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ABSTRACT The sea-land segmentation for optical remote sensing images (RSIs) has a valuable role in water
resources and coastal zones management. However, it is challenging because optical RSIs mainly suffer from
low contrast, intensity inhomogeneity with mixed pixels, and large image size with redundant information.
This paper introduces a novel coarse-to-fine sea-land segmentation method that incorporates Superpixel
Fuzzy C-Means (SPFCM) and a Modified Chan-Vese active contour model (MCV). First, the image is over-
segmented into superpixels to reduce the information redundancy and utilize spectral and spatial information.
The SPFCM employs local relationships among neighboring superpixels to cluster the superpixels based on
their color and texture features, deal with mixed pixels, and produce coarse segmentation results. The CV
depends on the initial contour. If the contour is incorrectly initialized, the CV may trap in local minima and
needs many iterations. The purpose of the SPFCM result is to provide an automatic initial contour for an
MCV model instead of manual initialization to improve the CV model’s performance. Finally, color and
texture features are combined in vector-valued images to solve the traditional CV’s problems to deal with
complicated nature imageswith intensity inhomogeneity or rich texture features to produce fine segmentation
results. The proposed method is evaluated and achieved an average accuracy of 98.9%, an average Jaccard
Similarity Coefficient (JSC) equals 97.1%, an average Disc Similarity Coefficient (DSC) equals 98.5%, and
an average recall equals 99.3%. The proposed method results are promising, and it outperformed the results
of other state-of-the-art sea-land segmentation methods.

INDEX TERMS Sea-land segmentation, superpixel fuzzy c-means, Chan-Vese model, remote sensing.

I. INTRODUCTION
In recent years, optical remote sensing images (RSIs) have
a vital role in water resources monitoring, coastal zones,
and maritime safety management. They can easily acquire
detailed information on a large area about maritime and
coastal zones. These zones are considered the main environ-
mental socio-economic in most parts of the world. However,
these zones are among the most vulnerable to dynamic natu-
ral processes, such as erosion, accretion, flooding, sediment
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transport, and climatic changes. These hazards influence
these zones and decrease coastal land resources [1], [2].

The sea-land segmentation (SLS) for the optical RSIs
is considered one of the most remote sensing applications,
which is a key for decision-makers for national development
and environmental protection. SLS results have an essential
role in many various applications, such as ship detection,
coastline extraction, oil leakage detection, control of mar-
itime traffic, ocean surveillance, andmaritime safetymanage-
ment [3]–[6]. Also, it has a role in detecting illegal smuggling,
monitoring the changes in coastal zones, and water resources
management [4], [7]–[9].
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The purpose of SLS is to separate RSI into sea and land
regions based on the selected homogeneity measures (e.g.,
intensity, color, and texture). The segmentation result is a set
of contours (boundaries) of objects or a set of segments that
cover the entire image [4], [10], [11]. In the past decades, the
manual SLS has been possible based on the research area’s
prior geographical information as a standard reference. It has
faced many problems, like taking much time and need sub-
stantial efforts. It is also difficult to obtain accurate geograph-
ical information about some areas [12], [13]. Consequently,
the implementation of automatic SLS approaches can provide
precise results about the research cases and do not take much
time compared to the manual segmentation.

The sea-land segmentation of the optical RSIs is consid-
ered a challenging problem because of many factors, such
as a complicated texture of land cover area, intensity inho-
mogeneity, and low contrast between sea and land regions.
Optical RSIs are affected by different degrees of Gaussian
noise during image acquisition. The large image size with
redundant information. Also, the presence of mixed pixels
between sea and land regions, such as shadow, could be dark
as a sea, and waves in the sea region could be classified as
land [7]. All these challenges can impact the segmentation
task [7]–[9], [15], [16].

Many segmentation algorithms have been developed for
various applications. Among these segmentation algorithms,
active contour models (ACMs) and fuzzy clustering meth-
ods have received more attention in the image segmentation
field due to their good performance. ACMs have gained
more and more attention in the image segmentation field.
They can achieve better segmentation accuracy. Active con-
tour models can deal with topological changes of contour
curves [14]–[17].

Generally, ACMs can roughly fall into two categories:
edge-based ACMs and region-based ACMs. In edge-based
ACMs, the evolving curve canmove toward the object bound-
aries based on the image gradient information. But these
models are sensitive to the initial contour and cannot extract
the objects with weak or noisy boundaries. On the other hand,
region-based ACMs use image information, e.g., intensity,
color, and texture, to guide the curve toward the object bound-
aries. These models can extract objects with weak and noisy
boundaries. Also, they are less sensitive to initial contour than
edge-based ACMs. Chan- Vese (CV) model is considered
one of the region-based ACMs. It is the most widely used
algorithm in image segmentation. The CV model utilizes
the global intensity to guide the curve toward the object
boundaries [16]–[19].

There are many clustering methods such as K-means,
graph cut, and fuzzy C-Means (FCM) methods. K-means is
a hard clustering method, which clusters each pixel just to
one cluster. However, this constraint leads to some difficulties
in RSI segmentation due to intensity overlapping between
pixels within RSI, low contrast, and intensity inhomogeneity.
The graph cut method produces a good result, but it has
high computational complexity due to the large size of RSI

and the redundant information. On the other hand, the FCM
algorithm is one of the most widely used fuzzy clustering
methods in image segmentation. The motivation behind the
usage of FCM is that it clusters one pixel to more than
one cluster by assigning a membership value to each pixel.
It makes the FCM handle mixed pixels, deal with fuzzy and
uncertain data in RSI and provide good performance. The
traditional FCM clustering algorithm often failed to deal with
the aforementioned challenges because FCM considers only
spectral information and does not incorporate pixels’ spatial
information into its account. However, the improved FCM
by incorporating local spatial information may produce high
computational complexity because of the repetition of the
distance computation between the centers of clusters and pix-
els within a local neighboring window. Besides, neighbors’
regular window often breaks up the real, local spatial structure
of images, which produces poor segmentation [20]–[24].

The motivation behind the Chan-Vese active contour
model’s usage is that the CVmodel is flexible, strong, and sat-
isfactorily segments the objects with weak boundaries. It can
automatically change its topology to achieve an optimum
segmentation for image regions with smooth or discontinuous
complex boundaries [9]. However, the traditional CV model
can achieve poor results for images with intensity inhomo-
geneity and low contrast. Also, it is sensitive tomanual initial-
ization. If the contour is incorrectly initialized, the traditional
CV model may trap local minima and needs many iterations.

This paper presents a novel unsupervised coarse-to-
fine SLS technique for the natural colored RSIs to over-
come the aforementioned limitations. It integrates Superpixel
FCM (SPFCM) clustering and a modified CV active contour
model. This paper has three main contributions:

• The image is over-segmented into superpixels to reduce
the information redundancy. Besides, it utilizes spectral
and spatial information to produce superpixels.

