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ABSTRACT In this study, to achieve high trajectory tracking performance in electro-optical tracking systems
under strong nonlinear disturbances and uncertainties, we develop a nonlinear extended state observer (ESO)
based fractional-order sliding mode control. When compared with previous work, the new compound control
strategy is attractive in terms of the following three points. First, a novel controller is developed that integrates
the advantages of a nonlinear ESO, a fractional-order nonsingular terminal sliding mode (FONTSM) man-
ifold, and a super-twisting algorithm. Second, the nonlinear ESO is employed to estimate the disturbances
and uncertainties without explicit knowledge of the systemmodel. Third, a FONTSMmanifold-based super-
twisting algorithm is integrated into the controller to enhance the system robustness. The FONTSMmanifold
has a faster dynamical response, more flexible sliding manifold structure, and better control results than its
integer-order NTSM counterpart. The finite-time convergences of the ESO and controller are both proved
by the Lyapunov method. Finally, the comparative experimental results demonstrate the effectiveness and
superiority of the developed control strategy with respect to existing approaches.

INDEX TERMS Electro-optical tracking system, extended state observer, nonsingular terminal sliding
manifold, fractional-order, super-twisting algorithm.

I. INTRODUCTION
An electro-optical tracking system (EOTS) is a complex,
high-accuracy device that is integrated with optical, mechan-
ical, and electronic devices, and it has attracted increas-
ing attention in recent decades [1], [2]. It has been widely
used to expand the capabilities of humans in observation,
surveillance, search and rescue, navigation, mapping, and
optoelectronic countermeasure applications, to name a few,
from civil to military domains [3]. To exploit the full poten-
tial of EOTSs, better control performance, clearer observa-
tion results, and longer monitoring distances are urgently
required [4]. To achieve these goals, many trajectory tracking
control methods [5]–[8], have been developed. The Line-of-
sight stabilization control methods [9]–[11] have also been
proposed.
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However, although the abovementioned techniques are
capable of achieving a certain performance, each of them has
its limitations. Satisfactory tracking control is still hard to
obtain for EOTS due to the strong nonlinear factors such as
friction, uncertainties, disturbances, and model variation [3].
Thus, designing a novel control strategy for EOTS to tackle
nonlinear factors is a challenging task that motivates us to do
further research.

To tackle strong nonlinearities, many control methods were
proposed such as SMC, adaptive backstepping method [12],
model predictive control, fractional-order (FO) control and
so on. SMC is a powerful technique for handling bounded
disturbances and parameter uncertainties owing to its strong
robustness and suitability for practical applications [13]–[15].
Nevertheless, chattering is a problem in SMC that can-
not be neglected. Several methods have been proposed
to reduce chattering, such as the nonsingular termi-
nal sliding mode (NTSM) [16], high-order sliding mode
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(HOSM) [17], observer compensation method [18], and
reaching law method [19]. The NTSM method not only
guarantees that the system state reaches its origin within
a finite time, it also avoids the nonsingularity problem.
In [20], to tackle unknown parameters, disturbances, and
uncertainties, a robust adaptiveNTSMmethodwas developed
for an automatic train operation system, and NTSM con-
trol with neural networks has been designed for MEMS
gyroscopes [21]. HOSM methods such as the twisting
algorithm, suboptimal algorithm, and super-twisting algo-
rithm (STA) can reduce chattering and ensure finite-time
convergence [22]. In particular, the STA, which handles
a system state with a relative degree of one, is the most
effective. It only requires the sliding manifold information,
whereas other STAs require the sliding manifold derivative
information as well. Because of the discontinuous function
under the integral term, the chattering of the STA is greatly
attenuated. In [23], a finite-time super-twisting SMC was
proposed forMars entry vehicles. A super-twisting SMCwith
adaptive gains and time delay estimation was proposed for
maritime autonomous surface ships [24]. Moreover, an adap-
tive super-twisting sliding mode controller was designed for
a wing-sweep morphing aircraft [25].

FO control is an effective control method that has become
a new branch of automatic control. It can improve the
flexibility of parameter adjustment and controller design.
It has been broadly shown to be more effective than
integer-order (IO) control and is always combined with var-
ious techniques such as SMC and PID control. In [26],
a FO slidingmode controller with an FO disturbance observer
was designed for UAVs and maglev suspension systems.
In [27], to handle nonlinearities, a continuous FO non-
singular terminal sliding mode controller with dynamic
SM manifold was designed for a class of second-order sys-
tems. A FO-based NTSM surface and a fast terminal sliding
mode-type reaching law with time-delay estimation was pro-
posed for a cable-driven manipulator [28]. To handle com-
plex lumped uncertainties, a continuous FONTSM controller
with time delay estimation was designed for cable-driven
manipulators [29].

Moreover, since the time-varying lumped uncertainties
existing in SMC are difficult to obtain, the observer technique
is an effective approach to estimating them for a system and
suppressing the chattering in SMC.Many proposed observers
include the extended state observer (ESO) [30], disturbance
observer [31], and finite-time disturbance compensator [32],
[33] have achieved good effect. The ESO extends the sys-
tem to a new state to estimate the lumped uncertainties
and needs only the knowledge of inaccurate mathematical
models for a strongly nonlinear system. It has been uti-
lized in various applications, such as permanent magnet
synchronous motor (PMSM) servo systems [34], hydraulic
systems [35], rigid spacecraft systems [36], and mobile
robots [37].

