
Received December 30, 2020, accepted March 15, 2021, date of publication March 22, 2021, date of current version April 8, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3068008

Service Family Design Optimization Considering
a Multi-Server Queue
ZHUOTONG MIAO 1, XINGGANG LUO 1,2, ZHONGLIANG ZHANG 2, AND QING ZHOU2
1College of Information Science and Engineering, Northeastern University, Shenyang 110004, China
2Management School, Hangzhou Dianzi University, Hangzhou 310018, China

Corresponding author: Xinggang Luo (xgluo@mail.neu.edu.cn)

This work was supported by the National Natural Science Foundation of China (NSFC) Project under Grant 71831006, Grant 71801065,
Grant 71771070, and Grant 71932005.

ABSTRACT Service firms not only need to develop differentiated services to meet the requirements of
customers with various preferences, but also have to improve service flexibility and the efficiency of the
service system. A service family is a strategy by which different modules are configured, based on the service
platform, to create a variety of differentiated services. This research considered both the effect of multi-server
queues and the heterogeneous service processes in service family design problems to establish a framework
of service modularization from three different perspectives—process, activity, and component. To optimize
the service family design, a nonlinear integer-programming model was established to determine the optimal
configurations of modules and prices for the service family and the optimal number of servers. The model
is transformed into a linear form, and thus, can be solved using a commercial optimization software for
small-scale problems. An improved genetic algorithm integrated with a neighborhood search was further
developed to solve large-scale problems. The correctness of the linearized model and the effectiveness of the
meta-heuristic algorithm were demonstrated through case studies and numerical experiments.

INDEX TERMS Linearization, multi-sever queue, optimization, service family design.

I. INTRODUCTION
In recent years, the contribution of service industries to the
world economy has gradually increased; the service industry
in the USA accounts for over 80% of the country’s gross
domestic product [1]. Faced with diversified customer needs
and a competitive market environment, service firms not only
need to develop differentiated service products, but also have
to improve service flexibility, reduce service response time,
and improve the efficiency of their service systems [2]. These
goals can be achieved by applying service family, which is
a new technology for managing diversified service products
that is receiving increasing attention.

Services are special types of intangible products, and
to improve flexibility and efficiency, it is necessary to
establish a convenient manner of applying relevant the-
ories and methods for product development and design.
Fortunately, there are well-developed theories on prod-
uct families that aim to configure and generate sets of
similar products to improve product flexibility and thus
meet the requirements of various market segments—through

The associate editor coordinating the review of this manuscript and

approving it for publication was Qingchao Jiang .

shared product features, components, or substructures—
based on their methodology of modular design [2], [3].
Similarly, there are numerous research papers on product
families [4].

Considering service characteristics, such as intangibility
and perishability, Moon et al. [5] introduced the concept of a
service family. A service family is established by configuring
different functional modules on a service platform, which
consists of processes, activities, objects, or features, to create
a variety of differentiated services and thus enhance customer
value by satisfying diversified requirements [6]. There are
various service families in practice. For instance, as shown
in Fig. 1, a car-rental company offers a service family consist-
ing of four typical services: low-priced, economic, business,
and luxury services. Each service comprises a package of
service components (e.g., vehicle types and insurance levels)
selected from the service modules. As required elements,
vehicle selection and auto insurance are common functional
modules, while the global position system, traveling data
recorder (TDA), and personal accident insurance (PAI) are
variant functional modules. Other service industries, such as
tourism, software, logistics, and finance also provide service
families that cater to market niches.

51432 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-0375-1518
https://orcid.org/0000-0002-7689-8449
https://orcid.org/0000-0001-6555-7908
https://orcid.org/0000-0002-3402-9018


Z. Miao et al.: Service Family Design Optimization Considering a Multi-Server Queue

FIGURE 1. Example of a platform-based service family.

Scholars have proposed some theories and methods relat-
ing to service family design [7]–[9]; however, they did not
consider the effect of the average waiting time in multi-server
queues on customer purchase decisions. In fact, the server is
one of the most important features of service products and
an essential part of the service system. As production and
consumption of services are simultaneous, each server can
only receive the next customer after completing the service
for the current customer. In the service system, queues are
formed when the number of customer arrivals exceeds the
servers’ capacity. Queuing is common in service industries,
and the waiting time has a negative effect on customers’
perceptions and may even lead to loss of customers. The
more the servers are in a service system, the less is the
average waiting time. However, space or budget constraints
limit the number of servers, and firms need to make a reason-
able trade-off between reducing waiting time and controlling
costs. Therefore, it is necessary to consider the negative
impact of queue waiting time on service family design, which
can then more accurately express customer preferences, help
companies optimize the allocation of service resources, and
ensure service quality while maximizing profit.

Moreover, existing methods for service family design
do not consider heterogeneous service processes. Service
is usually viewed as a process that interacts with cus-
tomers [10], and its functions are accomplished by perform-
ing a series of service activities in a predetermined order [11].
To avoid homogeneous market competition and increase rev-
enue, many service firms have designed differentiated service
processes for their service functions. For example, travel

agencies provide tour-service processes for elderly customers
who need guidance throughout their visits, while also provid-
ing free inter-city transportation and accommodation services
that have simplified service processes. Therefore, service
functions should not be limited to homogeneous service pro-
cesses, and, to improve service competitiveness, it is nec-
essary to consider heterogeneous service processes in the
service family design.

In this study, we considered both the effect of multi-
server queues and heterogeneous service processes in the
service family design problem and established a nonlin-
ear integer-programming model to maximize firms’ profits.
The model was then transformed into a linear form that
can be solved using a commercial optimization soft-
ware for small-scale problems. An improved genetic algo-
rithm, integrated with a neighborhood search, was further
developed to solve large-scale problems. The correct-
ness of the linearized model and the effectiveness of the
meta-heuristic algorithm were demonstrated through case
studies. Numerical experiments for the sensitivity analy-
sis of various parameters were performed, the character-
istics of the mathematical models were analyzed, and we
obtained some notable managerial insights. Additionally,
numerical experiments with different problem scales were
performed to verify the effectiveness of the proposed
approach. The main contributions of this study are summa-
rized as follows:

1. To reflect real service scenarios, the average waiting
time in a service queue is considered in the service family
design optimization model. Linear functions are used in the
mathematical model to formulate different sensitivity levels
of market segments to waiting times, which describe cus-
tomers’ purchase behaviors better.

2. Based on the theory of product family design, we pro-
posed some new concepts for the service family, including the
development of service modularization from three different
perspectives—process, activity, and component. Therefore,
the proposedmodel has better generalizability in representing
complex services.

3. Systematic methods for solving the optimization model
for the service family design were proposed. The estab-
lished mathematical model was transformed into an equiva-
lent linear model by introducing intermediate variables and
related constraints, thus obtaining the global optimal solu-
tion for the small-scale problem. A meta-heuristic algorithm
was developed to solve large-scale problems. Some notable
management insights were also obtained by analyzing the
optimization model through numerical experiments.

The remainder of this paper is organized as follows.
In Section 2, we review the related literature on product and
service development. In Section 3, we describe the optimiza-
tion problem and formulation of the mathematical model.
In Section 4, we propose an improved genetic algorithm
combined with a neighborhood search to solve large-scale
problems. In Section 5, we use a car rental service as an
industrial case study to explain the proposed method of

VOLUME 9, 2021 51433



Z. Miao et al.: Service Family Design Optimization Considering a Multi-Server Queue

service family design and evaluate the model and proposed
algorithm. Section 6 concludes the study.

II. LITERATURE REVIEW
A. PRODUCT FAMILY DESIGN
A product family is a group of related products (i.e., product
variants) derived from a product platform to satisfy a vari-
ety of market niches [2]. It can be regarded as an enabling
technology for mass customization and has many advantages,
such as increased flexibility, reduced development cost, and
improved ability to upgrade products [12]. Shared structures
and product technologies form the platform of a product
family [3], and a final product is assembled from separate,
independent modules [13]; for instance, Ford motor company
launches economical, comfortable, and sporty versions of its
Focus cars with diversified engine powers, driving assistance
systems, and seat technologies and materials. From the view-
point of marketing operations, a product family design aims
to determine the optimal settings of product variant attributes
in a product family, with the objective of minimizing perfor-
mance loss or maximizing expected market profit [2]. Many
scholars have contributed to the literature on product family
design. A discussion and classification of this research can be
found in the survey study by Jiao et al. [4].
Due to the similarity between products and services, ser-

vices are naturally considered in product design problems
in creating new customer value. Palsule-Desai et al. [14]
created product varieties using add-on services while main-
taining the identical functionality of the core product, and
the service was viewed as an attribute of the product (e.g.,
delivery and repair services). In addition, the manufacturing
and service industries jointly create a system to achieve sus-
tainable growth and profitability. Song et al. [15] modular-
ized a product-extension service based on a modified service
blueprint and fuzzy graph, and demonstrated the method
through an exemplified modular design of a compressor rotor
service. Jiao et al. [16] outlined an approach connecting cus-
tomer needs to high-value-added products and services to bal-
ance customer satisfaction and cost savings. However, these
studies focused more on product design and development
while considering services only from the competitiveness
perspective.

B. SERVICE MODULARIZATION
Modularization theory originated from Simon’s complex sys-
tem decomposition theory [17] and involves deconstructing
an object into its components and recombining them into
customizable alternatives. It has been widely used in product
design [18]; Sundbo [19] first extended the modularization
theory to service production for service customization and
personalization. In service modularization, it is important to
consider the similarities and differences between a service
and a product; a product is assembled using tangible com-
ponents, while a service, due to its intangibility, is viewed
as a ‘‘soft’’ activity. A service is produced and consumed

simultaneously and can also be a process [10]. Hence, cus-
tomers need to interact with service providers and use the
resources in a service process. In addition, customizations
in services can be combinational, and a unique service is
provided by combining a set of service modules (service
contents and processes) [10].

1) SERVICE MODULES
A service module is a system of components that offers
well-defined functionality via a precisely described interface
and with which a modular service is composed, tailored,
customized, and personalized [20]. In the service context,
a modular platform can be created using elements or process
modules of activities, and service modules can represent one
or several service elements offering similar service character-
istics [21]; a process module is defined as a standardized and
indivisible process step, and it can either refer to information
processing or physical activities [22].

