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ABSTRACT Semantic video segmentation is a key challenge for various applications. This paper presents
a new model named Noisy-LSTM, which is trainable in an end-to-end manner, with convolutional
LSTMs (ConvLSTMs) to leverage the temporal coherence in video frames, together with a simple yet
effective training strategy that replaces a frame in a given video sequence with noises. Our training
strategy spoils the temporal coherence in video frames and thus makes the temporal links in ConvLSTMs
unreliable; this may consequently improve the ability of the model to extract features from video frames
and serve as a regularizer to avoid overfitting, without requiring extra data annotations or computational
costs. Experimental results demonstrate that the proposed model can achieve state-of-the-art performances
on both the CityScapes and EndoVis2018 datasets. The code for the proposed method is available at
https://github.com/wbw520/NoisyLSTM.

INDEX TERMS Video semantic segmentation, noisy training, temporal awareness.

I. INTRODUCTION
The ever-increasing importance of video semantic segmen-
tation has attracted increasing attention from an exten-
sive number of computer vision researchers. Due to the
rapid development of convolutional neural networks (CNNs)
[1], [2], it is fair to say that the performances of video seman-
tic segmentation methods have been dramatically improved.
A simple yet effective approach is to treat video frames as
independent images and use image segmentation models.
This approach benefits from many existing image segmenta-
tion models [3]–[5] and a large number of datasets available
for training [6], [7].

However, these methods usually suffer from segmenta-
tion errors, such as inaccurate object boundaries, incomplete
regions that only cover parts of certain objects, and over-
complete regions that cover neighboring objects. Due to the
deteriorated imaging quality caused by video capturing and
encoding processes, these segmentation errors occur much
more frequently in video semantic segmentation tasks. An
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important observation is that these errors only exist in some
frames, while other frames, including adjacent frames, may
still yield accurate predictions.

Based on this observation, researchers have developed new
models dedicated to video semantic segmentation that utilize
temporal coherence. There are some works that use optical
flow [8]–[10], but the computation of optical flow itself is a
nontrivial problem that depends greatly on themotion dynam-
ics in adjacent frames. It is difficult to design a robust and
accurate method for estimating optical flow for a variety of
videos.

Another possible way to leverage the temporal coherence is
to introduce temporal structures into models. One pioneering
approach is to use conditional random fields (CRFs) on top
of a model for a single image [11], [12]. However, their
CRFs have no access to the internal representations in the
CNNs, possibly spoiling their potential to improve the seg-
mentation results. Recurrent neural networks (RNNs) provide
further flexibility, and there have been a series of works
[13]–[16] using RNNs to model the dependency among
adjacent frames. However, additional links in the temporal
dimension introduce more model parameters to be trained,

46810 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-2911-5595
https://orcid.org/0000-0001-8000-3567
https://orcid.org/0000-0003-1579-8767
https://orcid.org/0000-0002-3546-8071
https://orcid.org/0000-0002-5078-0522


B. Wang et al.: Noisy-LSTM: Improving Temporal Awareness for Video Semantic Segmentation

FIGURE 1. Overview of the proposed Noisy-LSTM model for video semantic segmentation. For one input sequence in the left, the context frames
are marked with an orange outline and the target frame is marked with red. The noise will be inserted into the context frames.

and this may require more training data. In particular, most
RNN-based models need a large amount of labeled data for
training, and such data may not always be available for many
applications.

Data augmentation is a possible way to fix these kinds
of problems. Recent techniques for training neural networks
sometimes use noises. For example, dropout and its related
techniques [17] inject noises into latent representations to
regularize the training process. Some methods add noises
even to input images for data augmentation purposes [18].
Xie et al. [19] proposed to use unlabeled data, which served
as noises for training, in a teacher-student framework. The
experimental results in these works demonstrate that using
noises during training is an easy yet effective way to improve
the performance.