To the best of our knowledge, due to the complex
uncertainties and disturbances in EOTS, it is difficult to

implement high-performance tracking control using any of
the existing control methods such as SMC, ESO-based
methods, model-based methods, and PID. Therefore, a non-
linear ESO-based FO nonsingular terminal super-twisting
SMC strategy is developed in this study. The motivation for
developing compound control strategy is to reduce the impact
of complex uncertainties and disturbances, thus achieving a
satisfactory tracking control for EOTS. The novel compound
controller is developed that integrates the advantages of a
nonlinear ESO, a fractional-order nonsingular terminal slid-
ing mode (FONTSM) manifold, and a super-twisting algo-
rithm. The ESO is used to estimate lumped disturbances
in real time without the need for accurate system mod-
els and disturbance models. The sliding mode dynamic,
which utilizes a FONTSM manifold, has a more flexi-
ble control structure than the IO controller, and responds
rapidly in both the sliding mode and reaching phases. The
super-twisting technique is integrated into the FO sliding
mode controller to reduce chattering and enhance robust-
ness. The finite-time convergence of the designed ESO is
demonstrated. The finite-time stability of the controller was
also analyzed by the Lyapunov theorem. In addition to
the developed novel ESO based SMC strategy, we per-
formed experiments on the EOTS platform to evaluate
its effectiveness. The contributions of this study are as
follows:

1 An improved nonlinear function ϕ(e1(t)) is employed
in the ESO. The nonlinear ESO can estimate the
lumped disturbance without requiring explicit informa-
tion about the nonlinear factors and an accurate system
model.

2 FO calculus is integrated with the NTSM manifold.
The FONTSM manifold guarantees a fast dynam-
ical response, avoids the nonsingularity problem,
increases the sliding manifold flexibility, and achieves
better control than the ordinary IO-based NTSM
method.

3 A FONTSM manifold based super-twisting technique
is integrated into the controller to improve the system
robustness.

4 The finite-time stability of both the observer and
the controller are analyzed via the Lyapunov theo-
rem. Comparative experiments were carried out on the
EOTS platform to demonstrate that the developed con-
trol strategy is effective and outperforms the existing
NTSM [38], observer-based ISM [39], and ESO based
super-twisting SMC [40] methods.

The remainder parts of this paper are organized as follows.
In Section 2, the system model are introduced. Section 3 is
devoted to describe the control design. Stability analysis of
the developed control is given in Section 4. Experimental
studies are given in Section 5. The conclusions are presented
in Section 6.
Notations: For simplicity, we denote bxeα = sign(x)|x|α

with α > 0. | · | represents absolute value and || · || represents
Euclidean norm.
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II. PROBLEM STATEMENT AND SYSTEM MODEL
The system model of the EOTS is described as follows:{

θ̇t = ωt

J ω̇t = Ti + Tf + Td
(1)

where θt and ωt denote angle and angular velocity.
J represents the moment of inertia. Tf indicates friction
force. Td indicates disturbances including external distur-
bance, uncertainties, and model variation. Ti is the electro-
magnetic force.

The system model (1) can be divided into two parts,
the nominal part and the bias part, i.e., J = J∗ +

a
J ,

Tf = T ∗f +
a
Tf , and T4 = T ∗

4
+

a
Td , where ∗ is the nominal

value and
a

is the difference between the real model and the
nominal model. It worth noting that an EOTS always operates
in a harsh environment. Wind disturbance and changes in
aircraft attitude could lead to external disturbances and uncer-
tainties T ∗d +

a
Td . Temperature variation and changes in the

center of gravity could contribute to variation in the system
model

a
J and

a
Tf . Under such conditions, the trajectory

tracking control performance will deteriorate significantly
and the system may even become unstable.

Then the equation (1) can be reformulated as follows

J∗ω̇t = Ti + h (2)

where h denotes the lumped disturbance in EOTS,

h = T ∗f +
i

Tf + T ∗d +
i

Td −
i

J ω̇t (3)

It worth mention that EOTS is driven by permanent
magnet synchronous motor (PMSM) directly. By using the
field-oriented control (FOC) approach for PMSM, the elec-
tromagnetic force Ti could be described as follows:

Ti =
3
2
pψd id = Kt id (4)

where p denotes the number of pole pairs, ψd represents the
permanent magnet flux linkages, Kt represents the torque
coefficient and id is the driving current input.

Friction is one of the most complex nonlinear factors
existing in EOTS. In this study, we adopt a modified friction
model [41] with continuously differentiable characteristic to
describe the friction behavior in EOTS. Owing to the using of
a hyperbolic tangent and a differentiated Gaussian function,
the modified friction model Tf is continuously differentiable
with practical engineering value.