In particular, identifying the service modules of a service
system provides a basis for the effective composition of
customer-specific configurations [20]; hence, by analyzing
customer requirements, some scholars have explored how to
decompose a service into modules based on service modu-
larity. The existing product modularization methods in the
service field are as follows. Simon [17] defined service archi-
tecture as the manner in which service system functionalities
are decomposed into individual functional elements. Tay and
Chen [23] mapped service activities to service modules using
a K-means clustering algorithm; the activities of each service
module were segregated into common and specific services
using an unweighted pair group method with an arithmetic
mean. Geum et al. [24] employed an interrelationship-based
approach to identify the house of quality structure in qual-
ity function deployment for service modularization. Dör-
becker et al. [25] decomposed the requirements of a complex
healthcare system into service elements using the multiple
domainmatrix method for modularization of complex service
systems.

2) SERVICE PROCESS MODULARITY
Tuunanen and Cassab [26] defined service process mod-
ularization as the systematic combination of the service
encounter processes known to both customers and firms
to generate new and customizable service packages with
increased customer utility. Hence, standardized processes
are ordered first; service resources and activities are then
divided into sub-processes to achieve mass customization.
Feitzinger and Lee [27] proposed a method for decom-
posing the manufacturing service process into separate
sub-processes—based on process postponement—process
sequence adjustment and process standardization, to increase
service flexibility inmass customizations. Furthermore, some
process modeling technologies, such as the Petri net and
object-oriented modeling methodology, can help arrange pro-
cess modularization activities in an orderly manner [28].

51434 VOLUME 9, 2021



Z. Miao et al.: Service Family Design Optimization Considering a Multi-Server Queue

In addition, some scholars have explored the impact of
service process modularization on service system perfor-
mance. Tuunanen and Cassab [26] considered service process
modularization as a way to leverage existing capabilities
and investigated customer responses to modular reuse and
modular variation in service encounter processes for new
offerings. Carlborg and Kindström [29] explored modulariza-
tion from a strategic perspective by distinguishing between
different service types, presented key issues for service mod-
ularization, and contributed insights regarding the balance
between efficiency and customization in service development
and deployment. Silander et al. [30] explored an outpatient
care unit in a university hospital to determine which enablers,
constraints, and outcomes are related to modularization in
advanced healthcare contexts.

3) SERVICE ORGANIZATION MODULARITY
For a service system, organizational modularity is the manner
in which resources are used in a flexible manner to enable the
use of the core capabilities of a service producer [21]. Mey-
era and Detoreb [31] proposed a platform-based approach
to developing new services based on product family meth-
ods and platform designs, organized differently to facili-
tate the development and deployment of capabilities for an
international reinsurer company. Meyer et al. [32] improved
the platform for patient care services to explore differ-
ent inpatient and outpatient facilities through examining
management departments and other managerial personnel.
De Blok et al. [33] provided insight into how care organi-
zations can set up their service packages to simultaneously
allow for customization and economies of scale in the provi-
sion of care services to independently living elderly. Avlonitis
and Hsuan [34] put forward new insights for the organiza-
tional structure of service firms by empirically exploring,
and theoretically advancing, the intersection of modularity
and service design for two travel services. Chou et al. [35]
explored different structures of organizational deployment
and different process sequences, according to different ser-
vice contents.

C. SERVICE FAMILY DESIGN
Ramesh et al. [36] stated that service families are consis-
tent with product families, in that, ‘‘a service family is a
set of services that share certain common aspects and have
predicted variabilities’’; they proposed a framework for a
traceability-based knowledge management system to support
the design, customization, and delivery of information prod-
ucts and e-service families. However, considering the differ-
ences between services and products is vital to developing
service modularity. Moon et al. [5] stated that ‘‘a service
family is a set of services based on a service platform that
facilitates mass customization by promoting customer value
and providing a variety of cost-effective services for different
market segments.’’. Additionally, ‘‘a service platform is a
common basis that consists of processes, activities, objects,
and/or features that are shared and remain constant from

service to service, within a given service family.’’ Other
scholars explored potential module sharing and determined
which service modules used in the platform provided the
highest benefit, using a coalitional game [6], [9], Bayesian
game [5], or data-mining techniques [7]. Lo and Chiu [8]
presented a new approach that simultaneously integrates ser-
vice design, service quality measurement, and service family
planning for home service; concretely, service concepts are
generated based on SERVQUAL metrics, and an affinity dia-
gram is prepared to devise service families. Tay andChen [23]
proposed a modeling method for service families that formu-
lates service activities into service function modules using a
K-means clustering method and estimates the cost of those
service families by combining activity-based cost estimations
and functional modularizations.

D. ANALYSIS OF THE OPTIMIZATION METHODS
Gauss et al. [37] classified studies on product family design in
the past 20 years and reviewed the methods, algorithms, and
technologies used. From the optimization method perspec-
tive, the literature on product family design can be divided
into two groups: the first group applies exact algorithms and
the second applies heuristic algorithms [38].

Exact algorithms aim to find global optimal solutions for
product family design problems. Some optimization prob-
lems of product family design can be formulated as 0-1
integer linear programming models, which have relatively
simple mathematical forms. Several exact algorithms, such
as branch & bound algorithm or cutting plane algorithm,
have been proposed for solving 0-1 integer linear program-
ming models [39]. These classical algorithms have been
realized in many commercial software packages, such as
ILOG CPLEX, GUROBI, and LINGO. Many scholars are
still working on finding the exact solution. For example,
Mayer and Steinhardt [40] considered a budget-constrained
product line pricing problem and proposed a new branch
& bound algorithm, which can solve larger scale problems
compared to CPLEX. Scholars have also developed branch-
and-price algorithm [41] and branch-and-cut algorithm [42].
Akçay et al. [43] established a dynamic pricing model
for multiple perishable products and developed an exact
algorithm based on dynamic programming. Recently,
Bertsimas and Mišiv̌ [44] proposed an efficient exact algo-
rithm based on benders decomposition.

Heuristic algorithms aim at obtaining near optimal solu-
tions in product family design, which is regarded as the best
available strategy for large-scale cases. Belloni et al. [45]
classified several heuristic algorithms from three aspects:
1) methods operating in attribute space, such as, genetic
algorithm [12] and simulated annealing [46]; 2) methods
operating in product space, such as, greedy heuristic [47] and
divide-and-conquer heuristic [48], [49]; 3) methods evaluat-
ing partially formed products, including beam search heuris-
tic [50] and dynamic programming heuristic [51], [52]. Some
scholars developed heuristic algorithms for new optimization
problems. Tsafarakis et al. [53] developed a fuzzy, self-tuning

VOLUME 9, 2021 51435



Z. Miao et al.: Service Family Design Optimization Considering a Multi-Server Queue

differential evolution algorithm to explore the best setting of
parameters through statistical analysis. Wu and Chen [54]
studied the influence of digital information product piracy
on controlling a product version, established a nonlinear pro-
gramming model through Lagrangean relaxation and subgra-
dient methods, and combined heuristics to obtain the optimal
solution for the original problem.

However, none of the existing research studies related to
service family design considered multi-server queues and
heterogeneous service processes, which are important char-
acteristics of service products and systems.

III. PROBLEM DESCRIPTION AND MODELING
A. DEFINITIONS
Moon et al. [6] put forward the definition of a module-based
service family, in which, service modules are categorized
into functional and process levels. However, their process
module only provides cost information for functional design,
and it cannot be used for designing differentiated services.
To increase the flexibility of customized services, this study
defines a service family and service platform from mul-
tiple module dimensions, including process, activity, and
component.

A service platform with a modular structure consists of
a number of functional service modules, including com-
mon service modules—based on basic functions—that are
required to be selected in service, as well as variant ser-
vice modules that are optional and can be used for increas-
ing the variety of services. A functional service module is
represented by a replaceable process set (RPS), which is a
set of heterogeneous service processes that implement the
functional service module; each RPS consists of a number
of different service activity modules in a chronological order.
A service activity module is an executable and reusable ser-
vice process step and is represented by a replaceable com-
ponent set (RCS), which is a set of differentiated service
components that meet various customer requirements.

A service family, derived from a service platform, contains
a number of differentiated services. A service in a service
family is represented by the selected service processes from
the RPSs and the selected components from the RCSs of
service activities. Fig. 2 shows an example of service family.
In a service family design, the RPS and RCS can be used for
creating differentiated service process modules and service
activities, respectively.

Compared with a product family, one of the most important
features of a service family is that customers may wait in line
at some of the activity modules of a service process due to
limited resources. The key activity module is defined as the
most congested activity of a service, and each component of
the corresponding RCS is a kind of server (or service desk
with a queue).

For instance, Fig. 3 shows one common functional module
(rehabilitation) and one variant functional module (physical
examination). Rehabilitation is represented by an RPS with

FIGURE 2. Configuration of a service family.

two elements: Process 11 and Process 12, while physical
examination is represented by an RPS with three elements:
Process 21, Process 22, and Process 23. Medical report is
a reusable service activity module that appears in Processes
11, 12, 22, and 23. There are three RCSs—Appointment
(Family doctor/Expert), Medical treatment (Therapy A/B),
and Examinations for each treatment cycle (Partial/Full). Due
to the combination effect of the RCSs, Processes 22 and
23 have two variants, and Processes 11 and 12 have four
variants with different configuration of RCSs.

B. DESCRIPTION OF THE OPTIMIZATION PROBLEM
Take for instance, a service firm planning to develop a ser-
vice family for N market segments, based on an established
service platform that contains I functional service modules,
including common and variant functional modules. Partic-
ularly, a dummy process is added into the RPS associated
with the variant functional module, so that logically, all func-
tional service modules can be regarded as common functional
modules. The RPS associated with the i-th (i = 1, 2, . . . , I )
functional service module has Ji activity modules and con-
tains Ki replaceable service processes, in which the k-th
(k = 1, 2, . . . ,Ki) service process is composed of part or all
of Ji activity modules. The selection relationships between
processes and activity modules are described as a binary
matrix hikj, where hikj = 1 if the k-th service process of the i-
th functional service module selects the j-th (j = 1, 2, . . . , Ji)
activity module. There are Lij components in the RCS associ-
ated with the j-th activity module of the i-th functional service
module.

It is assumed that the j0-th activity module in the i0-th RPS
is the key activity module and each component in the RCS
of the key activity module is a type of server. For instance,
in a security check service, there are a number of common
security doors for ordinary passengers and a few special secu-
rity doors for VIP passengers. The service family contains S
services, each of which corresponds to one type of server for
the key activitymodule. The quality level of a server limits the
module level of selected processes, θPik , and the module level
of selected components, θLijl , which are ordered by the costs of

51436 VOLUME 9, 2021



Z. Miao et al.: Service Family Design Optimization Considering a Multi-Server Queue

FIGURE 3. Example of the related definitions.