In this paper, we propose a new method, named Noisy-
LSTM, which uses convolutional LSTM (ConvLSTM [20])
to facilitate the temporal continuity for improving video
semantic segmentation tasks. ConvLSTM can be directly
applied to existing semantic segmentation models. We add
it into PSPNet [5] and ICNet [21]. Inspired by [19], we adopt
a new noisy training strategy to further improve the ability
of our method to utilize temporal coherence. It is a new
kind of data augmentation that can be used with other data
augmentation techniques simultaneously. As shown in Fig. 1,
the Noisy-LSTM model is based on a feature extractor and
extended with ConvLSTM to leverage the temporal coher-
ence. Noisy-LSTM can be applied to all common semantic
segmentation models. Noisy-LSTM uses multiple sequences
as input, into which noise frames are added. All frames in
these sequences are compiled into a single batch and are
fed into a shared CNN, in which batch normalization sta-
bilizes the training process. The resulting feature maps are
rearranged into the original sequences, and each of them goes
through the ConvLSTMmodule tomake use of their temporal

dynamics for prediction. Ultimately, the decoder generates
semantic segmentation results.

Our three main contributions are as follows:
• We develop a video semantic segmentation method that
makes use of the temporal coherence in video frames
with ConvLSTM. In addition, we adopt the batch norm
for video sequences, which can stabilize the model train-
ing.

• We also enhance the model’s temporal awareness by
using a noisy training strategy. Without any extra data
annotation or computational costs, this strategy can con-
trol the reliability of temporal connections. The model
is robust to occasional and rare changes in frames,
which cannot be handled by a ConvLSTM-based net-
work alone.

• We experimentally demonstrate the performance of our
method on the Cityscapes and EndoVis2018 datasets.

II. RELATED WORK
In this section, we briefly review the representative literature.

A. TIME-SEQUENCE SEMANTIC SEGMENTATION
Most approaches are designed only for image segmentation
and not for video tasks. This means that the temporal coher-
ence of a given video is not considered and that each frame
of a video sequence is predicted independently.

A common approach to deal with temporal coherence is
to use RNN-based structures such as long short-term mem-
ory (LSTM) networks [22]. In addition to fully convolutional
networks (FCNs) [23], Valipour et al. introduced the recur-
rent fully convolutional network (RFCN) [13]. They added a
recurrent unit between the encoder and the decoder in an FCN
and achieved better performances on the SegTrack, Davis,
andMovingMNIST datasets. Yurdakul and Yemez [14] eval-
uated different kinds of RNN-based structures, such as
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ConvRNN, ConvGRU, and ConvLSTM, on the virtual KITTI
dataset [24] and concluded that ConvLSTM had the best
performance. Nilsson and Sminchisescu [9] used optical flow
to represent changes between adjacent frames and applied
a ConvGRU structure to encode the temporal continuity.
Besides, they used unlabeled frames to further improve the
prediction performance. Rochan et al. [15] adopted bidirec-
tional ConvLSTM for future frame prediction. They added a
ConvLSTM structure between each layer in the encoder and
the decoder, merging temporally adjacent featuremaps to pre-
dict the target frame. Pfeuffer et al. [16] applied ConvLSTM
at different positions in some state-of-the-art models and
demonstrated that ConvLSTM worked well when inserted in
most positions.

Different from previous works that process a video
sequence during one training iteration, our method adopts
batch dimensions in the ConvLSTM structure to increase
the training’s stability, which is proven to be important in
our experiments. We also apply the noisy strategy to video
sequences, and this further improves the prediction accuracy.

B. TRAINING WITH NOISES
For the training processes of deep models, insufficient train-
ing data is a crucial issue that causes overfitting. To avoid this
issue, various ways to use noises during training have been
proposed. Dropout [25] is one of them, and it is performed
by adding noises to latent representations in neural networks.
Some variants of dropout have also been proposed [17].
Data augmentation by additional noises has also been consid-
ered [18], where the equivalence between data augmentation
by noise and dropout was noted [26]. Recently, using unla-
beled data to improve the model performance was proven.
Xie et al. [19] proposed a self-training method, named Noisy
Student, to improve the classification performance on the
ImageNet dataset. 300M unlabeled images, many of which
were from different domains, were used to enhance the fea-
ture extraction ability of the student model. They applied a
teacher-student framework in semantic segmentation tasks
for images and presented a new model compression method
that can result in models with a good performance while
requiring far fewer parameters.

In this paper, we also use unlabeled data to improve the
segmentation performance of our model. One of the biggest
differences is that, unlike teacher-student frameworks, our
strategy does not require a dual-network structure, temporar-
ily generated labels, and an iterative training process, which
cost additional time and resources. Our noisy training strategy
is a new kind of data augmentation approach for temporal
data that is different from any existing method. This is a
simple training strategy but the experimental results prove
its effectiveness. We borrow the insight that adding noises
during training enhances the feature extraction capability of a
model. With this strategy, we expect that the model is robust
to occasional and rare changes in frames. These are scenarios
that cannot be handled by a ConvLSTM-based network alone.