Tf = (Ts − Tctanh(ws/wt )− µsws)
θ̇ (t)
ws

e
−( θ̇ (t)√

2
)2+ 1

2

+Tctanh(
θ̇(t)
wt

)+ µsθ̇ (t) (5)

where Fs denotes the Stribeck peak force, Fc represents
the Coulomb friction force, µs indicates the viscous coeffi-
cient, ws and wt are the Stribeck and the transition velocity,
respectively.

Let x1 = θt , x2 = θ̇t . The system model of EOTS in scalar
form can be re-expressed as follows:{

ẋ1(t) = x2(t)
ẋ2(t) = x3(t)+ b0u

(6)

where b0 = Kt/J∗, u = id and x3(t) = h/J∗.
Thus, the objective we try to implement in this study

can be described as: We design an effective controller u for
the EOTS, to guarantee trajectory x1(t) to accurately and
quickly track the predetermined reference trajectory r(t) in
the presence of complex uncertainties and disturbances, i.e.,
the tracking error limt→∞ε1(t) = limt→∞(x1(t)− r(t)) = 0.
Assumption 1:

a
Tf ,

a
Td , and

a
J are bounded.

We assume that the lumped disturbance h and its derivative ḣ
exist and are bounded, satisfying |h| ≤ h̄ ∈ R+, where h̄ is
the unknown upper bound.

III. CONTROL DESIGN
In this section, the control design including ESO, FONTSM
dynamic and super-twisting technique is described. A lemma
is introduced to make the discussion more clearly.
Lemma 1 [42]: For dynamic system ẋc = f (xc(t)) with

f (0) = 0 and xc(t) ∈ Rn, assume that the following rela-
tionship between a positive define function Vc(xc(t)) and its
differential term are satisfied

V̇c(xc(t)) ≤ −τ1Vc(xc(t))− τ2Vc(xc(t))θ (7)

where τ1 > 0, τ2 > 0 and 0 < θ < 1. The dynamic system
is stable. Besides, the convergence time T1 is obtained:

T1 ≤
1

τ1(1− θ )
In
τ1V 1−θ

c (xc(t0))+ τ2
τ2

(8)

where Vc(xc(t0)) is the initial value of Vc(xc(t)). If τ2 > 0,
τ1 = 0with 0 < θ < 1, the dynamic system is still finite-time
stable, the convergence time T2 ≤ 1

θτ2
V θc (xc(t0)).

A. NONLINEAR ESO
A general linear ESO [40] for a second-order system can be
presented as follows:

ż1(t) = z2(t)− β1e1(t)
ż2(t) = z3(t)− β2e1(t)+ b0u(t)
ż3(t) = −β3e1(t)

(9)

where β1, β2 and β3 are the adjustable observer gains.
zi(t) (i = 1,2,3) is the estimated value of the system states
xi(t) (i = 1,2,3), respectively.
Consider the second-order system (6), an improved nonlin-

ear ESO is designed as follows
ż1(t) = z2(t)− β1ϕ(e1(t))
ż2(t) = z3(t)− β2ϕ(e1(t))+ b0u(t)
ż3(t) = −β3ϕ(e1(t))

(10)

The nonlinear function ϕ(e1(t)) is presented as below:

ϕ(e1(t)) = k1e1(t)+ k2be1(t)e(r+1)/2 (11)

where k1 > 0, k2 > 0, 0 < r < 1.
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In contrast to general linear ESOs, the designed nonlin-
ear ESO includes a nonlinear function ϕ(e1(t)). It combines
the advantages of traditional linear and nonlinear ESOs.
A detailed analysis is given in Remark 1.

The derivative of the function ϕ(e1(t)) is given as follows:

ϕ̇(e1(t)) = (k1 + k2
r + 1
2
be1(t)e(r−1)/2)ė1 (12)

Define an intermediate variable5

5 = k1 + k2
r + 1
2
be1(t)e(r−1)/2 (13)

So the Eq.(13) can be rewritten as

ϕ̇(e1(t)) = 5ė1 (14)

The observer error is defined as
e1(t) = z1(t)− x1(t)
e2(t) = z2(t)− x2(t)
e3(t) = z3(t)− x3(t)

(15)

Consider (6), (10) and (15), the observation error system is
gained as follows

ė1(t) = e2(t)− β1ϕ(e1(t))
ė2(t) = e3(t)− β2ϕ(e1(t))
ė3(t) = ḣ(t)− β3ϕ(e1(t))

(16)

The proof of convergence of the nonlinear ESO is given
in section IV.

B. INTRODUCTION TO FRACTIONAL ORDER CALCULUS
AND FRACTIONAL ORDER CONTROL
The theoretical research into FO calculus dates back to about
300 years ago. However, its application has only gradually
attracted increasing attention in recent years. The FO differ-
entiation and integration operators, which can be thought of
as generalizations of their IO versions, are defined as follows:

t0R
α
t =


dα

dtα
, <(α) > 0

1, <(α) = 0∫ t
t0
(dτ )−α, <(α) < 0

(17)

where R represents the fractional calculus; α represents the
fractional order value; t0 and t indicate the limits for the
operator; and <(α) means the real part of α.
As the development of FO calculus theory, the FO defi-

nition is diverse. The three most commonly used fractional
order calculus definitions in engineering application field
are Riemann-Liouville (RL), Grunwald-Letnikov (GL) and
Caputo. It worth noting that the proposed controller in this
paper is developed according to Caputo definition. The defi-
nition for Caputo FO calculus is expressed as follows

t0R
α
t f (t) =

1
0(m− α)