• The SPFCM clustering approach produces coarse sea-
land segmentation results, which provides an automatic
initial contour for the CV active contour model instead
of manual initialization to improve the CV model’s per-
formance.

• Spectral color and texture features are combined in
vector-valued images to improve the CV model and
solve its limitations to those complicated nature images
with intensity inhomogeneity or rich texture features and
produce fine segmentation results.

The rest of the paper is arranged as follows. Section II
presented the related work of the sea-land segmentation prob-
lems and discussed different methods and their related lim-
itations. Section III explains the preliminaries of the basic
methods which are utilized in the proposed segmentation
technique. Section IV discusses the proposed segmentation
technique in detail. Section V describes the used dataset,
evaluation metrics, and experimental results and discussions.
In the end, Section VI presents the conclusion and future
work.
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II. LITERATURE REVIEW
Many efforts have been made to develop various sea-land
segmentation methods and coastline extraction from different
geographical regions and satellite images. The recent stud-
ies of fuzzy c-means and active contour models are also
reported with their advantages and limitations. For example,
Aedla et al. [2] utilized a clipped histogram equalization to
improve the image’s contrast. After that, an adaptive thresh-
old based on the mean and the standard deviation was used
for the segmentation task. This method failed to deal with
the complicated distribution of the intensity and the complex
scene. This method depended on the intensity of pixels with-
out any considerations of neighboring pixels.

Xia et al. [25] used a gray intensity feature of the image and
the Local Binary Pattern (LBP) to define the texture feature.
Then, a threshold value was applied to segment the image.
However, this method required post-processing operations
and was sensitive to the noise.

Zhuang et al. [26] utilized a gradient feature map (GFM)
to form the sum area table (SAT) and reconstruct an integral
image. An adaptive threshold based on the texture and the
structure information was used for the segmentation task.
In the end, themorphological operationswere applied to close
holes. However, the noise impacted GFM.

Dejan et al. [27] utilized a locally adaptive threshold to
classify the enhanced image into sea and land regions. This
method was fast and accurate. However, the weather con-
ditions and the low contrast between water and land areas
influenced an accurate coastline extraction.

You and Li [28] proposed an SLS method based on a
sea region’s statistical model (SMS). In the beginning, the
sea area was extracted by the Otsu thresholding method.
Then, SMS was applied to segment the image into sea
and land regions. Finally, the difference in SMS variance
between sea and land was used to remove the misclassi-
fied land regions. This method performed well, robust, and
computationally efficient. However, there was a misclassi-
fication because of the complicated distribution of the land
regions.

Ma et al. [13] introduced a hierarchical method by incorpo-
rating the modified Otsu segmentation method with intensity
and texture features. Then, the modified Otsu method was
applied to extract land boundaries. This method was compu-
tationally effective under different conditions.

Wang et al. [29] enhanced the structural and texture infor-
mation by incorporating the gradient feature map and the
pyramid integral image reconstruction on a different scale.
Then, the adaptive threshold method was applied to obtain
the sea and the land areas. This method was stable in day and
night scenes.

Liu et al. [20] clustered the image into sub-regions based
on the improved multiscale normalized cut segmentation
by incorporating the gray intensity and local entropy fea-
tures. The sub-regions were merged to produce the ini-
tial segmentation results to improve the CV model’s final

segmentation results. However, the convergence rate of the
CV model was slow. This method was not computationally
efficient.

Modava and Akbarizadeh [30] applied the Spatial Fuzzy
Clustering (SFC)method, which combined spatial constraints
for the initial segmentation phase. Then, the level set active
contour method was applied to refine the segmentation
results. This method reduced the manual contour initializa-
tion. However, the SFCmethod could not handlemixed pixels
because of the image’s complicated characteristics.

Wu et al. [14] proposed a fuzzy-based active contourmodel
for image segmentation called Kernel Fuzzy Active Con-
tour (KFAC). This method incorporated a fuzzy logic and
kernel metric into an active contour model. The fuzziness
function provided the model with a strong ability to reject
local minima. Since the KFAC model depended on global
image information, it has difficulties segmenting the image
with intensity inhomogeneity or rich texture.

Fang et al. [15] proposed a new fuzzy region-based active
contour model based on weighting global and local fitting
energy to segment the images. The local spatial image infor-
mation was incorporated into fuzzy region energy. The results
proved the efficiency of this method. However, this model
failed to segment images when the image object is very
similar to the background region.

Fang et al. [19] incorporated new global and local fitting
energy functions into fuzzy-based active contour models for
balancing the weights of the object and background regions.
This method provided good results for segmenting the images
with intensity inhomogeneity. However, this method failed to
deal with the rich texture image.

Othman [31] proposed a new segmentation method for
satellite imagery based on the Chan-Vese model with a
saliency map. Besides, bilateral filter and histogram equal-
ization were utilized to preserve the edges and enhance the
satellite image, respectively. As shown in the results, the CV
model is sensitive to manual initialization and produced poor
results. Also, saliency map estimation is based on human-eye
modeling, which could not interpret all objects.

Rajinikanth et al. [32] developed a hybridmethod to extract
fetal head periphery. This method preprocessed the image
using the Jaya algorithm and Otsu’s method to enhance the
head section. Then, the CV model and level set segmentation
methods were utilized to extract the fetal head section. This
method achieved good accuracy. However, the CV was sen-
sitive to initial contour.

In summary, as discussed in previous related work studies,
the discussed studies achieved unsatisfactory results due to
some limitations, such as low contrast of RSIs, large image
size with redundant information, and segmentation process
based on threshold methods without incorporation spatial
and texture information. They could also not deal with the
data’s fuzzy and uncertainty because RSIs have mixed pixels
and data inhomogeneity. Also, the CV model is sensitive to
manual initialization.
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We present a novel coarse-to-fine sea-land segmentation
technique for the natural colored RSIs to overcome the afore-
mentioned limitations. It integrates superpixel FCM clus-
tering (SPFCM) and CV active contour modeling. Firstly,
to reduce the information redundancy, the image is over-
segmented into superpixels based on spectral and spatial
information of pixels in the image. Secondly, the SPFCM
clustering approach employs the local relationship among
neighboring superpixels to cluster superpixels based on the
color and texture features to produce coarse sea-land seg-
mentation results. The purpose of the SPFCM result is to
provide the initial contour for the CV model instead of man-
ual initialization to improve the CV model’s performance.
Finally, spectral color and texture features are combined in
vector-valued images to improve the CV model to solve its
limitations to those complicated nature images with intensity
inhomogeneity or rich texture features and produce fine seg-
mentation results.

III. BASIC CONCEPTS
This section explains the preliminaries of the basic methods
which are utilized in the proposed method. These methods
are divided into the preprocessing, feature extraction, and
segmentation methods, which are discussed in the following
subsections.