FIGURE 4. Description of the optimization problem.

all processes or components in an RPS and RCS, respectively.
In terms of the customers’ purchase behavior, a customer
only chooses the service with the highest and non-negative
utility surplus, and the waiting time at the server has different
degrees of negative connotations for each market segment.
Suppose that the average number of customers arriving at the
d-th type of servers per unit time is λd and the average service
duration rate is µd ; customers are allowed to wait when the
service intensity ρ ∈ (0, 1) and the remaining number of
servers is equal to 0. The average waiting time for the q-th
level of the d-th kind of servers is tdq

(
λd , µd ,QSdq

)
, which

can be computed based on queuing theory.
As shown in Fig. 4, the optimization problem in this study

involves achieving the maximum profit by reasonably config-
uring the services in a service family, while considering the
average waiting time in the multi-server queue. We primarily
address the following three issues: (1) How to select the
optimal processes and components for both the RPSs and
RCSs of the service family. (2) How to choose the number
of servers required to reach a compromise between reduc-
ing costs and satisfying customer requirements. (3) How
to set the appropriate price for each service in the service
family.

C. MODEL FORMULATION
To facilitate the modeling, the following notations are used in
this study:

1) UTILITY
The utility of a product variant can be considered as a linear
function of the part-worth utilities of the configured com-
ponents for the RCSs [12]. Similarly, in the service context,
a customer’s utility of amodular service is the sum of the part-
worth utility, uPnik , of the configured processes for all RPSs
and the part-worth utility, uCnijl , of the configured components
for all RCSs in the processes (as shown in (1)). Particularly,
uPnik represents the customer preference of the process when
disregarding internal components.

Uns =
∑I

i=1

∑Ki

k=1
ysik

(
uPnik +

∑
j∈φi

∑Lij

l=1
xsijluCnijl

)
(1)

In a service, queuing has a negative effect on the utility.
Jain and Bala [55] found that all customers are averse to
long average waiting times and derived a linear disutility
function. Similarly, we presumed that the utility variation is
proportional to the average waiting time, which is related to
the number of servers and average arrival and service rates.
Thus, the utility variation of a service caused by queuing is
formulated as (2).

1Uns = 1un
∑S

d=1
3sd

∑Q

q=1
ηdqtdq (2)

where 3sd describes the one-to-one mapping between the s-
th service and the d-th kind of servers.

2) COST
In product family design, a linear-additive cost model is used
to estimate the product cost, contained variable cost, and
fixed cost [12]. Tay and Chen [23] assumed that a service’s
total cost is equal to the summation of the relevant modular
cost and indirect service activity cost for a service family.
In this research, the service’s variable cost is divided into
the variable costs of the process and activity modules; the
former denotes the material and staff costs related to all
selected activity modules in the configured process, while
the latter is the component cost for the configured activity
modules. The variable cost of the s-th service, Cvar

s , is the
sum of the configured processes’ cost, CP

ik , of all RPSs and
the corresponding components’ cost, CL

ijl , of all RCSs in the

VOLUME 9, 2021 51437



Z. Miao et al.: Service Family Design Optimization Considering a Multi-Server Queue

TABLE 1. Notation.

processes (as shown in (3)).

Cvar
s =

∑I

i=1

∑Ki

k=1
ysik

(
CP
ik +

∑
j∈φi

hikjxsijlCL
ijl

)
(3)

However, the service cost may changewith the service time
due to the instantaneity of the service. After introducing two
parameters,wPik andw

L
ijl , the variable costs of the function and

activity modules can be obtained by (4) and (5), respectively.
Here, if the cost of the k-th process of the i-th RPS is related to
the service time, thenwPik = 1; otherwise, the cost is constant.
The variable unit costs, cLijl and c

P
ik , are estimated by human

experts.

CP
ik = wPikTsc

P
ik + (1− wPik )c

P
ik (4)

CL
ijl = wLijlTsc

L
ijl + (1− wLijl)c

L
ijl (5)

Servers are regarded as a part of the service infrastructure;
however, the cost of servers is a variable cost, as shown
in (6). Although a larger number of servers can decrease the
average waiting time, they have higher procurement costs.
It is necessary that firms make a compromise to reasonably
choose the number of servers and maximize profit.

Cvar
d = cd

Q∑
q=1

ηdqQSdq (6)

3) OPTIMIZATION MODEL
Therefore, a firm’s total profit is the sum of the net profit for
all services minus the variable costs for servers and total fixed
cost (7). The optimization model (Model I) for the service
family design optimization can be established as [Model I],
as shown at the bottom of the next page, where M is a larger
position number.

With respect to the service configuration, constraints (8)
and (9) ensure that only one element is selected for a service
module, and φi = {j|Lij > 1}. For the conjoint analysis
method, when an activity module is not included in a process,
it is regarded as a dummy component. If ysik = 1 and hikj = 0,
then constraints (10–11) can ensure that xsij1 = 1; if ysik = 1
and hikj = 1, then, xsij1 = 0. ϕi contains the indices of RCSs
that are not shared in all processes of the i-th RPS. Servers
work at a service desk for the components of the key activ-
ity module; therefore, constraint (12) confines xsi0j0d = 1.
Constraints (15–17) describe a deterministic customer choice
behavior–customers only purchase the service with the high-
est non-negative utility surplus when ωns = 1; otherwise,
a segment does not choose any services in the service family
and prefers competitive services in the market. Each service
should have a reasonable price level to maximize revenue
(constraint (18)), and service price Psv can be computed by∑V

v=1 γsvpsv. To reduce the average waiting time and control
costs, a particular kind of servers only chooses the optimal
number of servers (constraint (19)). Constraint (20) guaran-
tees that a segment is limited to purchasing a service at most.
Finally, constraint (21) confines decision variables as binary.

In addition, it is assumed that the module levels of pro-
cesses and components are subject to the ordering of servers;
in other words, the configuration of all RPSs or RCSs for a
service should not be higher than the service configuration
with a higher server quality level. For example, JingDongTM

51438 VOLUME 9, 2021



Z. Miao et al.: Service Family Design Optimization Considering a Multi-Server Queue

launched a gentle logistic service for valuable goods, which
has a shorter delivery time and more considerate service than
a basic logistic service. If the server quality level of the s-
th service is not higher than that of the s′-th service, that is,
σss′ = 0, then constraint (13) ensures that the module levels
of the RPSs of the s-th service are subject to those of the s′-th
service. Additionally, Constraint (14) ensures that the levels
of RCSs involved in the service processes of the s-th service
are smaller than those of the s′-th service. If σss′ = 1, then,
constraints (13–14) will have no effect.

Further, each function module has Ki kinds of processes,
and a process contains

∏
j∈R1 hikjLij combinations of com-

ponents; here, R1 = {j ∈ φi| i = i0 , j 6= j0}. Since a
function module only chooses a process, all possible services
are combinations of different elements selected from I sets.
Due to the upper bound of the module level, the number of
possible services is not more than

∏
i∈I

∑
k∈Ki

∏
j∈R1

hikjLij. If σss′ =

0,∀s, s′ = 1, . . . , S, then, the number of possible services is
maximum.

By combining the model linearization approach, we trans-
formed the integer non-linear program model into a linear
model (see Model II of Appendix A) so that the model can be
solved by commercial optimization software packages (e.g.,
LINGO and ILOG CPLEX), and we proved that Model II has
the same optimization result as that of Model I, as shown in
Appendix A.
Theorem 1: Model II has the same optimization result as

that of Model I.
The proof of Theorem 1 is given in Appendix A. Compared

with Model I, the cost of the transformation lies in the inter-
mediate variables and constraints appended to Model II.
Theorem 2: In Model I, if 1un is changed to 1u′n and

the change of 1un does not incur a value change to ωns :
¬ if t ′dq ∈ (max(0, β1), β2), then, Psv is unchanged ­ if
t ′dq ∈ [0, β1] , β1 > 0, then Psv increases; ® if t ′dq ∈
[β2, β3), then Psv decreases; where β1 = 1

1u′n
(U ′ns −

U∗ns + 1un
∑S

d=13sd
∑Q

q=1 ηdqt
∗
dq − 1ps + χn), β2 =

1
1u′n

(U ′ns − U∗ns + 1un
∑S

d=13sd
∑Q

q=1 ηdqt
∗
dq + χn − ψn),

[Model I]

max profit

=

∑S

s=1

∑N

n=1
ωnsN seg

n (
∑V

v=1
γsvpsv −

∑I

i=1

∑Ki

k=1
ysik (CP

ik +
∑

j∈φi
hikjxijlCL

ijl))−
∑S

d=1
cd
∑Q

q=1
ηdqQSdq − c

fix

(7)∑Ki

k=1
ysik = 1, s = 1, 2, . . . , S; i = 1, 2, . . . , I ; (8)∑Lij

l=1
xsijl =1, s = 1, 2, . . . , S; i = 1, 2, . . . , I ; j ∈ φi; (9)

xsij1 ≥ ysik (1− hikj), s = 1, 2, . . . , S; i = 1, 2, . . . , I ; k = 1, 2, . . . ,Ki; j ∈ ϕi; (10)

xsij1 ≤ 1− ysikhikj, s = 1, 2, . . . , S; i = 1, 2, . . . , I ; k = 1, 2, . . . ,Ki; j ∈ ϕi; (11)∑Ki

k=1
ysi0khi0kj0xsi0j0d = 3sd , s = 1, 2, . . . , S; d = 1, 2, . . . , S; (12)∑Ki

k=1
θPikysik ≤ Mσss′ +

∑Ki

k=1
θPikys′ik , s, s′ = 1, 2, . . . , S, s 6= s′; i = 1, 2, . . . , I ; (13)∑Ki

k=1

∑Lij

l=1
ysikhikjxsijlθLijl ≤ M (1−

∑Ki

k=1

∑Lij

l=1
ys′ikhikjxs′ijl + σss′ ·

∑Ki

k=1

∑Lij

l=1
ys′ikhikjxs′ijl)