Our experiments in Section IV-Cd prove the importance of
such robustness.

III. METHODOLOGY
A. OUR MODEL
As shown in Fig. 1, the proposed model mainly consists of
three components: a feature extraction module, a ConvLSTM
module, and a decoder module. It takes multiple sequences
in a batch S = {Sn|n = 1, . . . ,N } as input, where N is the
batch size for sequences, and it produces a single segmenta-
tion result for each sequence as output. An input sequence
Sn = {snt |t = 1, . . . ,T } contains T frames, where the last
frame snT is the target frame, for which our model produces
the segmentation result yn, and other frames snt for t 6= T
contextualize snT . In other words, {snt |t 6= T } are the context
frames for the target frame snT in an input video sequence. Our
noisy training strategy replaces some of the snt ’s with noise
frames. This will be described in Section III-C. T is fixed
in our implementation, and thus all input sequences have
the same length T . Note that snt and s

n
t+1 are not necessarily

consecutive in the original video sequence, but they can be
frames separated by a fixed number of frames.
For the PSPNet-based model, our feature extraction mod-

ule adopts ResNet-101 [27] as the backbone network.
We replace the last two convolution layers of ResNet-101
with dilated convolutions [1] of size 3× 3 at rates of 2 and 4
to enlarge the receptive field and remove fully connected
layers in the original ResNet-101. Batch normalization (BN)
is of great value for training deep models [16], but it requires
diversity in an input batch; otherwise, it may cause severe
performance degradation [28]. This is a serious problem for
models that deal with temporal sequences because they only
input frames from the same video sequences, and these may
not offer sufficient diversity. This is the main reason why
most LSTM-based video segmentation models [9], [16] do
not have BN layers. To address this issue (shown in Fig. 1),
in the training stage, we sample target frames snT randomly
from all frames (with labels) in the training set and then
aggregate context frames for each target frame to form a
sequence Sn. Additionally, the feature extraction module is
not aware of the sequence structure; it flattens all sequences
into a set of T ×N frames so that we can easily apply BN for
feature extractor with batch size T×N . We denote the feature
maps obtained from snt , which is the output of the second
dilated convolution layer, by znt . All z

n
t are rearranged into

Zn with the same sequence structure as that of the model
input. Therefore, the ConvLSTM module can process mul-
tiple sequence data with a batch size N . We show the impor-
tance of BN for model performance in our experiments in
Section IV-Cc.
The ConvLSTM module encodes the temporal sequence

into a single feature map; this process will be detailed in the
next section. A previous work [16] proved that ConvLSTM
can be used for various stages (i.e., layers) in various model
architectures. We place the ConvLSTM module between the
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FIGURE 2. ICNet-based Noisy-LSTM. We add the ConvLSTM module after the feature extractor of each branch, and the output
features are aggregated by the CFF module.

FIGURE 3. PSPNet-based Noisy-LSTM. We add ConvLSTM after the CNN feature extractor, and the output features
go through the PPM to generate the final prediction.

feature extractor module and the decoder module. The output
of the ConvLSTM module can be represented by

gn = ConvLSTM
(
Zn

)
, (1)

where Zn = {znt |t = 1, . . . ,T }.
Finally, the decoder module takes output gn from the Con-

vLSTM module and produces semantic segmentation result
yn for target frame snT of input sequence Sn.

In this paper, we apply Noisy-LSTM to ICNet [21]
and PSPNet [5] and the model structures are shown
in Fig. 2 and Fig. 3, respectively. For the ICNet-based
Noisy-LSTM, we directly add a ConvLSTM module at
the end of each branch and the output features are aggre-
gated by the cascade feature fusion (CFF) module. In
the PSPNet-based Noisy-LSTM, a ConvLSTM module is
placed between the CNNs feature extractor module and
the decoder module consisting of a pyramid pooling mod-
ule (PPM), two convolutional layers, and an upsampling
layer.

In what follows, we detail our network design for mod-
eling the temporal dependency through ConvLSTM and
for enhancing temporal awareness by the noisy training
strategy.