∫ t

t0

f m(τ )
(t − τ )α+1−m

dτ

(m− 1 ≤ α < m) (18)

FIGURE 1. FO function f1(t) = 1 and f2(t) = t . (a) f1(t) FO differential.
(b) f1(t) FO integral. (c) f2(t) FO differential. (d) f2(t) FO integral.

in which m represents an integer, and 0(·) means the Gamma
function 0(γ ) =

∫
∞

0 e−t tγ−1dt .
In term of the amplitude-frequency characteristic,

the Laplace transform is adopted to describe the FO calculus.
The Laplace transform for Caputo FO calculus is expressed
as below:

L {t0R
±α
t f (t)} =

∫
∞

0
e−st t0R

±α
t f (t) = s±αL{f (t)}

(19)

where s = jωmeans the Laplace transform variable. Besides,
it is worth mentioning that a fractional-order controller is
able to adjust the slope of the Bode diagram shape arbitrarily,
whereas the IO controller can only adjust its slope by integer
multiples of 20 dB/decade.

To illustrate the different results of IO and FO calculus,
two typical functions f1(t) = 1 and f2(t) = t are introduced
as follows:

C. FRACTIONAL-ORDER NONSINGULAR TERMINAL
SUPER-TWISTING CONTROLLER
The tracking error is defined as below:{

ε1(t) = x1(t)− r(t)
ε2(t) = x2(t)− ṙ(t)

(20)

where ε1(t) and ε2(t) are angle tracking error and angle rate
tracking error, respectively. r(t) is the reference trajectory and
it is twice differentiable, continuous and bounded.

By employing the derivative on (20), the tracking error
system is obtained as{

ε̇1(t) = ε2(t)
ε̇2(t) = h(t)+ b0u(t)− r̈(t)

(21)
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Consider the following fractional-order nonsingular termi-
nal sliding manifold s ∈ Rn:

s = ε̇1 + α1Rχ1bε1e
γ1 + α2Rχ2−1bε1e

γ2 (22)

where parameters α1, α2, χ1, χ2, γ1, γ2 are positive.
Differentiating on both sides of the sliding manifold (22),

the following equation is gotten:

ṡ = ε̇2 + α1Rχ1+1bε1e
γ1 + α2Rχ2bε1e

γ2

= h(t)+ b0u(t)− r̈(t)

+α1Rχ1+1bε1e
γ1 + α2Rχ2bε1e

γ2 (23)

When neglecting the lumped disturbance h(t), by setting
ṡ = 0, the equivalent controller is obtained as follows

ueq =
1
b0

(r̈(t)− α1Rχ1+1bε1e
γ1 − α2Rχ2bε1e

γ2 ) (24)

A generalized super-twisting algorithm [44] which could
provide more robustness and faster convergence rate than
standard super-twisting algorithm is adopted.

ust =
1
b0

(−K1φ1(s)− K2

∫ t

0
φ2(s)dt) (25)

where φ1(s) and φ2(s) denote nonlinear functions with extra
linear correction terms based on [44]φ1(s) = bse

1/2
+ s

φ2(s) =
1
2
sign(s)+

3
2
bse1/2 + s,

(26)

K1 > 0, K2 > 0.
Consider the equivalent controller, the generalized

super-twisting algorithm and the ESO, the control input u is
designed containing three components ueq, ust and uob

u = ueq + ust + uob
ueq =

1
b0

(r̈(t)− α1Rχ1+1bε1e
γ1 − α2Rχ2bε1e

γ2 )

ust =
1
b0

(−K1φ1(s)− K2
∫ t
0 φ2(s)dt)

uob = −
z3
b0

(27)

By substituting (27), (28) into (23), the sliding manifold
dynamic system can be expressed as

ṡ = −K1φ1(s)− K2

∫ t

0
φ2(s)dt−e3 (28)

where e3 = z3 − h(t). Define zs1 and zs2 as the new state
zs1 = s
zs2 = −K2

∫ t
0 φ2(s)dt−e3

ė3 = −ḣ(t)− β3ϕ(e1) = −ρ
(29)

Then the closed-loop system dynamic in scalar form can be
written as {

żs1 = −K1φ1(s)+ zs2
żs2 = −K2φ2(s)+ ρ

(30)

According to Theorem 1, the observer error system is
finite-time bounded. So supposed |ρ| ≤ % with % ∈ R+.

FIGURE 2. Control block diagram.

Afterwards, the developed control strategy (27)(28) is pre-
sented in Fig.2.

The proof of stability of the controller based on
super-twisting algorithm is given in section IV.

IV. STABILITY ANALYSIS
A. CONVERGENCE OF ESO
Theorem 1: Consider the designed ESO (10) with

Assumption 1, there exist suitable parameters βi (i = 1,2,3)
and k1, k2, r such that{

βi > 0(i = 1, 2, 3), k1 > 0, k2 > 0, 0 < r < 1
5β1β2 − β3 > 0

(31)

is satisfied. The observation error system (16) converges to
zero in a finite time.