+

∑Ki

k=1
ys′ikhikjxs′ijlθ

L
ijl, s, s′ = 1, 2, . . . , S, s 6= s′; i = 1, 2, . . . , I ; j ∈ φi; (14)∑S

s=1
ωns(Uns −1Uns −

∑V

v=1
γsvpsv − Uns′ +1Uns′ +

∑V

v=1
γs′vps′v) ≥ 0,

n = 1, . . . ,N ; s′ = 1, . . . , S; s′ 6= s; (15)∑S

s=1
ωns(Uns −1Uns −

∑V

v=1
γsvpsv − rn) ≥ 0, n = 1, . . . ,N ; (16)∑S

s=1
ωns(Uns′ −1Uns′ −

∑V

v=1
γs′vps′v − rn) ≥ Uns′ −1Uns′

−

∑V

v=1
γs′vps′v − rn, n = 1, . . . ,N ; s′ = 1, . . . , S; s′ 6= s; (17)∑V

v=1
γsv = 1, s = 1, .., S; (18)∑Q

q=1
ηdq = 1, d = 1, . . . , S; (19)∑S

s=1
ωns ≤ 1, n = 1, . . . ,N ; (20)

ysik , xsijl, γsv, ηdq, ωns ∈ {0, 1} (21)

VOLUME 9, 2021 51439



Z. Miao et al.: Service Family Design Optimization Considering a Multi-Server Queue

β3 =
U ′ns−rn
1u′n

, χndenotes the maximum surplus utility, and ψn
is the maximum value of the surplus utility except χn, and
ψn ≥ 0.
The proof of Theorem 2 is given in Appendix B. In the real

market, if the arrival rate increases within a certain period,
then, the average waiting time t ′dq increases and t ′dq > t∗dq;
customers’ anxious feelings may also cause 1un to increase.
The service company needs to adjust their selling strategies to
avoid losing customers to other competing services. Accord-
ing to Theorem 2, the company has three strategies for timely
responses to situations: (1) if U ′ns increases, then β1 and β2
may increase so that t ′dq belongs to (β1, β2), and service prices
do not change; the company can provide coupons or extra
services to eliminate or reduce customers’ negative feelings.
(2) If the number of servers increases, then t ′dq decreases,
and service price may increase (t ′dq ∈ (0, β1) , β1 > 0) or
remain unchanged (t ′dq ∈ (β1, β2)). The company can adjust
their prices according to measurable t ′dq or increase servers
as a direct way to manage the situation. (3) If service prices
Psv decreases according to Theorem 2, while the number
of servers remains unchanged, then the company can pro-
vide discount to customers to reduce their negative feelings.
Hence, the service company can respond quickly to some
practical situations to avoid losing customers.

IV. SOLVING ALGORITHMS
The original optimizationmodel (Model I) is a nonlinear inte-
ger programming one, which is difficult to solve. However,
the transformed optimization model (Model II) is equivalent
to Model I, and Model II is a linear 0-1 programming model.
Linear 0-1 programming model can be efficiently solved
using a classic branch and bound algorithm for small-sized
problems and the global optimality of the solution can be
obtained for small-sized problems. However, for large-sized
problems, no algorithm guarantees the global optimality for a
linear 0-1 programmingmodel. Therefore, we proposed using
a commercial optimization software package, supporting the
branch and bound algorithm (e.g., ILOG CPLEX), to solve
Model II for small-sized problems, and we developed an
improved genetic algorithm combined with a neighborhood
search (meta-heuristic algorithm) to obtain the near-optimal
solutions for large-sized problems. The purpose of adding the
neighborhood search is to improve its local search ability. The
main characteristics of the proposed algorithm are described
as follows.

A. INITIAL POPULATION USING THE
NEIGHBORHOOD SEARCH
The initial population contains Np individuals, and each
integer-coded chromosome consists of four sections: RPS
and RCS configurations, quantity levels of servers, and price
levels. The number of genes is a variable for the RCS con-
figuration, because processes in a RPS include some RCSs
satisfied by hikj = 1. To facilitate encoding, a chromosome
is divided into two parts, κ1 and κ2; for instance, in Fig. 5,

FIGURE 5. An example of the encoded chromosome.

the RPS contains different numbers of RCSs, according to the
matrix hikj. If constraints (13–14) are satisfied, then configu-
ration sections of the RPSs and RCSs for the s-th service are
randomly generated based on the valid boundary of the s′-th
service genes, and if constraints (13) and (14) are not satisfied
for s′ = 1, 2, . . . , S, s′ 6= s, then they are generated in [1,Ki]
and [1, Lij], respectively. The last two sections that represent
the quantity levels of the server and price levels are randomly
generated in [1,Q] and [1,V ], respectively. Fig. 5 shows an
example of an encoded chromosome in which the genes of
each service are represented by a specific color. This exam-
ple describes a service family, including three services with
different module levels of 2 RPSs and 4 RCSs. The process
and component levels of Service 1 are not more than those of
Services 2 or 3. Similarly, the process and component levels
of Service 2 are not more than those of Service 3.

The initial population is composed of individuals with
maximum fitness values, in the neighborhood of randomly
generated individuals, to improve the performance of the
population. The neighborhood of a gene is considered as an
incremental or decremental change in the integer value within
the gene boundary. The neighborhood of an individual is a
set of neighborhoods of all genes. First, the neighborhood of
each gene in κ1 is created by increasing or decreasing one
unit within the boundary of the genes; subsequently, it needs
to generate or erase genes in κ2, according to the relationship
between the process and component, and generated genes
may be changed to create new neighborhoods within the
boundary. In Fig. 6, the second gene in κ1 only increases
one unit because its boundary is equal to 2. Simultaneously,
the second part of κ2 contains RCS4, and it can choose 1 or
2 to create two individuals, as with the third gene. Finally,
the best individual in the neighborhood will replace the initial
individual.

B. SELF-ADAPTIVE GENETIC OPERATORS
To avoid losing the best individual, the optimal individ-
ual of the parent population is incorporated into the child
population, and the individuals whose fitness values are
higher than the average population fitness value are col-
lected into an elite set. The elite individuals are randomly
selected as parents for a crossover operation. Furthermore,
self-adaptive crossover and mutation operators are adopted
to increase the population diversity at the end of the iteration.

51440 VOLUME 9, 2021



Z. Miao et al.: Service Family Design Optimization Considering a Multi-Server Queue

FIGURE 6. An example of the neighborhood of an individual.

The probabilities are computed based on the current popu-
lation maturity, δ, which is equal to the ratio of the average
fitness value of individuals, f̄max—which is greater than or
equal to the population’s average fitness value—to the max-
imum of the population’s fitness value, fmax(22) [39]. As the
population maturity increases, the crossover probability, pc,
decreases (23) and the mutation probability, pm, increases
to maintain the diversity (24), where α and β are control
parameters. The crossover operation is performed based on a
0–1 crossover mask that is generated based on the similarity
of parents, π , and the mask of each gene is equal to 1 if a
random number is larger than π . Individuals can be com-
pletely swapped under the lower similarity condition, while
individuals can reduce invalid operations under the condition
of higher similarity. In the mutation operation, some genes
are randomly modified within the gene boundary.

δ = f̄max
/
fmax (22)

pc = 1
/
exp(α · δ) (23)

pm = 1− exp(−β · δ) (24)

However, individuals easily become infeasible solutions
after crossover and mutation operations, which may violate
the module level or not satisfy the relationship between
processes and components. To modify infeasible solutions,
a chromosome-repairing method is applied to satisfy the
constraints of the module level, that is, the gene of the infea-
sible solution is regenerated within the gene bound that is
determined by the server quality level. Thereafter, the fitness
values of the modified individuals are computed. In addition,
the complexity of the chromosome-repairing algorithm is
O (S (IJc + N )), where Jc = card (φi) , φi = {j|Lij > 1}.
After the genetic operations, the neighborhood search is

used to increase the depth of the algorithm. The algorithm
searches the neighborhood of individuals with different fit-
ness values, from child population to parent population.
It aims at finding better solutions to improve the algorithm’s
ability and control the computation time. The complexity
of the neighborhood search is O(S(IJc + N )(ERcs+Ep&s +
GRcsGRps)), where ERcs is the number of the neighborhood
individuals of κ2, and Ep&s is the number of the neighborhood

individuals of price and server sections of κ1.GRps is the num-
ber of individuals of the neighborhood ϒ1 in the RPS config-
uration section of κ1,GRcs is the number of the neighborhood
individuals of modified κ2, according to each individual in
ϒ1. In the complexity expression, S, I , Jc, and N are related
to the scale of the problem; ERcs,Ep&s,GRcs, and GRps are
indirectly related to the problem.

C. ELITE SELECTION STRATEGY COMBINED WITH
ROULETTE SELECTION
The roulette selection method is commonly used as the selec-
tion operator, and it converts the fitness value into a prob-
ability. Individuals with larger fitness function values have
a greater chance of becoming new individuals in the next
generation; however, the method’s randomness may cause
the loss of the best individual in the current generation.
Therefore, to maintain the diversity of the population, this
research adopts the roulette selection method combined with
elite selection; the combined method is summarized in the
following steps.
Step 1: Save the best individual in the current generation;

the number of the new population pop = 1;
Step 2: If the average fitness value of the parent population

is greater than that of the child population, individuals with
different fitness values in the child and parent populations,
whose fitness values are superior to the average fitness value
of the parent population, are saved to the new population,
and the unselected individuals are saved to temporary array;
then, go to step 3. Otherwise, individuals with different fitness
values in the child and parent populations, whose fitness
values are superior to the average fitness value of the child
population, are selected into the new population, and the
unselected individuals are saved to temporary array; then go
to step 3.
Step 3: If pop < Np, use the roulette selection method

to select the remaining number of new individuals from the
temporary array; otherwise, end;

Due to the characteristics of service products, the combi-
national optimization problem requires several dimensions
to decide the problem scale. Based on the above anal-
ysis, the complexity of the proposed algorithm depends
on the complexity of the neighborhood search, and equals
O(S (IJc + N ) (ERcs+Ep&s + GRcsGRps)).

V. CASE STUDY
To facilitate business pick-ups, sightseeing tours, and con-
ference transports, a rental car company plans to launch a
series of ‘‘half-day car rental’’ services based on four kinds
of cars, classified by prices, and customers are allowed to
wait for a certain period. As shown in Fig. 7, the processes
or components in italics have different levels for creating
customized services. RPS 1–3 belong to common functional
modules, and a dummy process is added into RPS 4 so that,
logically, all functional service modules can be regarded as
common functional modules. For RPS1, customers can rent a
car in three ways: taking and returning the car by themselves,

VOLUME 9, 2021 51441



Z. Miao et al.: Service Family Design Optimization Considering a Multi-Server Queue

FIGURE 7. Module structure of a service family for car rentals.

TABLE 2. L9 orthogonal array and the obtained cluster centers for RPSs.

having the car delivered by a worker, and using services
provided by a professional chauffeur. Further, customers are
allowed to pay for fuel fees through three patterns before
returning the cars in RPS 2, and RPS 3 offers three insurance
options. To satisfy diversified customer segments, different
series of cars work as the server for the components of the
key activity module A12 and there is a need to decide the
number of each kind of car. Finally, four services, involving
four series of cars, are composed from the available processes
and components to realize the maximum profit.