B. ENCODING TEMPORAL DEPENDENCY
It has been proved that ConvLSTM is a powerful tool for
capturing spatio-temporal dependency, which is important for
semantic segmentation in video [16]. LSTM cells can learn
how to handle information from preceding frames during
training and are able to obtain temporal information over
a certain period. In contrast to LSTMs for fully connected
layers [29], ConvLSTMs use a convolutional layer as the
latent state, and this is more suitable for vision tasks. We use
a single ConvLSTM module and set the kernel size to 3× 3.
The segmentation result for the target frame (t = T ) is given
based on its own feature maps and those of the preceding
(t = 1, . . . ,T − 1) frames.

As shown in Fig. 1, the feature map from each input frame
is sequentially fed into the ConvLSTM layer to obtain the
feature map, based on which the segmentation result for the
target frame is computed. Formally, from the feature map
zt for the t-th frame in the input sequence S (we omit the
superscript n for notation simplicity), g is computed as the
last latent state of the ConvLSTM layer as follows:

it = σ (Wi ∗ zt + Vi ∗ ht−1 + Ui ⊗ ct−1 + bi)

ft = σ (Wf ∗ zt + Vf ∗ ht−1 + Uf ⊗ ct−1 + bf)
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FIGURE 4. Our noisy training strategy introduces noises in the time domain during the training process by replacing
some context frames in the sequence with noise frame. (In this sample, among context frames, the dotted line marked
frame is replaced by an unrelated image).

ct = ft ⊗ ct−1 + it ⊗ tanh(Wc ∗ zt + Vc ∗ ht−1 + bc)

ot = σ (Wo ∗ zt + Vo ∗ ht−1 + Uo ⊗ ct + bo)

ht = ot ⊗ tanh(ct ), (2)

where ∗ and ⊗ are the convolution operations and the
element-wise product, respectively; σ and tanh are the sig-
moid and hyperbolic tangent nonlinearities. it , ft , and ot are
the input, forget, and output gates, respectively; ct and ht
are the cell and the latent state, where g = hT . Wl and Vl
for l ∈ {i, f, c, o} are trainable convolution kernels; Ul and
bl are trainable parameters of the same size as zt . Multiple
ConvLSTMmodules can be stacked and temporally concate-
nated to form highly complex structures, and this may further
improve performance. In our network, we only use a single
ConvLSTM module.

C. ENHANCING TEMPORAL AWARENESS
For video tasks, the temporal coherence between frames is
often leveraged for improving model performance. However,
there might be some cases in which this negatively affects
performance. For example, in surgery videos, consecutive
frames usually have small motions and occasionally exhibit
largemotions. Such rare events may not be effectively learned
with RNN-based models.

For neural network training, a number of attempts have
been made to utilize noises in various ways for the sake
of regularization [26], [30]. Recently, some studies demon-
strated that a large amount of unlabeled data, which may
serve as noise during training, can improve the performance
of teacher-student networks for semantic segmentation and
classification [19], [31]. Inspired by these works, we propose
a noisy training strategy that replaces some frames in the input
sequences with unlabeled and random images. This noise
injection in the time domain stochastically spoils the temporal
dependency in the original sequence and may consequently
improve the capability of the model to perform feature extrac-
tion from individual frames as the temporal continuity is
no longer reliable; thus, we can expect improved temporal
awareness in the model.

Specifically, for each sequence, we replace some context
frames with random frames, which are unlabeled random
images with much different content, as shown in Fig. 4. For
example, we may use handwriting images, frames in TV

drama series, or medical images as noise to replace frames
when dealing with street-view sequences. Even a random
tensor can be used as one type of noises. We attempt to use
three kinds of noises. They are described in Section IV-Cb.
The target frame is not replaced, so we can still use its
ground-truth label. In addition, due to the structural charac-
teristics of our model, the feature maps from context frames
are used solely for enhancing the target frame’s feature map,
and the output from the model is the segmentation result for
the target frame. This means that there is no need to generate,
e.g., pseudo labels for noises, which were required in [19],
[31]. Therefore, the noisy training strategy requires no extra
computation or annotation.

To add noises, each context frame (i.e., s1, . . . , sT−1) is
randomly replaced with a noise frame at a probability of p,
which is set to 50% in our implementation. We also limit
the number of frames to be replaced to half of the sequence
length (i.e., T/2). This means that there are no more than
two replaced frames in our experiment (We set T as 4 in this
paper).