Proof: A Lyapunov candidate function is selected as

Ve = ηTPη (32)

where η = [ϕ(e1(t)), e2(t), e3(t)]T and the matrix P with
nonsingular and symmetric features is expressed as

P =

 β21 + β22 + β23 −β2 −β3−β2 2 0
−β3 0 2

 . (33)

Then Ve can be calculated as

Ve = β21ϕ
2(e1(t))+ e22(t)+ e

2
3(t)+ (β2ϕ2(e1(t))

−e2(t))2 + (β3ϕ2(e1(t))− e3(t))2 ≥ 0 (34)

whereVe is continuous and continuously differentiable every-
where when e1(t) 6= 0.

Taking the derivative of η with respect to time:

η̇ =

5(e2(t)− β1ϕ(e1(t)))
e3(t)− β2ϕ(e1(t))
−ḣ(t)− β3ϕ(e1(t))


= Aη + Bḣ(t) (35)

with

A =

−β1 1 0
−β2 0 1
−β3 0 0

 ,B =
 0
0
1

 .
The characteristic polynomial of A is obtained as

G(ζ ) = |ζ I−A| = ζ 3 + β15ζ 2 + β25ζ + β35 (36)
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where ζ is a Laplase variable. The observer gains βi
(i = 1,2,3), intermediate variable 5, and parameters k1, k2
should satisfy the conditions (32) such that A is a Hurwitz
matrix and all coefficients of G(ζ ) are positive.
Employing the derivative of Ve yields:

V̇e = η̇TPη + ηTPη̇
= (Aη + Bḣ(t))TPη + ηTP(Aη + Bḣ(t))
= ηT (ATP+ PA)η + 2ḣT (t) M0η (37)

where M0 = −BTP = [β3, 0,−2]. Let M = ||M0|| =√
β23 + 4, and |ḣT (t)| ≤ H . Since matrix A is pointwise Hur-

witz, there exists positive definite matrix Q which satisfies
the following equation.

ATP+ PA = −Q. (38)

A inequality based on (33) can be presented as follows

λmin{P}||η||2 ≤ Ve ≤ λmax{P}||η||2 (39)

with ||η||2 = ϕ2(e1(t))+ e22(t)+ e
2
3(t).

Then, according to (39), the derivative of Ve is rewritten as

V̇e ≤ −ηTQη + 2ḣTM0||η||

≤ −λmin{Q}||η||2 + 2HM ||η||

= −
1
2
(λmin{Q}||η|| − 4HM )||η|| −

1
2
λmin{Q}||η||2.

(40)

Note that the inequality ||η|| ≥ 4HM
λmin{Q}

is guaranteed by
properly selecting the parameters, the V̇e ≤ 0. Particularly,
according to (41), when ||η|| ≥ 4HM

νλmin{Q}
with 0 < ν < 1 is

guaranteed, one has that

V̇e ≤ −λ1||η||2 − λ2||η|| (41)

where λ1 = − 1
2λmin{Q}, λ2 =

2HM (1−ν)
ν

.
Substituting (40) into (42), and yields

V̇e ≤
λ1

λmax{P}
Ve −

λ2
√
λmax{P}

√
Ve. (42)

According to Lemma 1, the observation error (15) is able to
converge into the region {||η|| ≥ 4HM

λmin{Q}
} within finite time

T1. Besides, the upper reaching time is presented as follows

T1 ≤
2λmax{P}
λ1

In

λ1
λmax {P}

√
Ve(0)+

λ2√
λmax {P}

λ2√
λmax {P}

(43)

where Ve(0) is the initial value of Ve(e(t)). This completes the
proof.

B. CONVERGENCE OF THE CLOSED-LOOP SYSTEM
Theorem 2: Assume that there exist a positive and sym-

metric definite matrix ϒ = ϒT > 0 such that the matrix
inequality (45) or Algebraic Riccati Inequality (46)[

3Tϒ + ϒ3+ εϒ + R ϒBs + ST

BTs ϒ + S −F

]
≤ 0 (44)

3Tϒ + ϒ3+ εϒ + R

+(ϒBs + ST )F−1(BTs ϒ + S) ≤ 0 (45)

is satisfied. Then trajectories of the system state (30) con-
verge to origin in a finite time less than T2 for all bounded
perturbations satisfying |ρ| ≤ %.

T2 =
2
ε
In(

2
√
λmax{ϒ}

V 1/2
s (t0)+ 1). (46)

Proof: A Lyapunov function is considered as follows

Vs = ξTϒξ (47)

where ξ = [φ1(zs1), zs2]T . And ϒ = ϒT > 0 is a positive
definite, symmetric matrix and radially unbounded function
in R2. Note that φ2(zs1) = φ1(zs1)φ′1(zs1), and φ

′

1(zs1) =
(bzs1e1/2 + zs1). Then ξ̇ can be expressed as

ξ̇ = φ′1(zs1)

[
−K1φ1(zs1)+ zs2
−K2φ1(zs1)+

ρ

φ′1(zs1)

]
= φ′1(zs1)(3ξ + Bsρ̃) (48)

where

3 =

[
−K1 1
−K2 0

]
,Bs =

[
0
1

]
.