When combining RPSs with RCSs, modular services have
a more flexible structure, so that part-worth utility can be

separately computed using a conjoint analysis. The RPSs
of the case study include 3, 3, 3, and 2 processes, and,
without choosing a variant functional module, is considered
as a dummy process (process41). Similarly, when an activity
module is not included in a process, it is regarded as a dummy
component; therefore, the RCSs of the case include 4, 4, 4,
3, 3, 4, and 4 components. Virtual combinations of RCSs
and RPSs enable a separate conjoint analysis application.
A number of respondents are invited to participate in a market
survey to collect customer preferences for processes and
components. The utility is measured as customer’s willing-
ness to pay for services (in dollars). Then, respondents are
grouped into four clusters using SPSSTM(IBM, version 22).
The clustered, four market segments contain 100, 150, 150,
and 50 thousand customers. The utilities of each segment are
listed on the right columns in Tables 2 and 3.

Utilities are separately decomposed into part-worth util-
ities of processes and components by a least-squares lin-
ear regression. The results are shown in Tables 4 and 5.
In addition, the variable unit cost is estimated by experts. The
competitive services of the company are investigated, and the
largest utility surpluses of the competitive services in the four
market segments are 0.1, 0.3, 0.5, and 0.

For all segments, customers are allowed to queue for
a certain period when unassigned cars are out of stock.

51442 VOLUME 9, 2021



Z. Miao et al.: Service Family Design Optimization Considering a Multi-Server Queue

TABLE 3. L32 orthogonal array and the obtained cluster centers for RCSs.

TABLE 4. Part-worth utilities and variable unit cost ($) of processes.

Based on the parameters of the queue, 10 levels of server
numbers are set for four series of cars (see Table 6 ). The
average customer-arrival rates are 2.5, 3.5, 3.0, and 1.0 per
hour, for the four series of cars, and a customer has to return
the car within five hours. The average service rates of each
series of cars are equal to 0.2, and the service intensity

TABLE 5. Part-worth utilities ($) and variable unit cost ($) of components.

TABLE 6. Average waiting time of service under different car parameters.

ρ = λd/µdQSdq. Table 6 shows tdq(λd , µd ,QSdq), the average
waiting time for cars under the 10-number levels, based on
the M/M/QSdq model of queuing theory. Only if the service
intensity 0 <ρ< 1 is satisfied, will an infinite queue not be
formed.

Based on the data in this case, Model II can be estab-
lished and solved with ILOG CPLEX; the results are shown
in Table 7. The car rental company sells four services for
‘‘poor-rich’’ segments. Service 1 requires customers to take
and return a car for Series 1 from a nearby shop, and they need

VOLUME 9, 2021 51443



Z. Miao et al.: Service Family Design Optimization Considering a Multi-Server Queue

TABLE 7. Optimal solutions.

to refuel before returning the car; the driving process is guar-
anteed by Insurance A, including a $1,000 collision damage
waiver, $5,000 loss damage waiver, and passenger-liability
insurance. Service 2 delivers a car for Series 2 within 3 km
and offers Insurance B, including a $1,000 collision damage
waiver, $5,000 loss damage waiver, $20,000 third-party lia-
bility insurance, and passenger-liability insurance, and cus-
tomers need to pay for the fuel. In contrast, Service 3 provides
a car for Series 3. For Service 4, the company assigns a pro-
fessional chauffeur to drive a car for Series 4 to the specified
place; thus, the customer enjoys the same insurance service
as with Services 2 and 3, and the customer only pays for any
additional fuel over 5 L. The optimal number of cars, that
is, the acceptable compromise between the average waiting
time and cost factor, for Series 1, 2, 3, and 4 are 16, 21,
19, and 7, respectively. To maximize the profit, the prices
of the four services are $41.9, $79.9, $85.9, and $120.9,
respectively. The four segments purchase Services 1, 2, 3,
and 4, respectively. Finally, the car rental company earns
$13.76 million.

Traditionally, a service company first designs the service
configuration of a service family, and thereafter, determines
the numbers of servers, according to the customer-satisfaction
maximization criterion. However, the traditional approach
may result in calculation deviation of the customer choice
behavior in the real market, since the negative utility caused
by waiting time is not considered in the service configuration
process. In this research, the negative utility of service queue
on customers is integrated into the service family design;
thus, a good compromise between cost and customer satis-
faction can be achieved by solving the mathematical model.
The comparison results in Table 7 show that the optimal
service configuration of the traditional approach is consistent
with the proposed approach, but service price and numbers of
servers are different from those of the proposed method. The
total profit of the traditional approach is 12.92∗106, while that
of the proposed approach is 13.76∗106. The results show that
the proposed approach gains more profit for service firms.

To explore the relationship between cost and customer sat-
isfaction, an experiment was performed, in which customer
sensitivity for the first segment market was set as 1.0, 10.0,
20.0, and 30.0, respectively, and the unit cost of the first kind
of servers gradually increased from 20 to 300 thousand in
steps of 20 thousand. From Fig. 8 it can be observed that

FIGURE 8. The relationship between cost and customer satisfactio.

1) the higher the unit cost of the server, the fewer the number
of servers. Additionally, segments with higher sensitivity
need more servers to reduce disutility (see Fig. 8.(a)). 2) In
Fig. 8.(b), the higher the unit cost of the server, the lower the
customer satisfaction. 3) As the unit cost of server gradually
increases by larger steps, the market segments with higher
sensitivity will forgo choosing a service earlier than the other
market segments. In Fig. 8.(c), when1un= 30.0 and the unit
cost is larger than 4e +5, customer satisfaction equals to 0.
The unit cost cs is not sensitive to these parameters since cs
varies with relatively larger step, and it helps to control costs
for the company while ensuring customer satisfaction.

To explore the influence of customer utility sensitivity
on the optimization result, 1un of the n-th segment market
varies from 0 to 5 in steps of 0.2, and the customer utility
sensitivities of other N − 1 segments are fixed. As shown
in Fig. 9(a), the more sensitive customers are regarding wait-
ing time, the less profit the company will earn. As shown in
Fig. 9(b) and (c), when customer utility sensitivity increases,
the company can cater to customer needs for waiting time
and maintain the stability of price by moderately increasing

51444 VOLUME 9, 2021



Z. Miao et al.: Service Family Design Optimization Considering a Multi-Server Queue

TABLE 8. Effect of the average waiting time on the service price.

the number of servers. However, if the unit cost of servers
is relatively high, it is impractical for the company to
increase too many servers, and thus it can improve cus-
tomer satisfaction by reducing prices. In Fig. 9(c), the price
of the 4th service (s4) is adjusted with the fluctua-
tions of the number of servers for increasing customer
satisfaction.

It can be observed that the fluctuations of price in the
fourth market segment in Fig. 9(b) can be used to explain
Theorem 2. The relative parameters of the optimal solutions
are listed on the left columns of Table 8. Further, β1, β2, β3
are computed according to Theorem 2 and listed on the
right columns of table 8. The price of each row is compared
with previous rows, and arrows are used to reflect the result
of price fluctuations. For example, when 1un equals 0.6,
t∈ (0,β1), where β1= 1.059 > 0, then the price will increase.
When 1un= 0.8, t ∈ (β2, β3) and β1< 0, then the price
will decrease. When 1un= 1.0, t ∈ (β1, β2), then the price
remains unchanged. The experiment shows that 1un is rel-
atively sensitive to optimization solution, implying that the
company should cater to customers to avoid losing them.
That is, if the company cannot provide more servers, it may
consider providing coupons at peak time or adopting price
deduction strategies.

In addition to customer sensitivity and the unit cost of
servers, service time may also affect the number of servers.
If service time is short, then the average service rate is high.
In this experiment, service time is adjusted from 0 to 5 in steps
of 0.5; the optimal numbers of servers for the four services
are plotted in Fig. 10. Evidently, as service time increases,
the total profit gradually decreases because more servers are
required for each service. The customer satisfaction for each
optimal solution is presented in Table 9. According to the
variances of customer satisfactions, it can be observed that
customer satisfaction remains relatively stable by sacrificing
a small profit, where the price or the number of servers is
adjusted.

MatlabTMwas used to program the proposedmeta-heuristic
algorithm. The population size of the genetic algorithm was
set as 50, and the results under 100 generations are presented
in Fig. 11. The optimal solution was obtained at the 6th

generation. Model II is also established based on the case
data and the same optimal solution can be obtained by solving
Model II with ILOG CPLEX.

To find better solutions with reasonable control parameters
of the proposed meta-heuristic algorithm, an experiment was
performed, in which, α varied from 0.02 to 2.82 in steps
of 0.20, and β varied from 0.20 to 3.00 in steps of 0.20,

VOLUME 9, 2021 51445



Z. Miao et al.: Service Family Design Optimization Considering a Multi-Server Queue

FIGURE 9. Impact of the value of 1un on the optimal solutio.

FIGURE 10. Impact of service time Ts on the optimal solutio.

while the control parameters of the neighborhood search
were set to the minimum value. The best parameter value
combination for the optimization is identified as (α = 0.02,
β = 1.80). From the experiment, it was found that the control
parameter β of the mutation operator is more sensitive in the
optimization results than the control parameter α of crossover
operator. However, the best parameter value combinationmay
slightly change for cases with different scales; hence, more

TABLE 9. Impact of Ts on customer satisfaction.

FIGURE 11. Average fitness values of the generation.

experiments of parameter combinations around the suggested
one can be performed to further tune the parameters and
improve the efficiency of the genetic algorithm.

To evaluate the performance of the proposed approach,
a number of cases with different scales were randomly gen-
erated. As shown in Table 10, cases 1–8 can be solved by
the proposed exact method (linearization). For the smaller
cases (1–4), the optimal solutions solved by the proposed
meta-heuristic algorithm are the exact solutions. The results
indicate the correctness of the linearized model and effective-
ness of the meta-heuristic algorithm. However, the solution
space of the proposedmodel rapidly expanded as the numbers
of RCSs and RPSs, or segments, increased. For cases with
large scales (case 9–10), variables and constraints gradually
increased; the cases cannot be globally solved within an
acceptable computation time, and the meta-heuristic algo-
rithm can obtain near-optimal solutions for service compa-
nies. The computation time of the exact algorithm depends
on many factors, including the variables, constraints, and
characteristics of the linear model. For cases with small scales
(e.g., cases 1–3), the solving time of the linear model is
small, while the meta-heuristic algorithm requires more time
to prepare the population initialization and perform iterations.