IV. EXPERIMENTS
To evaluate our model trained with the noisy training strat-
egy, we used two video semantic segmentation datasets
in completely different domains, i.e., Cityscapes [33] and
EndoVis2018 [34]. Frames in one dataset were used as noise
when training our model for the other dataset, whereas labels
in the dataset used as noise were not used during this pro-
cess. We adopted data augmentation including rotation (with
angles between−10 and 10), random horizontal flipping, and
so on, in all the experiments. When training with temporal
data, all the input frames in one sequence were calculated
by the same data augmentation. The mean of class-wise
intersection over union (mean IoU) is used to evaluate the
performance.

We used cross entropy as the loss function and Adam [35]
as optimizer with an initial learning rate of 10−4; this rate
was decreased by a factor of 10 halfway through the training
process. The training was terminated after 40 epochs for
Cityscapes and 30 epochs for EndoVis2018. The length T of
the sequence was set to 4, and the number of sequences N
was also set to 4. The hidden state h0 and cell c0 were zero
initialized. The model was implemented in the Pytorch [36]
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TABLE 1. Comparison among ours and state-of-the-art methods on the Cityscapes and EndoVis datasets in mIoU (%). The best performance for each
configuration is highlighted in bold.

framework and we ran the model on a Tesla V100 GPU with
32 GB memory.

A. CITYSCAPES DATASET
The Cityscapes dataset contains a total of 5,000 video
sequences of high-resolution frames (2, 048 × 1, 024), and
it is partitioned into training, validation, and test sets with
2,975, 500, and 1,525 sequences, respectively. The videos
were captured in different weather conditions across 50 dif-
ferent cities in Germany and Switzerland. There are 30 cate-
gories in total in the Cityscapes dataset; however, following
the previous research, only 19 of them were used.

We tried with different lengths of the frame interval and
found that we can achieve the best performance with an
interval of 0.12s (more details can be found in Section IV-Ca,
which was adopted for all methods. Our model needs multi-
ple video sequences as input for batch normalization. This
increases the number of frames handled in one iteration.
Because of the limited GPU memory, we resized the original
images into 1024 × 512 for the PSPNet-based model and
applied a sliding window with a size of 448 × 448. This is
a commonly used strategy for evaluation [10], [15]. For the
ICNet-based model, we maintained the original resolution
and adopted a sliding window with a size of 512 × 1024.
We first trained the network without the ConvLSTM module
for 40 epochs. After that, the whole network was trained for
another 40 epochs. The results of the best-performing model
on the validation set were submitted to the Cityscapes test
server.

The results are summarized in Table 1. For comparison,
we evaluated FCN-8s [23], DeepLab-v3 [3], and DANet
[4] as our baselines, all of which were re-implemented and
trained with the same configuration. This resulted in different
scores than those in the original papers. We applied a smaller
input size due to the GPU memory limitation, which causes
a decrease in prediction accuracy. We also report the results

presented in previous studies that used temporal methods. All
the Noisy-LSTM models achieved a better performance than
baseline models. The PSPNet-based Noisy-LSTMmodel got
improvements of 1.4% on the validation set and 1.8% on the
test set. The ICNet-based Noisy-LSTM model got improve-
ments of 2.5% on the validation set and 2.1% on the test set.
The noisy training strategy also improved the performance
on both the validation and test sets compared to the mod-
els without noisy training. We also show some qualitative
results from the validation set in Fig. 5. Each column shows
an input frame, its ground truth label, and predictions by
some models. All the notable differences are highlighted in
orange boxes. This shows that Noisy-LSTM can generate
accurate predictions on some challenging objects, for exam-
ple, the human body in the first column (marked in red),
the wall in the second column, and the bus in the third col-
umn. Actually, all these objects exist in the previous frames.
We can see that Noisy-LSTM can obtain information from
these frames andmitigate incorrect segmentation. In this case,
the noisy training strategy can help the network obtain these
kinds of temporal information efficiently.