According to [44], a transformed perturbation ρ̃(t, ξ ),
t > 0 is satisfied with a sector condition for all ρ̃ ∈ R2 as
follows:

ω(ξ, ρ̃) =
[
ξ

ρ̃

]T [R ST

S −F

] [
ξ

ρ̃

]
(49)

where R, F are two positive constants, and S = [m n], m,
n are two constants.
A standard inequality is given as follows according to (48)

λmin{ϒ}||ξ ||
2
≤ Vs ≤ λmax{ϒ}||ξ ||2 (50)

where ||ξ ||2 = φ21 (zs1)+ z
2
s2 = |zs1|+2|zs1|3/2+|zs1|2+ z2s2.

Then the following equation is gained

|zs1|1/2 ≤ ||ξ || ≤
V 1/2
s (s)

λ
1/2
min{ϒ}

(51)

The derivative of the Lyapunov function is

V̇s = ξ̇Tϒξ + ξTϒξ̇

= {ξT (3Tϒ + ϒ3)ξ + ρ̃TBTs ϒξ + ξ
TϒBsρ̃}

= φ′1(zs1)
[
ξ

ρ̃

]T [
3Tϒ + ϒ3 ϒBs

BTs ϒ 0

] [
ξ

ρ̃

]
≤ φ′1(zs1)(

[
ξ

ρ̃

]T [
3Tϒ + ϒ3 ϒBs

BTs ϒ 0

] [
ξ

ρ̃

]
+ ω(ξ, ρ̃))

= φ′1(zs1)
[
ξ

ρ̃

]T [
3Tϒ + ϒ3+ R ϒBs + ST

BTs ϒ + S −F

] [
ξ

ρ̃

]
≤ −φ′1(zs1)εVs = −

1
2|zs1|1/2

εVs − εVs

≤ −
ελ

1/2
min{ϒ}

2
V 1/2
s − εVs (52)

where ε > 0, λ1/2min{ϒ} > 0. Thus, V̇s ≤ 0 holds. Since the
inequality above resembles with the inequality (7), according

45896 VOLUME 9, 2021



X. Zhou, X. Li: Trajectory Tracking Control for EOTS Using ESO-Based FO Sliding Mode Control

to lemma 1, the controller is capable of steering the system
state to zero in a time less than T2 (47).
Remark 1: Nonlinear function ϕ(e1(t)) (11) consists of

two parts k1 e1(t) and k2be1(t)e(r+1)/2.When k1 = 1 and k2 =
0, the designed nonlinear ESO reduces to the general linear
ESO (9). Note that the second term k2be1(t)e(r+1)/2 in (11) is
based on an continuous finite-time convergent differentiator
technique and exhibits a better chattering suppression per-
formance and a better observation accuracy than traditional
sliding mode observation [43]. For instance, if k1 e1(t) >
k2be1(t)e(r+1)/2 when the error system is far away from zero,
the term k1 e1(t) in (11) dominates. In contrast, if k1 e1(t) <
k2be1(t)e(r+1)/2 when the error system is very close to zero,
the second term in (11) dominates. Thus, the appropriate
selection of parameters r , k1, and k2 according to the appli-
cation will improve the results.
Remark 2: The FO differentiation and integration opera-

tors can be regarded as generalizations of their IO versions.
The designed FO sliding manifold is better than the IO
ones since that it is able to increase the degrees of freedom
of the sliding mode controller and the parameter adjust-
ment is more flexible, thus yielding better robustness and
tracking accuracy. It can be seen that when χ1 = 1 and
χ2 = 0, the FONTSM manifold s = ε̇1 + α1Rχ1bε1e

γ1 +

α2Rχ2−1bε1e
γ2 is degenerates to its special IO form s = ε̇1+

α1dbε1eγ1/dt + α2
∫
bε1e

γ2dt . Because that the additional
parameters χ1 and χ2 can be set arbitrarily, the designed
FO controller outperforms the IO controller in term of control
accuracy and robustness.
Remark 3: In the upper region of observation error ||η|| ≥

4HM
λmin{Q}

, because M = ||M0|| =

√
β23 + 4, and |ḣT (t)| ≤ H ,

the value of numerator 4HM depends on the parameter β3.
Moreover, the denominator λmin{Q} relies on parameters β1,
β2, β3 and r . Thus, when the parameter β3 is set correctly,
the numerator can be treated as a constant. Subsequently,
we can adjust β1, β2 and r to satisfy the condition (32) and
make the value of the denominator as large as possible. Note
that the upper region of the observation error ||η|| can be
decreased to a small and negligible value, hence, the observed
accuracy of the nonlinear ESO is sufficient.

V. EXPERIMENTAL STUDIES
A. EXPERIMENTAL SETUP
The experimental setup is depicted in Fig.3. It contains
mainly four parts: personal computer (PC), power supply
(24V), digital signal processor (DSP) controller and EOTS.
The schematic diagram of EOTS is presented in Fig.4, which
includes infrared camera, visible light television camera,
PMSM, driver magnetic Encoder (RENISHAW AksIM with
0.01◦ measurement accuracy).