A. SUPERPIXEL COMPUTING
Generally, the superpixel algorithms group similar pixels
into meaningful regions based on the image’s local spatial
information. They have many advantages, such as captur-
ing image redundancy, reducing the subsequent processing
tasks, and providing an appropriate form for image feature
computing. There are many algorithms to produce super-
pixels, such as the graph-based and gradient-based meth-
ods. Achanta et al. [33] presented a comparative study of the
superpixel computing methods. The simple linear iterative
clustering (SLIC) method is used to produce the superpix-
els. It has many advantages, including easy to use, faster,
more memory efficient, and adheres to the image’s boundary.
Besides, it improves segmentation performance as compared
with other methods. In SLIC, the color and the spatial infor-
mation have been used to cluster the pixels in CIE LAB
color space locally. Every pixel label is iteratively updated
via the searching process of the nearest cluster center of the
pixel in a local space, which is closely related to the size of
the superpixels [33]. The similarity measurement in SLIC is
expressed by Eq. (1-3) [34]:

d (i,C) = dlab +
m
SP

dxy (1)

dlab =
√
(lc − li)2 + (ac − ai)2 + (bc − bi)2 (2)

dxy =
√
(xc − xi)2 + (yc − yi)2 (3)

where dlab refers to the difference in the color between two
pixels. dxy refers to the spatial distance between two pix-
els. (x, y) refers to the spatial location of the pixel. d (i,C)

measures the proximity between the ith pixel and theC th clus-
ter center. The weight parameter (m) balances between color
and spatial information in the proximity measure. The size
of the desired superpixel is SP× SP, where SP =

√
N/C,N

refers to the number of image pixels, and C refers to the
number of superpixels.

B. TEXTURE EXTRACTION METHODS
Texture can be considered a good feature to identify textural
objects since it represents the variability of local intensity and
patterns inside the surface of objects [35]. Texture analysis
is considered an important feature in various problems, such
as segmentation and classification of medical imaging and
remote sensing. Statistical, structural, model-based, and sig-
nal processing-based are considered the four main categories
for texture analysis methods used to extract the image’s tex-
ture features. In this paper, we combined local entropy and
Gabor texture features.

Statistical methods are considered the most popular texture
analysis methods, which can be used for all types of textures
due to their simplicity. They can also be incorporated with
some other methods to improve the efficiency of the image
segmentation method. The local entropy method that belongs
to the statistical analysis method is an attribute that measures
the randomness of the gray-level distribution of the image.
Entropy extracts the dissimilarity of each local patch [36].
Given a center pixel (x, y) in a local patch of the input image,
the local entropy is calculated by Eq. (4) [20], [37].

T(x,y)·R = −
255∑
i=0

p̃ilog(p̃i) (4)

where i denotes the gray level. p̃i indicates the ratio of the
pixels whose gray value is i within the local patch. R denotes
the size of the local patch, which is set to 9.

The two-dimensional (2D) Gabor filter with different
scales and orientations is utilized to capture the texture infor-
mation. It has been widely used in the field of image process-
ing because it is an effective texture extraction method. In this
paper, the Gabor filter is utilized to extract the texture from
the input image. The general form of the real part is defined
by Eq. (5) [38].

g (x, y; λ, θ, σ ) = exp

(
−
x
′2
+ y

′2

2σ 2

)
exp

(
i
(
2π

x ′

λ

))
(5)

x ′ = x cosθ + y sinθ (6)

y′ = −x sinθ + y cosθ (7)

where λ refers to the wavelength of the sinusoidal function,
and θ refers to the orientation. σ denotes the standard devi-
ation of the Gaussian envelope. Here, λ = {2, 5, 8} , θ =
{0, 45, 90, 135} , and σ = {1, 2, 3, 4}.

C. FUZZY C-MEANS CLUSTERING
FCM is one of the effective fuzzy clustering algorithms [39],
[40]. The image segmentation problem can be considered a
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clustering problem. FCM is widely utilized for the image
segmentation task because it efficiently deals with uncer-
tainty and ambiguity compared to hard clustering. Given a
set of data points X = {x1, x2, . . . , xS} and the cluster centers
v = {v1, v2, . . . , vC̄ } [41]. Each data point can be assigned to
different clusters at the same time with some weight called
a membership, which indicates how much the data point
belongs to a particular cluster [42]–[45].

D. CHAN- VESE MODEL
Chan-Vese (CV) model [46] is one of the widely used tech-
niques in image segmentation. The CV model is one of the
region-based ACMs. It segments the image into two regions
(e.g., object and background). In the CV model, image seg-
mentation is considered an energy minimization problem.
The CV model’s principal idea is to find an optimal contour
that partitions a given image into two regions, one represent-
ing the objects to be detected and the other representing the
background.

In the image domain, an energy function expresses the
curve or an initial contour. Under some constraints, the curve
moves to the boundaries of the object via computing the
difference between the intensity values of pixels inside the
object and the background regions. The evolution of the CV
curve depends on the region’s homogeneity rather than the
gradient magnitude of the image; therefore, it well segments
the image, although there are weak boundaries [47], [48].

For a given image I (x) on the image domain �, the fol-
lowing energy function of the CV model for scaler- valued
image is minimized [49], [50]:

F (c1, c2,Cu) = µ.Length (Cu)+ v.Area (inside (Cu))

+λ1.

∫
inside(Cu)

|u0 (x, y)− c1|2dxdy

+λ2.

∫
outside(Cu)

|u0 (x, y)− c2|2dxdy (8)

whereCu represents the curve. The constants c1 and c2 are the
average intensities inside and outside the curve, respectively.
A regularizing term, such as the length of Cu and the area
inside Cu to control the smoothness of the boundary. µ refers
to the length term that is considered a regularizing term. Also,
it has a scaling role. For large µ, objects of larger sizes are
only detected. Also, only objects of smaller sizes are detected
If µ is small. The coefficients λ1 and λ2 are fixed parameters
[49], [50].
Using the level set function to represent the curve, that is,

the curve is the zero-level set function φ(x, y), we can replace
the unknown variable Cu by φ(x, y) function, such that [50]:

Cu = {(x, y) |φ (x, y) = 0}

inside (Cu) = {(x, y) |φ (x, y) > 0}

outside (Cu) = {(x, y) |φ (x, y) < 0}

(9)

By applying the gradient descent method in the variational
level set function φ(x, y), the energy function can be written

as in Eq. (10) [49]–[51]:

F (c1, c2, φ)

= µ

∫
�

δ (φ (x, y)) |∇φ (x, y)| dxdy

+v
∫
�

H (φ (x, y)) dxdy

+λ1

∫
�

|u0 (x, y)− c1|2H (φ (x, y)) dxdy

+λ2

∫
�

|u0 (x, y)− c2|2 (1− H (φ (x, y))) dxdy (10)

while the Heaviside step function can be expressed
as [49]–[51]:

H (φ(x, y)) =

{
1, if φ (x, y) > 0
0, else

(11)

Heaviside step function can be slightly smoothed. Its deriva-
tive is then a smoothed delta function [50], [51]:

δ (φ) =
d
dφ

H (φ) (12)

F (c1, c2, φ)with respect to φ and parameterizing the descent
direction by an artificial time t , the equation in φ (x, y, t) is
defined as in Eq. (13) [52]:

∂φ

∂t
= δ (φ) [µ.div

(
∇φ

|∇φ|

)
− v− λ1 (u0 − c1)2

+λ2 (u0 − c2)2]
φ (x, y, 0) = φ0 (x, y)

(13)

IV. THE PROPOSED TECHNIQUE
In this section, we discuss our proposed SLS method, which
is called SPFCM-MCV. SPFCM-MCV stands for Superpixel
Fuzzy C-Means and Modified Chan Vese model. Fig. 1
shows the proposed SPFCM-MCV technique framework. It is
divided into three main phases, which are preprocessing,
feature extraction, and segmentation phases. The first phase
is the preprocessing phase, which includes two steps. First,
the input image is transformed from RGB to HSV color
space. It defines color in terms of hue (H), saturation (S),
and brightness (V). Second, the image is over-segmented into
superpixels using the SLIC method to reduce the information
redundancy. The second phase is feature extraction. Multi-
features include the spectral and texture extracted to encode
each superpixel and characterize the sea and the land regions.
The third phase is the segmentation phase, which includes
two steps. The first one is to produce coarse segmentation
results by applying the SPFCM method. The CV model’s
initial contour is then defined based on the SPFCM result,
which reduces the number of iteration and computational
time of the CV model. In the last one, the CV model is
modified by incorporation the color and texture features to
produce fine segmentation results. The phases are discussed
in detail in the following subsections.

53906 VOLUME 9, 2021



E. Elkhateeb et al.: Novel Coarse-to-Fine Sea-Land Segmentation Technique Based on SPFCM Clustering and MCV Model

FIGURE 1. The framework of the proposed SPFCM-MCV Method.

A. THE PREPROCESSING PHASE
Many factors have adverse effects on segmentation results,
such as noise, low contrast, illumination, weather conditions,
and the large size of the images. Therefore, image prepro-
cessing is considered an essential phase for the proposed
method before feature extraction and image segmentation
steps. This phase consists of two main steps. In the first step,
the image is transformed fromRGB toHSV color space. RGB
is not suitable for this task as it is affected by illumination
changes and low contrast. HSV is highly recommended to
use in this task [53], [54]. HSV is invariant to changes in
illumination and brightness. Chrominance (HS) is the spec-
tral feature, and value (V) represents the brightness of the
image. Superpixel computing is the second step of the image
preprocessing phase. The traditional segmentation methods
neglect the local similarity between pixels because they have
performed on the pixel level. Besides, the sea-land image
has a large size, and neighboring pixels are often similar
in spectral and texture features, which lead to information
redundancy, especially for the sea areas [7]. Therefore, the
input image is over-segmented into superpixels, which can
reduce the information redundancy in the image, minimizing
the difficulty of successive processing tasks [44]. In this
paper, the SLICmethod is applied to compute superpixels due
to its advantages, as previously explained.

The weight parameterm of SLIC balances color and spatial
information in the proximity measure. When m is small, the

produced superpixels have a higher boundary adherence but
shape and size regularity decrease. Fig. 2 shows the results
of SLIC superpixels corresponding to different values of m.
As shown, for a larger value of m, the resulting superpixels
have regular-shapes and do not fit well to the weak edges.
Furthermore, a smaller value of m makes the SLIC more
sensitive to the changes, and the superpixel boundaries do not
appropriately fit to the image edges [55]. Therefore, m is set
to 15 in this paper.

To evaluate the adherence ability of SLIC, the dataset is
used to compute the average Boundary Recall (BR) that is
defined by Eq. (14).

Boundary Recall =
N1
Ng

(14)

where Ng refers to the count of the boundary pixels that
are presented in the ground truth. N1 refers to the number
of the boundary pixels in the ground truth (GT) for which
there is a boundary pixel that falls within two pixels of the
superpixel boundary. Fig. 3 shows the relationship between
the size of superpixels and BR. The BR decreases with the
increase of superpixel size. Also, m value impacts the adher-
ence boundaries of superpixels [7]. Besides, superpixel size
equals 80 and 100, which can achieve accurate results. Here,
the superpixel size is set to 100 to reduce the processing
time.
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FIGURE 2. The results of the SLIC superpixels with different values of m.

B. FEATURE EXTRACTION PHASE
During the observation of sea-land images, most sea areas
have presented regular textures despite waves. The land area
has been complicated distributions due to various objects on
the earth [7], [56]. In this paper, the color and texture features
have been utilized for encoding superpixels and distinguish-
ing the sea and land areas [57]. Here, H and S are used as color
features, and V is used as an intensity feature. Texture can be
used to characterize the spatial arrangement of the intensities
of the pixels in a region of a digital image [58].

In the remote sensing field, spectral information is not
enough to segmentation spectrally heterogeneous landscape
regions. The texture feature offers exciting possibilities to
characterize different classes’ structural heterogeneity, espe-
cially in sea and land regions [59]. There aremanymethods of
texture extraction [26], [60], [61]. In this paper, local entropy
and Gabor texture features are utilized as the texture feature
descriptor due to their computational efficiency and stability.
Here, texture features are extracted from the V channel. The
feature vector of a pixel i is defined as zi = [hTi , s

T
i , v

T
i ,T

T
i ],

where hTi , s
T
i , v

T
i , and T Ti are the color (hTi , s

T
i ), intensity,

and texture vector of i, respectively. Every superpixel is
encoded by computing the mean of zi of pixels within it. After
the feature extraction process, the selected features have been
normalized between 0 and 1 to clear the negative effect of
different feature scopes.

C. THE SEGMENTATION PHASE
In this phase, the RSI is segmented according to the extracted
features. So, this phase consists of coarse and fine segmen-
tation steps. First, RSIs have some limitations, including
redundant information, complicated distribution of the land
area, and affected by noise. Also, the traditional methods have
drawbacks, such as ignoring spatial information. They do
not get immune to noise because they perform pixel-by-pixel

FIGURE 3. The BR of the SLIC method.

segmentation, as previously explained. Therefore, SPFCM
can capture the spatial information of superpixels. It incorpo-
rates the immediate neighborhood of each superpixel into the
membership function. SPFCM also incorporates the spectral
and texture features of superpixels for image segmentation.
This step produces a coarse segmentation result in the next
step as the CV model’s initial contour.