51446 VOLUME 9, 2021



Z. Miao et al.: Service Family Design Optimization Considering a Multi-Server Queue

TABLE 10. Computation results for different cases.

It can be observed from Table 10 that—for each case in the
table—the solution obtained by the proposed approach is bet-
ter than that obtained by the traditional approach. Therefore,
the effectiveness of the proposed approach, including exact
method (linearization) and meta-heuristic algorithm, can be
verified by the numerical experiments.

VI. CONCLUSION
Since various servers are usually involved in a service family,
a service company needs to find a compromise between
reducing the average waiting time and controlling the ser-
vice cost. In this study, formulations for the customer utility
and service cost are constructed from the service process
and service component dimensions; moreover, service time
is introduced to measure the cost from the instantaneity of
service. Based on the above considerations, a design opti-
mization model of a service family is established based on
a modular service structure. The model maximizes the com-
pany’s profit by selecting the optimal process and component
configurations and price level, along with the selection of the
compromised number of servers to control the average wait-
ing time and service cost. It further determines which services
should be provided for each market segment, according to the
deterministic customer-purchase choice rule.

To obtain the optimal solution using commercial optimiza-
tion software packages (e.g., ILOG CPLEX), an equivalent
linearized model, based on the original model, is derived.
To obtain the near-optimal solutions for the optimization
problem with a large solution space, an improved genetic
algorithm combined with a neighborhood search is used.

To evaluate effectiveness of the proposed approach, a car-
rental service family was introduced to demonstrate the pro-
posed models and algorithms, and sensitivity analysis was
performed. A number of cases with different sizes were
randomly generated and relevant numeric experiments per-
formed. The results show that the solution obtained by the
proposed approach has a higher profit compared with the
traditional approach for each of the cases; hence the proposed
approach outperforms the traditional approach.

One of the limitations of this research is that multiple series
of servers used to perform different functions in a service
system are not considered in the model. Furthermore, this
study only considers a single-stage queue. Future research
may extend the model to fit multi-stage service queues as
there may be multiple queues in variant functional modules;
in addition, other service characteristics may be introduced
into the model.

APPENDIX A
Proof of Theorem 1: Model II is equivalent to Model I.

In Model I, the average waiting time of cars tdq is
known; all nonlinear parts of the objective function and con-
straints result from multiplying two or more binary deci-
sion variables, and the product of two binary variables is
regarded as a binary intermediate variable. Similarly, rela-
tive constraints are introduced to realize the replacement—
for instance, ωnsγsv is replaced by Znsv, and constraints
(39–41) are removed in Model II. Because M is regarded
as a large positive number, constraints (39–41) can ensure
that Znsv = 1 if ωns = 1 and γsv = 1; otherwise,
Znsv = 0 if ωns = 0 or γsv = 0. In fact, it is equivalent
to Znsv = ωnsγsv.Znss′v′ ,Gnsik ,G′nss′ik , osikjl , and Fnsdq are
similar replacements. In addition, the product of three ormore
decision variables can be decomposed into an intermediate
variable and a decision variable. Similarly, we introduce
the variables Dnsikjl = ωnsosikjl and D′nss′ikjl = ωnsos′ikjl
into the constraints. Note that linear constraints (8–11) and
(18–20) need not be processed, and they can move directly
into Model II; other parts of Model I are reformulated in the
following Model II, as shown at the bottom of the next page.

APPENDIX B
Proof of Theorem 2: Suppose that the sensitivity of the

customer to time is 1u, and Uns is determined by the
service configuration. Hence, function Y = Uns − rn −
1un

∑S
d=13sd

∑Q
q=1 ηdqtdq is considered based on con-

straint (16), and the optimal average waiting time is t∗,
as shown in Fig. 12. Because the service price is a discrete

VOLUME 9, 2021 51447



Z. Miao et al.: Service Family Design Optimization Considering a Multi-Server Queue

set with unit step 1ps, if the service utility with increment
α2 is not greater than p∗s + 1ps, the service price remains
unchanged. Then, α2 ∈ [0,1ps − χn), according to (66)
and (67); specifically, 1ps > χn, otherwise, α2 = 0; and χn
is equal to the maximum surplus utility. By contrast, a service
utility with decrement α1 still corresponds to the maximum

value ψn(ψn ≥ 0) of the surplus utility in the case of ωns = 0
(see (64)) based on constraint (15); then, α1 ∈ [0, χn − ψn).

U∗ns − rn −1un
∑S

d=1
3sd

∑Q

q=1
ηdqt∗dq

−α1 − p∗s > ψn (64)

[Model II]
max profit

=

∑N

n=1
N seg
n (

∑S

s=1

∑V

v=1
Znsvpsv−

∑S

s=1

∑I

i=1

∑Ki

k=1
GnsikCP

ik−
∑S

s=1

∑I

i=1

∑Ki

k=1

∑
j∈φi

∑Lij

l=1
hikjDnsikjlCL

ijl)

−

∑S

d=1
cd
∑Q

q=1
ηdqQSdq − c

fix (25)∑Ki

k=1
ysik = 1, s = 1, 2, . . . , S; i = 1, 2, . . . , I ; (26)∑Lij

l=1
xsijl =1, s = 1, 2, . . . , S; i = 1, 2, . . . , I ; j ∈ φi; (27)

xsij1 ≤ 1− ysikhikj, s = 1, 2, . . . , S; i = 1, 2, . . . , I ; k = 1, 2, . . . ,Ki; j ∈ ϕi; (28)
xsij1 ≥ ysik (1− hikj), s = 1, 2, . . . , S; i = 1, 2, . . . , I ; k = 1, 2, . . . ,Ki; j ∈ ϕi; (29)∑V

v=1
γsv = 1, s = 1, 2, . . . , S; (30)∑Q

q=1
ηdq = 1, d = 1, 2, . . . ,Li0j0; (31)∑S

s=1
ωns ≤ 1, n = 1, 2, . . . ,N ; (32)

osikjl ≤ xsijl, s = 1, 2, . . . , S; i = 1, 2, . . . , I ; k = 1, 2, . . . ,Ki; j ∈ φi; l = 1, 2, . . . ,Lij; (33)
osikjl ≤ ysik , s = 1, 2, . . . , S; i = 1, 2, . . . , I ; k = 1, 2, . . . ,Ki; j ∈ φi; l = 1, 2, . . . ,Lij; (34)
osikjl ≥ 1+M

(
ysik + xsijl − 2

)
, s = 1, 2, . . . , S; i = 1, 2, . . . , I ; k = 1, 2, . . . ,Ki; j ∈ φi; l = 1, 2, . . . ,Lij; (35)∑Ki

k=1
osi0kj0dhi0kj0 = 3sd , s = 1, 2, . . . , S; d = 1, 2, . . . , S; (36)∑Ki

k=1
θPikysik ≤ Mσss′ +

∑Ki

k=1
θPikys′ik , s, s′ = 1, 2, . . . , S, s 6= s′; i = 1, 2, . . . , I ; (37)∑Ki

k=1

∑Lij

l=1
osikjlhikjθLijl ≤ M

(
1−

∑Ki

k=1

∑Lij

l=1
os′ikjlhikj + σss′ ·

∑Ki

k=1

∑Lij

l=1
os′ikjlhikj

)
+

∑Ki

k=1
os′ikjlhikjθ

L
ijl,

s, s′ = 1, 2, . . . , S, s 6= s′; i = 1, 2, . . . , I ; j ∈ φi; (38)
Znsv ≤ ωns, n = 1, 2, . . . ,N ; s = 1, 2, . . . , S; v = 1, 2, . . . ,V ; (39)
Znsv ≤ γsv, n = 1, 2, . . . ,N ; s = 1, 2, . . . , S; v = 1, 2, . . . ,V ; (40)
Znsv ≥ 1+M (ωns + γsv − 2), n = 1, 2, . . . ,N ; s = 1, 2, . . . , S; v = 1, 2, . . . ,V ; (41)
Z ′nss′v ≤ ωns, n = 1, 2, . . . ,N ; s, s′ = 1, 2, . . . , S; v = 1, 2, . . . ,V ; (42)
Z ′nss′v ≤ γs′v, n = 1, 2, . . . ,N ; s, s′ = 1, 2, . . . , S; v = 1, 2, . . . ,V ; (43)
Z ′nss′v ≥ 1+M (ωns + γs′v − 2), n = 1, 2, . . . ,N ; s, s′ = 1, 2, . . . , S; v = 1, 2, . . . ,V ; (44)
Gnsik ≤ ωns, s = 1, 2, . . . , S; i = 1, 2, . . . , I ; k = 1, 2, . . . ,Ki; (45)
Gnsik ≤ ysik , s = 1, 2, . . . , S; i = 1, 2, . . . , I ; k = 1, 2, . . . ,Ki; (46)
Gnsik ≥ 1+M (ωns + ysik − 2), s = 1, 2, . . . , S; i = 1, 2, . . . , I ; k = 1, 2, . . . ,Ki; (47)
G′nss′ik ≤ ωns, s, s′ = 1, 2, . . . , S; i = 1, 2, . . . , I ; k = 1, 2, . . . ,Ki; (48)
G′nss′ik ≤ ys′ik , s, s′ = 1, 2, . . . , S; i = 1, 2, . . . , I ; k = 1, 2, . . . ,Ki; (49)
G′nss′ik ≥ 1+M (ωns + ys′ik − 2), s, s′ = 1, 2, . . . , S; i = 1, 2, . . . , I ; k = 1, 2, . . . ,Ki; (50)
Dnsikjl ≤ osikjl, n = 1, 2, . . . ,N , s = 1, 2, . . . , S; i = 1, 2, . . . , I ; k = 1, 2, . . . ,Ki; j ∈ φi; l = 1, 2, . . . ,Lij; (51)
Dnsikjl ≤ xsijl, n = 1, 2, . . . ,N , s = 1, 2, . . . , S; i = 1, 2, . . . , I ; k = 1, 2, . . . ,Ki; j ∈ φi; l = 1, 2, . . . ,Lij; (52)
Dnsikjl ≥ 1+M (ωns + osikjl − 2),

n = 1, 2, . . . ,N , s = 1, 2, . . . , S; i = 1, 2, . . . , I ; k = 1, 2, . . . ,Ki; j ∈ φi; l = 1, 2, . . . ,Lij; (53)
D′nss′ikjl ≤ os′ikjl, n = 1, 2, . . . ,N , s, s′ = 1, 2, . . . , S; i = 1, 2, . . . , I ; k = 1, 2, . . . ,Ki; j ∈ φi; l = 1, 2, . . . ,Lij; (54)
D′nss′ikjl ≤ ωns, n = 1, 2, . . . ,N , s, s′ = 1, 2, . . . , S; i = 1, 2, . . . , I ; k = 1, 2, . . . ,Ki; j ∈ φi; l = 1, 2, . . . ,Lij; (55)
D′nss′ikjl ≥ 1+M (ωns + os′ikjl − 2),

n = 1, 2, . . . ,N , s, s′ = 1, 2, . . . , S; i = 1, 2, . . . , I ; k = 1, 2, . . . ,Ki; j ∈ φi; l = 1, 2, . . . ,Lij; (56)
Fnsdq ≤ ηdq, n = 1, 2, . . . ,N ; s = 1, 2, . . . , S; d = 1, 2, . . . , S; q = 1, 2, . . . ,Q; (57)
Fnsdq ≤ ωns, n = 1, 2, . . . ,N ; s = 1, 2, . . . , S; d = 1, 2, . . . , S; q = 1, 2, . . . ,Q; (58)
Fnsdq ≥ 1+M (ωns + ηdq − 2), n = 1, 2, . . . ,N ; s = 1, 2, . . . , S; d = 1, 2, . . . , S; q = 1, 2, . . . ,Q; (59)