The reference trajectory is given by a personal computer
(PC). The DSP controller receives the reference signals,
implements the proposed algorithm (Period: 1ms), and sends
the algorithm result to themotor driver. Next, the motor driver
amplifies the algorithm’s output and drives the PMSM in

FIGURE 3. The experimental setup.

FIGURE 4. The schematic diagram of EOTS.

the azimuth axis to track the desired trajectory. Additionally,
the FO terms in controller is implemented by the oustaloup
filter approximation method. The order of oustaloup filter is
selected as five order and the frequency range is choose as
0.001-100 rad/s.

1) CONTROLLER PARAMETERS
The method of selecting the parameters consists of the fol-
lowing three steps. First, we determined the parameters of
the ESO. The selection of β1−3, k1−2, and r for estimating
the lumped disturbance can substantially affect the control
performance. A large β1−3 indicates a large bandwidth, but
if it is too large, this leads to serious chattering in the control
results, whereas a value of β1−3 that is too small cannot
ensure stability. Hence, we selected the set of β1−3 and r
shown in Table 1 to ensure the accuracy of the observed
value without much chattering. We also adjusted k1−2 to
reduce the observed error slightly. Second, we determined
the parameters of the fractional-order nonsingular terminal
sliding manifold. The fractional-integral term Rχ2−1 can be
regarded as a low-pass filter. The value of χ2 is selected so
that the steady-state errors are reduced. However, a value of
χ2 that is too large will cause long-term integration, which
could result in a steady-state oscillations. Suitable values
of α2 and γ2, as listed in Table 1, will further reduce the
steady-state errors. For the fractional-differential term Rχ1 ,
the values of the fractional-differential parameter χ1 together
with those of α2 and γ2 listed in Table 1 are able to ensure

TABLE 1. Controller parameters.
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FIGURE 5. Results of the step trajectory experiment.

rapid response without overshoot. Third, the parameters of ust
were determined. An appropriate value of K1−2 can enhance
the robustness. However, a value that is too large may lead
to chattering. When the load changes, we can re-adjust the
value of K1−2 to handle it. Finally, based on the above discus-
sion, we selected a set of parameters to ensure high tracking
accuracy, good robustness, and rapid response. The values are
listed in Table 1.

2) EXPERIMENTS
The following four control methods are taken for exper-
imental comparison: Our developed control strategy; FIGURE 6. Results of the sinusoidal trajectory experiment.
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FIGURE 7. AAE and RMS of the sinusoidal trajectory experiment.

The NTSM control method [38]; The ESO based integral
sliding mode (ESO+ISM) method [39]; The ESO based
super-twisting sliding mode (ESO+STA) method [40].

The following four experiments were designed to evalu-
ate the effectiveness of the developed method. In the first
experiment, a step reference trajectory with two angles was
designed to evaluate the response speed. In the second exper-
iment, a sinusoidal reference trajectory was tested, and in the
third experiment, a triangular reference trajectory with two
angular velocities was employed. A higher angular velocity
indicates increased friction, enabling the friction compensa-
tion to be evaluated. In the fourth experiment, a 2 kg load
was added to the EOTS with the same triangular reference
trajectory used in the third experiment to check the robustness
of the system against uncertainties.

Furthermore, to make the compared results more convinc-
ing, the following calculations are introduced: the absolute
average error AAE = 1

N

∑N
i=1 |ε1(i)| and the root-mean-

square error RMS =
√∑N

i=1
ε21(i)
N .

B. EXPERIMENTAL RESULTS
1) STEP REFERENCE TRAJECTORY
In the first experiment, a step signal with two amplitudes,
5◦ and 20◦, is used as the predetermined reference tra-
jectory. The corresponding experimental results are shown
in Figs.5(a)-(c). Fig.5(a) shows the tracking results, and
Fig.5(b) presents the tracking errors. All four control meth-
ods are able to track the step reference trajectory accu-
rately without any overshoot, while still converging quickly.
In particular, because of the adopted FONTSMmanifold, our
proposed control strategy is faster than the other three control
methods for both the 5◦ and 20◦ signals. Fig.5(c) presents
the four control inputs. To avoid the actuator saturation,
the maximal control input is limited to 10 N · m by the
motor driver. Actuator saturation is considered in the case
of 20◦ and ignored in the case of 5◦. Analyzing the 20◦ results
further, our proposed control strategy has a shorter response
time (0.412 s) than the ESO+STA (0.562 s), ESO+ISM FIGURE 8. Results of the triangular trajectory experiment.
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FIGURE 9. AAE and RMS of the triangular trajectory experiment.

(0.544 s), and NTSM (0.566 s) methods. The results of the
step trajectory experiment are compared in Table 2.

TABLE 2. Comparison results of the step trajectory experiment.