B. EndoVis2018 DATASET
We also evaluated Noisy-LSTM and compared it with
other methods on the EndoVis2018 dataset [34]. The
EndoVis2018 dataset includes 19 sequences, which are split
into 15 and 4 sequences for training and testing, respectively.
We selected two sequences (sequences #5 and #10) from the
training set and used them as the validation set. We resized
the image to 520 × 416 for the PSPNet-based model (the
ICNet-based model used the original resolution as input)
during training and recovered it in its original resolution
for evaluation. Each pixel in the frames was annotated with
one of 11 class labels, including organ tissues and surgical
instruments.
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FIGURE 5. Example segmentation results on the Cityscapes dataset using the PSPNet-based models. Our models with
the noisy training strategy are able to alleviate incorrect segmentation by favorably obtaining information from the
previous frames. Notable differences are marked with orange boxes.

FIGURE 6. Example segmentation for the EndoVis2018 dataset using the PSPNet-based models. The Noisy-LSTM model
obtains more accurate segmentation results on the body tissues in the first row, and the surgical instruments in
the second row.

Table 1 shows that the Noisy-LSTM model can also out-
perform other methods on this dataset. Some examples are
presented in Fig. 6. Similar to the Cityscapes dataset, on the
EndoVis2018 dataset, our Noisy-LSTM provides accurate
segmentation results even for small regions.

C. EFFECTS OF THE HYPERPARAMETERS
There are some important hyper-parameters related to the
performance. This section gives experimental results to

demonstrate the effects of the frame interval, the number of
input sequences, and noise types over the Cityscapes dataset’s
validation set.

1) FRAME INTERVAL
For Cityscapes, each video sequence has 30 frames at
16.7 fps, and the 20th frame is annotated. The Noisy-LSTM
model contextualizes the target frame with T − 1 precedence
frames, and context frames can be chosen arbitrarily. In our
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implementation, we resampled the context frames from the
video sequence, i.e., there are a constant number of frames
between st and st+1. We evaluate the cases when the context
frames are sampled every 1, 2, and 5 frames, which corre-
spond to frame intervals of 0.12s, 0.18s, and 0.36s, respec-
tively. Table 2 shows the results of the proposedmodel with or
without noisy training using different frame intervals (using
unrelated frames as noise). The best result is obtained with
an interval of 0.12s and with a noisy training strategy. This
shows that a longer interval leads to a decrease in the segmen-
tation performance. Additionally, for all temporal intervals,
noisy training methods always show correction capability.
This fact proves that the noisy training strategy enhances the
temporal awareness of the deep learning models and provides
them with an improved ability to extract useful information
from previous frames.

TABLE 2. The performance (in mIoU) with different intervals between the
input frames, evaluated with PSPNet-based model on the Cityscapes
validation set.

2) TYPES AND PROBABILITIES OF NOISE
Noisy training is the key to this work. Thus, we evaluate
the effects of different types and intensities of noises with
the PSPNet-based model. We demonstrate the experiment
results in Table 3. We add three different types of noises:
unrelated frames, random tensors, and extreme augmentation
(distortion or Gaussian blur). They are described as follows:

TABLE 3. The performance (in mIoU) under different noise types and
probability p. PSPNet-based models are evaluated on the Cityscapes
validation set.

a: UNRELATED FRAME
This includes images in a totally different domain, extracted
from another dataset. For Cityscapes street view images,
we utilize medical images from EndoVis2018 as noise
frames. When adding noises, a context frame is replaced by
an unrelated frame.

b: RANDOM TENSOR
A tensor is initialized with Gaussian noises in the same shape
as the input frame. When adding noises, a context frame is
replaced by the random tensor.

c: EXTREME AUGMENTATION
Extreme augmentation is a strong image modification that
can spoil the original image structure. We adopt distor-
tion (piece-wise affine transformation) and Gaussian blur
in this paper. When adding noises, instead of replac-
ing a context frame, we apply this extreme augmentation
to it.

The noise frame is randomly selected from the context
frames without replacement with probability p (mentioned
in Section III-C). In this experiment, we used 25%, 50%,
75%, and 100% for p. 100% means two of the previous
context frames are processed with a noisy strategy (we set
the maximum number of frames to be processed as T/2,
and T is set as 4). The result shows that both unrelated
frames and random initialization can improve the predic-
tion accuracy of the model, while extreme augmentation
did not work well. When the unrelated frame is used as
noise, p = 50% gives the best performance, although the
difference is marginal. We can see the same tendency for
random tensors, while p = 100% significantly degrades the
performance.