51448 VOLUME 9, 2021



Z. Miao et al.: Service Family Design Optimization Considering a Multi-Server Queue

∑S

s=1

∑I

i=1

∑Ki

k=1
GnsikuPnik +

∑S

s=1

∑I

i=1

∑Ki

k=1

∑
j∈φi

∑Lij

l=1
DnsikjluLnijl −1un

∑S

s=1

∑S

d=1

∑Q

q=1
Fnsdq3sd tdq

−

∑S

s=1

∑V

v=1
Znsvpsv −

∑S

s=1

∑I

i=1

∑Ki

k=1
uPnikG

′

nss′ik
−

∑S

s=1

∑I

i=1

∑Ki

k=1

∑
j∈φi

∑Lij

l=1
D′nss′ijlu

L
nijl

+1un
∑S

s=1

∑S

d=1

∑Q

q=1
Fnsdq3s′d tdq +

∑S

s=1

∑V

v=1
Z ′nss′vps′v ≥ 0, n = 1, 2, . . . ,N ; s = 1, 2, .., S; s′ 6= s;(60)∑S

s=1

∑I

i=1

∑Ki

k=1
GnsikuPnik +

∑S

s=1

∑I

i=1

∑Ki

k=1

∑
j∈φi

∑Lij

l=1
DnsikjluLnijl −1un

∑S

s=1

∑S

d=1

∑Q

q=1
Fnsdq3sd tdq

−

∑S

s=1

∑V

v=1
Znsvpsv −

∑S

s=1
ωnsrn ≥ 0, n = 1, 2, . . . ,N ; (61)∑S

s=1

∑I

i=1

∑Ki

k=1
G′nss′iku

P
nik+

∑S

s=1

∑I

i=1

∑Ki

k=1

∑
j∈φi

∑Lij

l=1
D′nss′ikjlu

L
nijl −1un

∑S

s=1

∑S

d=1

∑Q

q=1
Fnsdq3s′d tdq

−

∑S

s=1

∑V

v=1
Znss′vpsv −

∑S

s=1
ωnsrn ≥ ys′ikunik +

∑I

i=1

∑Ki

k=1

∑
j∈φi

∑Lij

l=1
os′ikjlunijl

−1un
∑S

d=1

∑Q

q=1
ηdq3s′d tdq −

∑V

v=1
γs′vps′v − rn, n = 1, 2, . . . ,N ; s′ = 1, 2, . . . , S, s′ 6= s; (62)

ysik , xsijl, γsv, ηdq, ωns,Znsv,Znss′v, osikjl,Gnsik ,Gnss′ik ,Dnsikjl,Dnss′ikjl,Fnsdq ∈ {0, 1} (63)

FIGURE 12. Relationship between service utility and average waiting time.

α1 ≥ 0 (65)

U∗ns − rn −1un
∑S

d=1
3sd

∑Q

q=1
ηdqt∗dq

+α2 < p∗s +1ps (66)

α2 ≥ 0 (67)

When the customer sensitivity is adjusted to 1u′,
the service configuration is modified as it changes, and
Y ′ = U ′ns−rn−1u

′
n
∑S

d=13sd
∑Q

q=1 ηdqt
′
dq. It is reasonable

that Y ′ ∈ (Y ∗ − α1,Y ∗ + α2) does not break constraint (15)
and does not affect the service price. According to (68)
and (69), if the average waiting time t ′dq, related to different
quantities of servers belongs to (max(0, β1), β2), it has no
effect on the service price; otherwise, t ′dq ∈ [0, β1] , β1 > 0,
and the price goes up to achieve the maximum profit; if
t ′dq ∈ [β2, β3), the price decreases to meet the constraints,
and β3 is computed according to Y ′ = 0.

U ′ns − rn −1u
′
n

∑S

d=1
3sd

∑Q

q=1
ηdqt ′dq

> U∗ns − rn −1un
∑S

d=1
3sd

∑Q

q=1
ηdqt∗dq − χn + ψn

(68)

U ′ns − rn −1u
′
n

∑S

d=1
3sd

∑Q

q=1
ηdqt ′dq

< U∗ns − rn −1un
∑S

d=1
3sd

∑Q

q=1
ηdqt∗dq +1ps − χn

(69)

where β1 =
1
1u′n

(U
′

ns − U∗ns + 1un
∑S

d=13sd∑Q
q=1 ηdqt

∗
dq −1ps + χn), β2 =

1
1u′n

(U
′

ns − U∗ns +

1un
∑S

d=13sd
∑Q

q=1 ηdqt
∗
dq +χn − ψn), and β3 =

U
′

ns−rn
1u′n

.

REFERENCES
[1] Y. Xing, L. Li, Z. Bi, M. Wilamowska-Korsak, and L. Zhang, ‘‘Operations

research (OR) in service industries: A comprehensive review,’’ Syst. Res.
Behav. Sci., vol. 30, no. 3, pp. 300–353, May 2013.

[2] T. W. Simpson, Z. Siddique, and R. J. Jiao, Product Platform and Product
Family Design: Methods and Applications. NewYork, NY, USA: Springer,
2006.

[3] F. Erens and K. Verhulst, ‘‘Architectures for product families,’’ Comput.
Ind., vol. 33, nos. 2–3, pp. 165–178, Sep. 1997.

[4] J. Jiao, T. W. Simpson, and Z. Siddique, ‘‘Product family design and
platform-based product development: A state-of-the-art review,’’ J. Intell.
Manuf., vol. 18, no. 1, pp. 5–29, Jul. 2007.

[5] S. K. Moon, J. Sim, J. Shu, and T. W. Simpson, ‘‘Strategic module sharing
for customized service family design using a Bayesian game,’’ in Proc.
IEEE Int. Conf. Service Oper. Logistics, Informat., Aug. 2007, pp. 1–6.

[6] S. K. Moon, J. Shu, T.W. Simpson, and S. R. T. Kumara, ‘‘Amodule-based
service model for mass customization: Service family design,’’ IIE Trans.,
vol. 43, no. 3, pp. 153–163, Dec. 2010.

[7] S. K. Moon, T. W. Simpson, J. Shu, and S. R. Kumara, ‘‘A method for
platform identification to support service family design,’’ Int. J. Services
Oper. Informat., vol. 3, pp. 294–317, 2008.

[8] H.-P. Lo and M.-C. Chiu, ‘‘A service family design and business develop-
ment methodology with a home service case study,’’ J. Ind. Prod. Eng.,
vol. 31, no. 7, pp. 458–470, Oct. 2014.

[9] A. Aggarwal, F. T. S. Chan, and M. K. Tiwari, ‘‘Development of a module
based service family design for mass customization of airline sector using
the coalition game,’’ Comput. Ind. Eng., vol. 66, no. 4, pp. 827–833,
Dec. 2013.

[10] C. A. Voss and J. Hsuan, ‘‘Service architecture and modularity,’’ Decis.
Sci., vol. 40, no. 3, pp. 541–569, Aug. 2009.

[11] H. Tanriverdi, P. Konana, and L. Ge, ‘‘The choice of sourcing mecha-
nisms for business processes,’’ Inf. Syst. Res., vol. 18, no. 3, pp. 280–299,
Sep. 2007.

VOLUME 9, 2021 51449



Z. Miao et al.: Service Family Design Optimization Considering a Multi-Server Queue

[12] X. G. Luo, C. K. Kwong, J. F. Tang, S. F. Deng, and J. Gong, ‘‘Integrating
supplier selection in optimal product family design,’’ Int. J. Prod. Res.,
vol. 49, no. 14, pp. 4195–4222, Jul. 2011.

[13] R. Sanchez and J. T. Mahoney, ‘‘Modularity, flexibility, and knowledge
management in product and organization design,’’ Strategic Manage. J.,
vol. 17, no. S2, pp. 63–76, Dec. 1996.

[14] O. D. Palsule-Desai, D. Tirupati, and J. Shah, ‘‘Product line design and
positioning using add-on services,’’ Int. J. Prod. Econ., vol. 163, pp. 16–33,
May 2015.

[15] W. Song, Z. Wu, X. Li, and Z. Xu, ‘‘Modularizing product extension
services: An approach based on modified service blueprint and fuzzy
graph,’’ Comput. Ind. Eng., vol. 85, pp. 186–195, Jul. 2015.

[16] J. Jiao, Q. Ma, and M. M. Tseng, ‘‘Towards high value-added products and
services: Mass customization and beyond,’’ Technovation, vol. 23, no. 10,
pp. 809–821, Oct. 2003.

[17] H. A. Simon, ‘‘The architecture of complexity,’’ in Facets of Systems
Science, vol. 7. New York, NY, USA: Springer, 1991, pp. 457–476.

[18] C. de Blok, B. Meijboom, K. Luijkx, and J. Schols, ‘‘The human dimen-
sion of modular care provision: Opportunities for personalization and
customization,’’ Int. J. Prod. Econ., vol. 142, no. 1, pp. 16–26, Mar. 2013.

[19] J. Sundbo, ‘‘Modulization of service production and a thesis of con-
vergence between service and manufacturing organizations,’’ Scandin. J.
Manage., vol. 10, no. 3, pp. 245–266, Sep. 1994.