MCV model is the second step of the segmentation phase
and is used to fine-tune the results. As known, the tradi-
tional CV model can accurately extract the contour of the
object. The SLS can be considered as an extraction of the
contour between the sea and the land. The CV model seg-
ments these images with homogeneous intensity effectively.
However, the CV model produces unsatisfactory results for
naturally complicated images with intensity inhomogeneity,
complex texture, and low contrast [51]. Therefore, spectral
color and texture features are incorporated as discriminants of
theMCV. The CV has a sensitivity to the initial contour. If the
initial contour is incorrectly selected, the CV will take much
time and produce inaccurate results [62]. So, the SPFCM
coarse segmentation result provides the initial contour for the
MCVmodel and reduces the computational time and number
of iterations.

1) SUPERPIXEL FUZZY C-MEANS CLUSTERING
The main drawbacks of FCM are sensitivity to the imag-
ing artifacts and the noise because FCM clusters the pixel
without integrating any spatial information. Local spatial
information can also be incorporated into FCM, which often
produces a high computational complexity because of the
repetition of the distance computation between the centers
of clusters and pixels within a local neighboring window.
Besides, neighbors’ regular window often breaks up the real,
local spatial structure of images, which produces poor seg-
mentation results [22]. SPFCM was first proposed in [44]
for medical image segmentation and achieved high accu-
racy in noisy images to solve these problems. Instead of
utilizing pixels, SPFCM has used superpixels as clustering
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objects. This algorithm has two advantages. The first one
incorporates the immediate neighborhood of each superpixel
into the membership function. It captures the superpixels’
spatial information, which acts as a regularizer. It biases
the solution toward piecewise-homogeneous labeling. Such
regularization helps segment images corrupted by noise [63].
The last one takes statistical information of the superpixels
into account to improve efficiency. The objective function is
defined by Eq. (15) [44].

Jfcm =
C̄∑
i=1

Q∑
j=1

γjum̄ij ‖ ξj − vi ‖
2

+
α

NR

C̄∑
i=1

Q∑
j=1

um̄ij

∑
s̄r∈N̄j

γr‖ ξr − vi ‖2

 (15)

where Q is the predefined number of the superpixels in the
image, γj refers to the number of pixels in each superpixel
s̄j, and ξj denotes the feature vector of superpixel s̄j. uij
indicates the membership of superpixel s̄j to the ith cluster. N̄j
indicates the set of adjacent superpixels that are neighboring
to s̄j, and NR denotes to the cardinality of N̄j. ‖.‖ indicates
a norm metric that measures the Euclidean distance between
cluster centroids and superpixels. The parameter m̄ controls
the fuzziness of the clustering results. The parameter α is
used to control the effect of the neighborhood of superpixel.
The membership function and the new cluster centers are
expressed by Eq. (16), Eq. (17), respectively [44].

uij =
1∑C̄

k=1

(
γj‖ξj−vi‖2+ α

NR

∑
s̄r∈N̄j

γr‖ξr−vi‖2

γj‖ξj−vk‖2+ α
NR

∑
s̄r∈N̄j

γr‖ξr−vk‖2

) 1
m̄−1

(16)

and

vi =

(∑Q
j=1 u

m̄
ij

(
γjξj +

α
NR

∑
s̄r∈N̄j

γrξr

))
(∑Q

j=1 u
m̄
ij

(
γj +

α
NR

∑
s̄r∈N̄j

γr

)) (17)

This membership value uij must satisfy the following con-
straints [45]:

0 ≤ uij ≤ 1, for 1 ≤ i ≤ C̄, 1 ≤ j ≤ Q,

0 <
Q∑
j=1

uij < Q, for 1 ≤ i ≤ C̄

SPFCM is applied to perform coarse segmentation to produce
the initial contour for the MCV model, which reduces the
number of iterations and computational time. In this paper,
SPFCM clusters sea-land RSI into two clusters based on
every superpixel’s color and texture features, as listed in
Algorithm 1 [44].
Z is the set of feature vectors of superpixels. N̄j defines

a set of neighbors of superpixels. C̄ is the number of clus-
ters. m̄ controls the fuzziness of the cluster. α controls the
effect of the neighborhood. ε is a predefined threshold.
V indicates a vector of cluster centroids. The max-iters is

Algorithm 1 The Superpixel Fuzzy C-Means (SPFCM)

Input: Z = {ξ1, ξ2, . . . ,ξQ}, N̄j , C̄ , m̄, α, ε, and max-iters
Output: uij and vi
1. Initialize the centers of clusters randomly vi, i = 1,

. . . ,C̄
2. for r D 0, 1, . . . , to max_iters do
3. Calculate the membership uij by Eq. (16)
4. Update cluster centroids vi by Eq. (17)
5. if

∥∥∥V (rC1) − V(r)

∥∥∥ ≤ ε then
6. break
7. End if
8. End for

the maxed iterations number. In this study, the value of C̄ ,
m̄, α, ε, and max-iters is set to 2, 2, 0.2, 10−5, and 100,
respectively.

2) MODIFIED CHAN- VESE MODEL
The standard CV model has some limitations, such as it has
unsatisfactory results in naturally complicated images with
intensity inhomogeneity, complex texture, and low contrast.
It depends on the intensity value of the pixel. Also, it has
a sensitivity to the initial contour. The CV model has a
relatively slow convergence rate [51]. Due to the large size
of the sea-land RSIs, the iteration number is relatively large
of the CV model. To solve these problems, color and texture
features are used in the MCV model. The SPFCM coarse
segmentation result produces the initial contour for the CV
model instead of manual initialization, which reduces the
number of iterations and computational time.

Chan and Vese [64] extended the traditional CV algo-
rithm to detect objects in vector-valued images, such as color
images. This study uses the CVmodel with different features,
such as spectral and texture features. Let u0,i be the ith
channel of an image on�, with i = 1, 2, . . . ,N channels, and
Cu the evolving curve. Each channel would contain the same
image with some differences, for instance, color and texture
feature image [49], [50]. The extension of the traditional CV
model to the vector case is formulated by Eq. (18) [60].

F
(
c̄+, c̄−,Cu

)
= µ.Length (Cu)

+

∫
inside(Cu)

1
N

N∑
i=1

λ+i

∣∣u0,i (x, y)− c+i ∣∣2 dxdy
+

∫
outside(Cu)

1
N

N∑
i=1

λ−i

∣∣u0,i(x, y)− c−i ∣∣2 dxdy (18)

where µ refers to the length term that is set to 0.1. λ+i and
λ−i are positive parameters for each channel and set to 1. c+i
and c−i are the mean values of uo,i inside Cu and outside Cu,
respectively.
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The energy function can be written in a level set form as
Eq. (19)

F
(
c̄+, c̄−, φ

)
= µ.

