluded the association between the DMS and the frequency
of discomfort (r = 0.322, p > 0.01). Therefore, motion
sickness monitoring and evaluation method could be used
to remind the risk of motion sickness and encourage more
rest [23].

Generally speaking, this study has some methodological
limitations:

a. Since the age range of the 22 participants in this study
is 17-55 years old, it cannot represent the general situation of
older or younger age groups, which will have a certain impact
on the determination of variable threshold;

b. The process of the test is affected by the subjective and
random factors of passengers, and it is not further controlled
by the traffic flow, road traffic control measures, and other
factors.

c. Since the passenger comfort is a crucial facet of
service quality, some key indicators of service quality,
such as personal space in vehicle as well as the ambi-
ent conditions, should also be considered [26]. In future
research, comprehensive consideration of the above vari-
ables should be focused on to get a more extensive
application.

V. CONCLUSION
In this study, we validated a new way to obtain real-time data
on passenger’s discomfort combined with specific symptoms
and motion sickness associated with discrete changes in vehi-
cle motion. The results show that our method is sensitive
to discomfort and motion sickness, and these are related to
discrete changes in the vehicle’s 6-df acceleration and angular
velocity.

In the context of road congestion and the strat-
egy of ‘‘Public transport priority’’, the development of
large-capacity vehicles such as buses is in line with today’s
trends, and the broader application based on this study can
improve the service and passenger comfort, which can pre-
vent motion sickness more efficiently and help to provide a
potential theoretical basis for policymakers to improve the

adjustment of the driving strategies and path trajectory of city
buses.
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