2) SINUSOIDAL REFERENCE TRAJECTORY
In the second experiment, a sinusoidal angle with a peak
amplitude of 30◦ and frequency of 0.1 Hz was used as the
predetermined reference trajectory. The corresponding exper-
imental results are shown in Figs. 6(a)-(e). In Fig.6(a),
the four control approaches are all capable of tracking the
predetermined sinusoidal reference trajectory with very lit-
tle error. Fig.6(b) shows the tracking errors of the four
approaches. The maximal error peak occurs when the system
reaches the peak angle amplitude and changes direction. This
is caused by changes in the system from static friction to
dynamic friction. Because of the STA with the FONTSM
manifold, the error peaks converge to zero more rapidly than
in the other three methods. Owing to the designed ESO and
the super-twisting controller with the FONTSM manifold,
the proposed control strategy yields the smallest tracking
error over the entire motion procedure. Specifically, for AAE,
the one yielded by the developed control scheme is 42.8%,
24.0% and 6.3% of the ones by the ESO+STA, ESO+ISM,
and NTSM methods, respectively. For RMS, the result is
43.6%, 25.1%, and 7.2% of results for the ESO+STA,
ESO+ISM, and NTSM method, respectively. Fig.6(c) shows
that the observed result of z1 is easily able to capture the real
angle. Fig.6(d) shows the lumped disturbance z3, and Fig. 6(e)
shows the control efforts. The AAE and RMS values of the
comparative results of the four methods are shown in Fig.7.

3) TRIANGULAR REFERENCE TRAJECTORY
In the third experiment, a triangular signal with two angular
velocities of 10◦/s and 15◦/s is used as the predetermined
reference trajectory. The corresponding experimental results
are shown in Figs.8(a)-(e). The results in Fig.8(a) show that
the four control methods are able to track the predetermined
triangular reference trajectory with small errors. Fig.8(b)
presents the four tracking errors. The proposed nonlinear

FIGURE 10. Results of the triangular trajectory with load experiment.

ESO enables the developed control strategy to achieve the
smallest tracking error when the system is in the uniform
motion period. The maximal error peak occurs when the
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FIGURE 11. AAE and RMS of the triangular trajectory with load
experiment.

system is changing direction. Again, this is caused by changes
in the system from static friction to dynamic friction. Owing
to the proposed STA with the FONTSM manifold, the error
peaks converge to zero more quickly than for the other
three methods. Obviously, as the angular velocity increases,
the four tracking performances all degrade, which is caused
by the increased friction. However, the increase in tracking
error of the proposed control strategy is the smallest, and this
strategy performs the best over the entire tracking process,
regardless of whether the system is moving uniformly or
changing direction. Specifically, for AAE, the one yielded by
the developed control strategy is 53.6%, 32.1%, and 4.88% of
the ones by the ESO+STA, ESO+ISM, and NTSMmethods,
respectively. For RMS, the result is 66.2%, 44.5%, and 13.7%
of the results of the ESO+STA, ESO+ISM, andNTSMmeth-
ods. Fig.8(c) shows that the observed result of z1 is well able
to capture the real angle. In Fig.8(d), the lumped disturbance
z3 is presented. Fig.8(e) shows the control inputs. The AAE
and RMS values of the four methods are provided in Fig.9.

4) TRIANGULAR REFERENCE TRAJECTORY WITH LOAD
In the fourth experiment, a 2 kg load was added to the inner
frame of the EOTS to check the robustness against uncer-
tainties of the developed compound control strategy. The
reference trajectory is the same as that used in the third exper-
iment. In Fig.10(a), the trajectories with and without load
track the predetermined reference trajectory with little error.
Fig.10(b) shows the two tracking error curves. It can be seen
that the tracking error with the load is slightly larger than that
without the load. However, good control performance can still
be obtained under an extra 2 kg load. Specifically, the with-
load AAE increases by 0.2%. For RMS, the with-load result
shows an increase of 0.2%. Fig.10(c) shows system state z3,
which estimates the lumped disturbance. Owing to the extra
load, the lumped disturbance increases such that with-load z3
is slightly larger than without-load z3. Fig.10(d) presents the
two control inputs. To ensure control accuracy with an extra
load, the with-load control input requires a slightly larger
control effort to handle the additional uncertainties. However,
the two control inputs consume the same level of control
torque. Fig.11 compares the AAE and RMS results with and
without the load.

VI. CONCLUSION
This study proposed a nonlinear ESO based FO nonsingular
terminal super-twisting SMC strategy designed for an EOTS
with disturbances and unknown uncertainties. By applying
the newly developed nonlinear ESO, the lumped disturbances
of the system could be estimated without requiring explicit
knowledge of the system model. The use of the NTSM guar-
antees the fast dynamical response of the control system.
The use of FO calculus gives the controller a more flexible
structure and a superior control and more robustness than
its IO counterpart. In addition, the super-twisting sliding
mode algorithm is integrated into the controller to increase
the tracking accuracy and robustness. The finite-time con-
vergence performance of both the developed nonlinear ESO
and the system tracking error were analyzed using Lyapunov
stability theory. Comparative experiments were conducted to
evaluate the effectiveness of the developed control strategy,
whichwas shown to be superior to the existingNTSMmethod
in [38], the ESO+ISM method in [39], and the ESO+STA
method in [40]. The results illustrate that our developed con-
troller is capable of achieving faster response, higher tracking
accuracy, and better robustness than the existing methods.
In future studies, we will consider integrating some adap-

tive laws into the developed controller to reduce the chat-
tering, raise the tracking accuracy, and further improve the
control performance.
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