∫
�

δ (φ (x, y)) |∇φ (x, y)| dxdy

+

∫
�

1
N

N∑
i=1

λ+i

∣∣u0,i (x, y)− c+i ∣∣2 H (φ (x, y)) dxdy
+

∫
�

1
N

N∑
i=1

λ−i

∣∣u0,i (x, y)− c−i ∣∣2
(1− H (φ (x, y))) dxdy (19)

Minimizing the energy with respect to the constants c+i , c
−

i ,
for i = 1, . . . ,N , we obtain:

c+i =

∫ u0,i(x,y)H(φ(x,y))dxdy
� ∫ H(φ(x,y))dxdy

�

(20)

c−i =

∫ u0,i(x,y)(1−H(φ(x,y)))dxdy
� ∫ H(φ(x,y))dxdy

�

(21)

The regularized Heaviside function Hε can be defined as:

Hε (φ) =
1
2

(
1+

2
π
tan−1

(
φ

ε

))
(22)

δε (φ) = H ′ =
1
π

(
ε

ε2 + φ2

)
(23)

F
(
c+, c−, φ

)
with respect to φ and parameterizing the

descent direction by an artificial time t , the following Euler
Lagrange equation for φ (x, y, t) in � is defined as:

∂φ
∂t = δε (φ) [µ.div

(
∇φ
|∇φ|

)
−

1
N

N∑
i=1
λ+i

(
u0,i − c

+

i

)2
+

1
N

N∑
i=1
λ−i

(
u0,i − c

−

i

)2
]

φ (x, y, 0) = φ0 (x, y)

(24)

and with boundary condition on ∂� defined as:

δε (φ)

|∇φ|

∂φ

∂
⇀n
= 0 (25)

where ∂⇀n indicates the unit normal at the boundary of �.
Algorithm 2 shows the steps of the proposed SLS method
based on color and texture features. Fig. 4 displays the results
of the proposed method’s segmentation phase. Also, it shows
the curve evolution over time. As shown in the figure, the
curve evolves well to the boundary of the object. The pro-
posedmodel segments the imagewithmixed pixels and inten-
sity inhomogeneity. The results and discussion are discussed
in the results section.

V. RESULTS
This section describes the dataset, which is used in the pro-
posed method and the experimental environment. Also, the
segmentation performance measures are defined to evaluate
the proposed method and compare it with other methods.

Algorithm 2 The Proposed SPFCM-MCV
Input: Natural colored (RGB) remote sensing image.
Output: The Segmented Image.
Step 1.
A. Convert RGB to HSV
B. Superpixel Computing by SLIC by Eq. (1)- Eq. (3)
Step 2.
C. Extract color feature (H, S), intensity (V), and texture
feature using local Entropy and Gabor filter by Eq. (4), Eq.
(5), respectively.
Step 3.
D. The coarse segmentation use SPFCM as in Algorithm 1.
E. Extract initial contour from the SPFCM result.
F. The fine segmentation using the MCV model by Eq. (24)

A. DATASET DESCRIPTION
In this paper, the natural-colored images have medium res-
olution and spatial resolution ≈30m from Landsat-7 ETM+
and Landsat-8 satellites. These images are used to evaluate
the effectiveness of the presented method. They have been
obtained from the USGS Global Visualization Viewer [65].
One hundred large images of different geographical locations
have been obtained. They have been further cropped with
[512 × 512] for the image. Two hundred images have been
selected to form the sea-land dataset. The dataset images have
complex characteristics of intensity and texture. Some images
in the land regions are dark as the sea because of low contrast,
and images with intensity inhomogeneity as shown in Fig. 5.
This dataset’s corresponding Ground-Truth has been labeled
as in [4], [7] to estimate the presented technique’s accuracy
compared to other segmentation methods.

In this paper, the experiments have been performed on a
PC with an Intel i5-2450M 2.5-GHz processor, 8-GB internal
storage, the operating system is window 10, and the software
platform is MATLAB R2020a.

B. MEASURING THE SEGMENTATION PERFORMANCE
The performance of the proposed technique and the compar-
ative techniques is measured by using various performance
measures, such as:
• Jaccard Similarity Coefficient (JSC) is also known as the
intersection over union (IoU). It measures the similarity
between the predicted image BW1 and the reference
image BW2. It is defined as the cardinality of the inter-
section between two images divided by their union’s
cardinality. JSC is calculated by Eq. (26) [66].

JSC =
|BW1 ∩ BW2|
|BW1 ∪ BW2|

(26)

• Dice Similarity Coefficient (DSC): It is widely used
to measure the performance of segmentation methods.
It measures spatial overlap between the predicted image
BW1 and the reference image BW2. DSC values range
from 0 to 1. If the DSC value is one, this means the
greatest overlap between two images and vice versa.

53910 VOLUME 9, 2021



E. Elkhateeb et al.: Novel Coarse-to-Fine Sea-Land Segmentation Technique Based on SPFCM Clustering and MCV Model

FIGURE 4. The curve evolution over the time. µ = 0.1, iterations = 40.

DSC is defined by Eq. (27) [66].

DSC =
2 |BW1 ∩ BW2|
|BW1 ∩ BW2|

(27)

• Accuracy: It is the ratio of summations of correctly
classified pixels and total pixels of the clustered image.
It is defined by Eq. (28) [66].

Acc =
(TP+ TN )

(TP+ TN + FP+ FN )
(28)

• Recall or sensitivity: It refers to the proportion of total
relevant results correctly classified by the proposed
method. It is defined by Eq. (29) [67].

Recall =
TP

TP+ FN
=

Truepositive
Totalactualpositive

(29)

• Precision: It is the proportion of the relevant results to
the total number of the relevant and irrelevant and results
retrieved. It is defined by Eq. (30) [67].

Precision =
TP

TP+ FP
=

True positive
Total predictive positive

(30)

where TP is a true positive, and FP is a false positive. They
refer to the correctly and incorrectly classified pixels as land
pixels by the proposed technique. TN is a true negative,
and FN is a false negative. They refer to the correctly and
incorrectly classified pixels as sea pixels.

C. COMPARISON AND DISCUSSION
In this section, many comparisons and discussions have been
performed and explained to prove the proposed technique’s
efficiency. First, the results of the traditional CV model with
different manual initial contours are discussed. Then, FCM
[39] and Spatial Fuzzy C-Means clustering (SFCM) [68]
clustering methods have been compared with the proposed
SPFCM technique. After that, there are many fuzzy-based
ACMs that have been tested and compared with the proposed
technique [14], [15], [19]. Finally, the performance of the

FIGURE 5. Examples of sea-land images.

proposed method is evaluated and compared with the state-
of-the-art SLS techniques. LBP [25], SMS [28], SFC [30],
and traditional CVmodel [46] segmentationmethods are used
for comparison with the proposed technique. On the other
hand, the trade-off between spatial and texture information is
investigated. Moreover, the proposed technique is tested on
other applications area such as a skin lesion segmentation as
in [69] and tested on natural images as in [70], [71].