3) NUMBER OF INPUT SEQUENCES IN A BATCH
This parameter is critical for BN and thus can affect the per-
formance of the method.We evaluate the effect of the number
of sequences on both PSPNet-based and ICNet-based Noisy-
LSTM models. We train the models with different numbers
of sequences on single or multiple GPUs, and the results
are shown in Table 4. We can see that for the PSPNet-based
Noisy-LSTM, a larger batch size leads to a better prediction
performance. We also train our model with a batch size larger
than 8. However, the performance is not noticeably improved
while bringing more training costs. When the batch is set
to 1, a great performance drop occurs. For the ICNet-based
Noisy-LSTM, improving the batch size can slightly improve
the performance. The experimental results prove the necessity
of BN for training.

TABLE 4. The performance (in mIoU) for different batch sizes with one or
two GPUs over the Cityscapes validation set.

D. ROBUSTNESS TO NOISES
For video tasks, some disturbances (blurring, motion dis-
tortion, etc.) may cause inconsistency in temporal features.
In this case, the prediction of the target frame can be affected,
and the performance of the model may decrease. Our noisy
training strategy can mitigate this problem and generate
accurate segmentation. In Table 5, we show the robust-
ness of our models with our training strategy for both the
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FIGURE 7. Visualization of predicted labels for original input frames (the first row) and noisy frames (the second row) when trained
without (the fourth and fifth columns) and with (the sixth and seventh columns) our noisy training strategy. Piece-wise affine
transformation and/or Gaussian blur is applied. Some parts of frames (marked as are magnified.

ICNet-based and PSPNet-based models on the validation set
of the Cityscapes dataset. Wemanually introduce such distur-
bances to the context frames in the validation set. We apply
two kinds of noises (Gaussian blur and distortion) and add
them to the first and third frames of the input sequence. All
the models trained with the noisy training strategy adopted
unrelated frames as noises.

When the validation sequences are not altered, the models
with our strategy give better results than normal training.
When the sequences are altered, the model trained normally
experiences a drop in prediction accuracy. However, the pre-
diction accuracy of the model with noisy training almost does
not change. These results demonstrate the robustness of our

noisy training strategy to disturbances that cannot be well
handled by the original ConvLSTM models.

The noisy images are shown in Fig. 7. We find that the
models without noisy training are influenced by noisy inputs,
while the noisy training strategy can lessen this performance
degradation. We also provide some example results in Fig. 7
(some significant differences are highlighted with magnifi-
cation). All these results are generated by the PSPNet-based
model. The target frame is the last frame of the four con-
tinuous frames in the input sequence and the third frame is
replaced with noises. We used distortion, Gaussian blurring,
and both distortion and Gaussian blurring from the first to the
third columns, respectively.
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TABLE 5. The performance (in mIoU) under different type of noises to
evaluate the robustness to noises in target frames.

Without noisy training, the replaced frames cause incorrect
predictions. For example, in the red circle in the first column
of Fig. 7, the area of building (gray) in ground truth frame
is partly misclassified as wall (slate blue). The end of the
sidewalk (fuchsia) also failed. We think these errors are due
to the distortion of object regions in the previous frame that
are inconsistent with the target frame. In contrast, the models
with noisy training were only slightly affected. Similarly,
in the second column, Gaussian blur obfuscates the outlines
of small objects and even blends them into the background.
For noisy target frames, the models without noisy train-
ing yielded incomplete predictions of the signboard region
(yellow), while the models with noisy training have better
performances.

V. CONCLUSION
In this paper, we propose a model named Noisy-LSTM,
which is trainable in an end-to-end manner, for semantic
video segmentation. Noisy-LSTM is capable of utilizing
the temporal dependencies in video sequences to improve
its segmentation performance. It employs a single convo-
lutional LSTM module to encode spatio-temporal features.
In addition, we propose the noisy training strategy, which
introduces noises during training to avoid excessive reliance
on precedence frames; thus, this technique is expected to
improve the feature extraction ability of our model. Our
experimental results demonstrate that this strategy further
improves the performance without extra data annotations or
computational costs, achieving state-of-the-art performances
on the Cityscapes and EndoVis2018 datasets. Our future plan
is to further explore the type of noises and the way to inject
noises in model training. We also plan to apply this method to
medical surgery video for accurate semantic analysis, which
often suffers from low image quality in some frames due to
issues like appliance reflection, etc.
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