[20] T. Tuunanen, A. Bask, and H. Merisalo-Rantanen, ‘‘Typology for modular
service design: Review of literature,’’ Int. J. Service Sci., Manage., Eng.,
Technol., vol. 3, no. 3, pp. 99–112, Jul. 2012.

[21] S. Pekkarinen and P. Ulkuniemi, ‘‘Modularity in developing business
services by platform approach,’’ Int. J. Logistics Manage., vol. 19, no. 1,
pp. 84–103, May 2008.

[22] M. R. Hoogeweegen, W. J. M. Teunissen, P. H. M. Vervest, and
R. W. Wagenaar, ‘‘Modular network design: Using information and com-
munication technology to allocate production tasks in a virtual organiza-
tion,’’ Decis. Sci., vol. 30, no. 4, pp. 1073–1103, Sep. 1999.

[23] C. K. Tay and S. L. Chen, ‘‘Cost estimation of a service family based on
modularity,’’ Int. J. Prod. Res., vol. 54, no. 10, pp. 3059–3079, May 2016.

[24] Y. Geum, R. Kwak, and Y. Park, ‘‘Modularizing services: A modified HoQ
approach,’’ Comput. Ind. Eng., vol. 62, no. 2, pp. 579–590, Mar. 2012.

[25] R. Dörbecker, O. Tokar, and T. Böhmann, ‘‘Deriving design principles
for improving service modularization methods-lessons learnt from the
complex integrated health care service system,’’ in Proc. 23rd Eur. Conf.
Inf. Syst., Münster, Germany, 2015, p. 38.

[26] T. Tuunanen and H. Cassab, ‘‘Service process modularization: Reuse
versus variation in service extensions,’’ J. Service Res., vol. 14, no. 3,
pp. 340–354, Aug. 2011.

[27] E. Feitzinger and H. L. Lee, ‘‘Mass customization at hewlett-packard: The
power of postponement,’’ Harvard Bus. Rev., vol. 75, pp. 116–123, 1997.

[28] A. Kusiak, ‘‘Integrated product and process design: A modularity perspec-
tive,’’ J. Eng. Des., vol. 13, no. 3, pp. 223–231, Sep. 2002.

[29] P. Carlborg and D. Kindström, ‘‘Service process modularization and mod-
ular strategies,’’ J. Bus. Ind. Marketing, vol. 29, no. 4, pp. 313–323,
Apr. 2014.

[30] K. Silander, P. Torkki, P. Lillrank, A. Peltokorpi, S. A. Brax, and M. Kaila,
‘‘Modularizing specialized hospital services: Constraining characteristics,
enabling activities and outcomes,’’ Int. J. Oper. Prod. Manage., vol. 37,
no. 6, pp. 791–818, Jun. 2017.

[31] M. Meyer, ‘‘PERSPECTIVE: Creating a platform-based approach for
developing new services,’’ J. Product Innov. Manage., vol. 18, no. 3,
pp. 188–204, May 2001.

[32] M. H. Meyer, E. Jekowsky, and F. G. Crane, ‘‘Applying platform design to
improve the integration of patient services across the continuum of care,’’
Manag. Service Qual. Int. J., vol. 17, no. 1, pp. 23–40, Jan. 2007.

[33] C. de Blok, K. Luijkx, B. Meijboom, and J. Schols, ‘‘Modular care and
service packages for independently living elderly,’’ Int. J. Oper. Prod.
Manage., vol. 30, no. 1, pp. 75–97, Jan. 2010.

[34] V. Avlonitis and J. Hsuan, ‘‘Exploring modularity in services: Cases
from tourism,’’ Int. J. Oper. Prod. Manage., vol. 37, no. 6, pp. 771–790,
Jun. 2017.

[35] H. Chou, Y. Wang, M. Tseng, and C. Chieng, ‘‘Dynamic service product
family for mass service customization,’’ Int. J. Innov. Res. Sci., Eng.
Technol., vol. 2, pp. 6575–6585, 2013.

[36] B. Ramesh, A. Tiwana, and K. Mohan, ‘‘Supporting information product
and service families with traceability,’’ in Proc. Int. Workshop Softw.
Product-Family Eng. Berlin, Germany, 2002, pp. 353–363.

[37] L. Gauss, D. P. Lacerda, and P. A. C. Miguel, ‘‘Module-based product
family design: Systematic literature review and meta-synthesis,’’ J. Intell.
Manuf., vol. 32, no. 1, pp. 265–312, 2020.

[38] G. Bechler, C. Steinhardt, J. Mackert, and R. Klein, ‘‘Product line opti-
mization in the presence of preferences for compromise alternatives,’’ Eur.
J. Oper. Res., vol. 288, no. 3, pp. 902–917, Feb. 2021.

[39] J. Jian, ‘‘Elite adaptive hybrid genetic algorithm and its realization,’’
Comput. Eng. Appl., vol. 45, pp. 34–35, 2009.

[40] S. Mayer and C. Steinhardt, ‘‘Optimal product line pricing in the presence
of budget-constrained consumers,’’ Eur. J. Oper. Res., vol. 248, no. 1,
pp. 219–233, Jan. 2016.

[41] X. Wang, J. D. Camm, and D. J. Curry, ‘‘A branch-and-price approach to
the share-of-choice product line design problem,’’ Manage. Sci., vol. 55,
no. 10, pp. 1718–1728, Oct. 2009.

[42] I. Méndez-Díaz, J. J. Miranda-Bront, G. Vulcano, and P. Zabala,
‘‘A branch-and-cut algorithm for the latent-class logit assortment prob-
lem,’’ Discrete Appl. Math., vol. 164, pp. 246–263, Feb. 2014.

[43] Y. Akçay, H. P. Natarajan, and S. H. Xu, ‘‘Joint dynamic pricing of multiple
perishable products under consumer choice,’’Manage. Sci., vol. 56, no. 8,
pp. 1345–1361, Aug. 2010.

[44] D. Bertsimas and V. V. Mišiv̌, ‘‘Exact first-choice product line optimiza-
tion,’’ Oper. Res., vol. 67, no. 3, pp. 651–670, May 2019.

[45] A. Belloni, R. Freund, M. Selove, and D. Simester, ‘‘Optimizing product
line designs: Efficient methods and comparisons,’’ Manage. Sci., vol. 54,
no. 9, pp. 1544–1552, Sep. 2008.

[46] S. Tsafarakis, ‘‘Redesigning product lines in a period of economic crisis:
A hybrid simulated annealing algorithm with crossover,’’ Ann. Oper. Res.,
vol. 247, no. 2, pp. 617–633, Dec. 2016.

[47] S. Kumar and A. K. Chatterjee, ‘‘A profit maximizing mathematical model
for pricing and selecting optimal product line,’’ Comput. Ind. Eng., vol. 64,
no. 2, pp. 545–551, Feb. 2013.

[48] P. E. Green and A. M. Krieger, ‘‘Models and heuristics for product line
selection,’’Marketing Sci., vol. 4, no. 1, pp. 1–19, Feb. 1985.

[49] D. Bertsimas and V. V. Mišić, ‘‘Robust product line design,’’ Oper. Res.,
vol. 65, no. 1, pp. 19–37, Feb. 2017.

[50] S. K. Nair, L. S. Thakur, and K.-W. Wen, ‘‘Near optimal solutions for
product line design and selection: Beam search heuristics,’’ Manage. Sci.,
vol. 41, no. 5, pp. 767–785, May 1995.

[51] A. Alptekinoğlu and C. J. Corbett, ‘‘Leadtime-variety tradeoff in prod-
uct differentiation,’’ Manuf. Service Operations Manage., vol. 12, no. 4,
pp. 569–582, Oct. 2010.

[52] P. B. Tookanlou and H. Wong, ‘‘Determining the optimal customization
levels, lead times, and inventory positioning in vertical product differenti-
ation,’’ Int. J. Prod. Econ., vol. 221, Mar. 2020, Art. no. 107479.

[53] S. Tsafarakis, K. Zervoudakis, A. Andronikidis, and E. Altsitsiadis,
‘‘Fuzzy self-tuning differential evolution for optimal product line design,’’
Eur. J. Oper. Res., vol. 287, no. 3, pp. 1161–1169, Dec. 2020.

[54] S.-Y. Wu and P.-Y. Chen, ‘‘Versioning and piracy control for digital infor-
mation goods,’’ Operations Res., vol. 56, no. 1, pp. 157–172, Feb. 2008.

[55] A. Jain and R. Bala, ‘‘Differentiated or integrated: Capacity and service
level choice for differentiated products,’’ Eur. J. Oper. Res., vol. 266, no. 3,
pp. 1025–1037, May 2018.

ZHUOTONG MIAO is currently pursuing the
Ph.D. degree with the College of Information Sci-
ence and Engineering, Northeastern University,
Shenyang, China. Her current research interests
include service family design and new service
development.

51450 VOLUME 9, 2021



Z. Miao et al.: Service Family Design Optimization Considering a Multi-Server Queue

XINGGANG LUO received the M.Sc. degree in
mechanical design andmanufacturing fromNorth-
easternUniversity, Shenyang, China, and the Ph.D.
degree in system engineering from Northeastern
University, Boston, MA, USA.

He is currently a Professor with the College
of Information Science and Engineering, North-
eastern University. He has authored more than
50 articles on peer-reviewed journals, including
Decision Support Systems, the IEEE TRANSACTIONS

ON SYSTEMS, MAN, AND CYBERNETICS, the IEEE TRANSACTIONS ON ENGINEERING

MANAGEMENT, the European Journal of Operational Research, the Interna-
tional Journal of Production Research, and the International Journal of Pro-
duction Economics. His current research interests include intelligent public
transportation, service operation management, and optimization algorithms.

ZHONGLIANG ZHANG received the Ph.D.
degree in system engineering from Northeastern
University, China.

He is currently an Associate Professor with
the Department of Information Management and
Information System, Hangzhou Dianzi University,
Hangzhou, China. He has authored more than
eight articles on peer-reviewed journals, including
Information Sciences, Knowledge-Based Systems,
Applied Soft Computing, Neurocomputing, Engi-

neering Applications of Artificial Intelligence, and so on. His current research
interests include data mining, imbalanced learning, and evolutionary algo-
rithms.

QING ZHOU has been holding a postdoctoral
position with the Beijing University of Technol-
ogy, since 2013. He is currently a Professor with
the Management School, Hangzhou Dianzi Uni-
versity, China. He is also the Dean of the School
of Management and the Head of the Institute of
Management Decision and Innovation, HDU. His
recent research interests include innovation man-
agement and technology innovation alliance.

VOLUME 9, 2021 51451