1) RESULTS OF THE TRADITIONAL CV MODEL WITH
DIFFERENT INITIAL CONTOURS
The CV model is tested with various types of initial con-
tours for the segmentation task. The test results of the CV
algorithm are shown in Fig. 6. The initial contours were
displayed in white color in the first column, whereas the
obtained final contours from the CV evolution displayed
in red color in the second column. Also, the last column
shows the segmented images that are corresponding to the
initial contours. From Fig. 6, it is noticed that the only result
that is corresponding to the initial contour in the first row
achieves a successful segmentation result, to some extent,
and the last two initial contours could not segment the image
well. The CV algorithm can only segment the image that
has homogenous regions. However, it has a bad segmentation
result of the images that have an intensity inhomogeneity,
and it has a sensitivity to the initial contours. CV algorithm
lacks convexity, so it is possible to trap in a local minimum.
As shown in the last two rows of Fig. 6, the initial contour
is far away from the boundaries of all objects in the image.
This is because the contours have been trapped firstly in local
minimum before it covered all boundaries of all objects and
reached global minima of the energy minimization function.
So, this drawback achieved poor results.

2) COMPARISON OF SPFCM WITH CLUSTERING METHODS
FCM clustering method segments the image without incor-
porating any spatial information. So, it is sensitive to image
inhomogeneity and artifacts. Fig. 7 proves the poor results of
this drawback. As shown in the figure, there are misclassified
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FIGURE 6. The results of the clustering methods. (a) original images,
(b) Ground-truth, (c) FCM, (d) SFCM, and (e) SPFCM.

FIGURE 7. The results of the traditional CV model with different initial
contours. (a) Original images with initial contour, (b) Final contours, and
(c) The segmented images.

pixels in the land region due to mixed pixels and low contrast.
These drawbacks produced unsatisfactory results. The SFCM
clustering method incorporates pixel spatial information by
adding an averaging neighborhood term added to the objec-
tive function to improve the accuracy and results. However,
the local neighborhood size impacted the clustering process
of the pixel. However, SFCM cannot achieve good results
because it cannot capture all the complicated properties of
images. As illustrated in Fig. 7, images are not smoothed
and have some regions that appear dark as the sea. The
proposed SPFCM achieves good results compared with FCM

TABLE 1. The performance of the fuzzy clustering methods.

and SFCM clustering methods. SPFCM method clusters the
image into regions based on superpixels, not the pixels as in
the aforementioned methods. As illustrated in Fig. 7, SPFCM
clusters the inhomogeneous images effectively. It has the
ability to deal with rough images and the presence of pixel
interference because SPFCM incorporates superpixel and its
neighbors in the objective function. Also, it captures spec-
tral, statistical, and texture features of the superpixel and its
neighborhood to achieve efficient segmentation results.

For quantitative analysis, JSC, DSC, ACC, Recall, and Pre-
cision are calculated and presented in Table 1. Regarding the
performance comparison results. The higher performance is
achieved using the SPFCM clustering rather than SFCM and
FCM. The proposed SPFCM achieved an average accuracy
of 98.9%, an average JSC of 96.7%, an average DSC of
98.3%, an average recall of 97.7%, and an average precision
of 99%.As a result, SPFCMoutperforms the SFCMand FCM
clustering methods.

3) COMPARISON WITH POPULAR FUZZY-BASED ACMS
In this section, different fuzzy-based active contour models
have been tested and compared with the proposed technique.
Recently, many fuzzy-based ACMs have been proposed to
enhance the robustness of the traditional CV model to low
contrast and intensity inhomogeneity [14], [15], [19]. Fig. 8
shows the comparison of different fuzzy ACMs and the pro-
posed technique. AS shown, the KFAC method misclassified
some regions in the images with low contrast and intensity
inhomogeneity. KFAC relies on the global information of the
image in image segmentation.

On the other hand, the FRAGL model could not efficiently
deal with the intensity inhomogeneity and low contrast of
the image. The average of the FRAGL model depended
on the incorporation of local and global intensities. This
average may not fit the image’s local information since the
global average may differ from the actual image intensity.
Finally, the GLFIF method segmented the images of low
contrast and intensity inhomogeneity. However, these results
were not accurate at the boundary. There are misclassifi-
cations in some sea regions, which were classified as land
regions. The proposed method has achieved good segmenta-
tion results compared with fuzzy-based ACMs. The proposed
method outperformed the mentioned fuzzy ACMs because
it incorporates the textural, spectral, and spatial features,
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FIGURE 8. The results of fuzzy ACMs and the proposed method. (a) Original images, (b) Ground-truth, (c) KFAC,
(d) FRAGL, (e) GLFIF, and (f) The proposed method.

TABLE 2. The performance of the fuzzy ACMs and the proposed method.

which enable the proposed method to deal with the image
inhomogeneity.

For quantitative analysis, JSC, DSC, ACC, Recall, and
Precision are calculated and presented in Table 2. Regarding
the performance comparison results. The higher performance
is achieved using the proposed method rather than KFAC,
FRAGL, and GLFIF. The proposed method achieved an
The average accuracy of 98.9%, an average JSC of 97.1%,
an average DSC of 98.5%, an average recall of 99.3%, and an
average precision of 97.7%. As a result, the proposed method
outperforms the fuzzy ACMs.

4) COMPARISON WITH STATE-OF-THE-ART SLS METHODS
In this section, the efficiency of the proposed method is
evaluated, and the results are compared with state-of-the-
art methods, which are LBP [25], SMS [28], SFC [30], and
traditional CV model [46], as shown in Fig. 9. As illustrated

from the results, SMS, LBP, SFC, and CV methods pro-
duce segmentation results with misclassification in the land
regions. This is because some images in the land regions
are dark as the sea due to low illumination and low contrast
between the sea and land. Besides, images have complex
boundaries, complex texture, and intensity inhomogeneity of
land area. The structural information, which LBP acquires,
is limited. Only the pixel difference is used, and the mag-
nitude information is ignored. The CV model is sensitive to
initial contour, which can influence segmentation results. The
CV with manual contour cannot deal with complex texture.
SFC clusters images based on spatial information. However,
it produces misclassification in results because it cannot deal
with all the complicated properties of images and cannot
capture texture information. The proposed method produces
precise segmentation results that are consistent with corre-
spondence ground-truth. As shown in Fig. 9, the proposed
method segments the images with mixed pixels, intensity
inhomogeneity, and rough texture.

For quantitative analysis, JSC, DSC, ACC, Recall, and Pre-
cision are calculated and presented in Table 3. It shows The
performance of the state-of-the-art methods is compared with
the proposed technique. The higher performance is achieved
using the proposed method rather than other comparative
methods regarding the comparison measurements. The pro-
posed SPFCM-MCV achieves an average accuracy of 98.9%,
an average JSC of 97.1%, an average DSC of 98.5%, an aver-
age recall of 99.3%, and an average precision of 97.7%. As a
result, the proposed SPFCM-MCV outperforms state-of-the-
art methods.
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FIGURE 9. The results of different SLS methods. (a) Original images, (b) Ground-truth, (c) SMS, (d) LBP, (e) SFC, (f) Traditional
CV, and (g) The Proposed Method.

TABLE 3. The comparison of the sls segmentation techniques.

5) THE TRADE-OFF BETWEEN SPATIAL AND TEXTURE
INFORMATION
In this section, the trade-off between spatial and textural
information is investigated. As shown in Fig. 10, the seg-
mentation based only on the image’s spatial information
produces poor results. Also, textural information only is not
sufficient to produce accurate results. As illustrated in the
figure, the incorporation of spatial and textural information
provides accurate segmentation of the image. As a result, the
proposed method segments the image efficiently based on a
combination of spatial and textural features.

6) DISCUSSION
The sea-land segmentation has a vital role in monitoring the
changes in coastal zones, and water resources management,
etc. Recently, Active contourmodels (ACMs) and Fuzzy clus-
tering are powerful image segmentation methods due to their

FIGURE 10. The trade-off between spatial and textural information.
(a) Original images, (b) Ground-truth, (c) Spatial- based segmentation,
(d) Textural- based segmentation, and (e) The Proposed Method.

effective performance. FCM clustering approach can handle
the fuzzy and uncertain data with mixed pixels. Besides, the
CV active contour model considers image segmentation as an
optimization problem. However, they can achieve poor results
due to some challenges, such as an intensity inhomogeneity,
low contrast between sea and land regions, and the large
image size with redundant information.

Moreover, mixed pixels between sea and land regions and
a complicated texture of the land cover area. All these chal-
lenges can impact the segmentation task for images. In addi-
tion, the CV model is sensitive to manual initialization. If the
contour is incorrectly initialized, the CV model may produce
incorrect results and take many iterations.

Motivated by the aforementioned observations, we pro-
posed a novel unsupervised coarse-to-fine SLS tech-
nique for the natural colored RSIs. It integrates the
SPFCM and the CV model for vector-valued images.
The SPFCM clustering approach produces coarse sea-land
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FIGURE 11. The segmentation results from different segmentation methods. (a) Original images, (b) Ground-truth, (c) KFAC,
(d) FRAGL, (e) GLFIF, (f) Traditional CV, and (g) The Proposed Method.

FIGURE 12. The segmentation results of skin lesion. (a) Original images, (b) Ground-truth, (c) KFAC, (d) FRAGL, (e) GLFIF,
(f) Traditional CV, and (g) The Proposed Method.

segmentation results, which provides an automatic initial
contour for the CV active contour model instead of man-
ual initialization to improve the CV model’s performance.

Moreover, spectral color and texture features are combined
to improve the CV model to solve its limitations to those
complicated nature images with intensity inhomogeneity

VOLUME 9, 2021 53915



E. Elkhateeb et al.: Novel Coarse-to-Fine Sea-Land Segmentation Technique Based on SPFCM Clustering and MCV Model

FIGURE 13. The segmentation results of natural images from MSRA-B and MSRA 10K. (a) Original images, (b) Ground-truth,
(c) KFAC, (d) FRAGL, (e) GLFIF, (f) Traditional CV, and (g) The Proposed Method.

or rich texture features and produce fine segmentation
results.

The proposed method’s effectiveness is confirmed in fuzzy
ACMs and SLS methods, as illustrated in the Results section.
However, some over-segmentation and under-segmentation
cases appear in our segmentation results compared with other
recent segmentation methods, as shown in Fig. 11 in the
Appendix. Also, Fig. 11 illustrated more case studies. The
over-segmentation appeared when the sea’s pixels were mis-
classified to a land region, as presented in the third and
the fourth rows in Fig. 11. The over-segmentation problem
appears in thin and extended regions of sea areas that are
misclassified to land areas by the proposedmethod, as noticed
in regions surrounded by red squares.

On the other hand, under-segmentation is misclassifica-
tion of the land region where land’s pixels are misclassi-
fied to a sea region. As shown in the fifth row in Fig. 11,
this problem occurs only in the volcanic land regions. The
proposed method cannot classify well the mixed volcanic
and non-volcanic regions. It classifies these regions as a sea
region. Regardless of that, the proposed method performs
well, as presented in Fig. 8 and Fig. 9.

Moreover, the proposed strategy is tested on other appli-
cation areas such as skin lesion segmentation and natural
color images. The experimental results are shown in Fig.12
and Fig.13 in the Appendix. As presented in the results,

the proposed method works well in other applications and
outperforms state-of-the-art methods, which poorly achieve
segmentation results.

The following are some of the possible future directions in
sea-land image segmentation. The first one may apply feature
fusion from multiscale analysis, such as wavelet analysis,
to improve the performance. Also, integrating SPFCM with
graph-cut image segmentation is excepted to produce better
results.Moreover, an optimization tool such as particle swarm
optimization (PSO) or genetic algorithm may be used to
produce an optimal initial contour for ACMs.

VI. CONCLUSION
In this paper, a modified CV active contour method and
SPFCMmethod are incorporated to segment sea-land remote
sensing images into sea and land regions. RSIs have a large
size with redundant data and often low contrast. The proposed
the method overcomes the presented limitations either in
optical remote sensing images or traditional segmentation
methods. The traditional SLS methods produced inaccu-
rate results because they ignore spatial context and can-
not overcome the image’s complicated characteristics. This
paper utilizes the image’s spectral and spatial information by
over-segmenting superpixels’ images to reduce information
redundancy and utilize spectral and spatial information. The
SPFCM clustering approach employs the local relationship
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among neighboring superpixels. This is done to cluster super-
pixels based on the color and texture features to produce
coarse SLS results, which are utilized as an initial contour
for the modified CV model instead of manual initialization.
This initial contour reduces the number of iterations and
computational time of the CV model. Finally, the color and
texture features are incorporated to improve the CV. It solves
the CVmodel’s problems and produces unsatisfactory results
for naturally complicated images with intensity inhomogene-
ity or complex texture. The experiment results demonstrated
that the proposed method effectively segments the image
and achieves high accuracy compared with state-of-the-art
methods. In the future, feature fusion from multiscale anal-
ysis, such as wavelet analysis, will improve the performance.
Moreover, an optimization tool such as particle swarm opti-
mization (PSO) or genetic algorithm may be used to pro-
duce an optimal initial contour for ACMs. Also, integrating
SPFCM with graph-cut image segmentation is excepted to
produce better results.

APPENDIX
This section presents extra the experimental results of more
case studies and other applications area from the proposed
method compared with other segmentation methods.
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