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ABSTRACT The problem of selecting an optimal set of sensors estimating a high-dimensional data is
considered. Objective functions based on D-, A-, and E-optimality criteria of optimal design are adopted
to greedy methods, that maximize the determinant, minimize the trace of the inverse, and maximize the
minimum eigenvalue of the Fisher information matrix, respectively. First, the Fisher information matrix
is derived depending on the numbers of latent state variables and sensors. Then, a unified formulation of
the objective function based on A-optimality is introduced and proved to be submodular, which provides
the lower bound on the performance of the greedy method. Next, greedy methods based on D-, A-, and
E-optimality are applied to randomly generated systems and a practical dataset concerning the global climate;
these correspond to an almost ideal and a practical case in terms of statistics, respectively. The D- and
A-optimality-based greedy methods select better sensors. The E-optimality-based greedy method does not
select better sensors in terms of the index of E-optimality in the oversample case, while the A-optimality-
based greedy method unexpectedly does so in terms of the index of E-optimality. The poor performance of
the E-optimality-based greedy method is due to the lack of submodularity in the E-optimality index and
the better performance of the A-optimality-based greedy method is due to the relation between A- and
E-optimality. Indices of D- and A-optimality seem to be important in the ideal case where the statistics
for the system are well known, and therefore, the D- and A-optimality-based greedy methods are suitable
for accurate reconstruction. On the other hand, the index of E-optimality seems to be critical in the more
practical case where the statistics for the system are not well known, and therefore, the A-optimality-based
greedy method performs best because of its superiority in terms of the index of E-optimality.

INDEX TERMS Data-driven, sparse sensor optimization, greedy method, optimal experimental design.

I. INTRODUCTION
The development of an accurate and efficient model for esti-
mation, prediction, and control of complex phenomena is an
open challenge in various scientific and industrial domains.
By virtue of innovations in measurement equipment and tech-
nology, it is possible to obtain vast amounts of data, such as
seismic data concerning earthquake phenomena and environ-
mental data from remote platforms using satellites. However,
these phenomena may involve multidimensional states over
various timescales. It is impractical to process the full-state
measurements in real time because this is computationally
expensive and therefore not conducive to fast state estimation
for low-latency and high-bandwidth control.
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To navigate this issue, dimensionality reduction is a
promising approach. There are often a few dominant low-
dimensional patterns, which may well explain the high-
dimensional data, in many natural science systems. Singular
value decomposition (SVD) provides a systematic way
to determine a low-dimensional approximation of high-
dimensional data based on proper orthogonal decomposi-
tion (POD) [1], [2]. Thus, SVD enables us to exploit the
significant POD modes in the data for low-dimensional
representations.

Sparse sensing is also important because the number
of sensors is often limited because of the cost associ-
ated with their placement and computational constraints.
Low-dimensionally approximated full states can be recon-
structed from a small subset of measurements by sparse
sensors. Thus, it is important to optimize sensor placement
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TABLE 1. Summary of proposed optimization methods for sensor selection.

to exploit significant low-dimensional patterns based on
efficient reduced-order models. This idea was adopted by
Manohar et al. [3], and a sparse-sensor-placement algorithm
has been developed and discussed [4], [5]. Furthermore, sen-
sor selection based on POD is a data-driven approach without
the requirement for governing equations. Such data-driven
sensing generally needs to determine the optimal sensor
locations from a large amount of candidates. Hence, a fast
greedy optimizationmethod is required for high-performance
computing or feedback control.

The optimal sensor selection problem is closely related
to the optimal design of experiments, which provides small
values of the variances of estimated parameters and predicted
response [13]. Depending on the statistical criterion of opti-
mal experimental design, the objective function of sensor
selection problems is defined using the Fisher information
matrix, which corresponds to the inverse of the covariance
matrix of an estimator. Table 1 shows various optimization
methods typically used for the sensor selection problem
from the perspective of optimal design. The most impor-
tant design criterion is that of D-optimality, in which the
determinant of the Fisher information matrix is maximized.
Here, ‘D’ stands for ‘determinant.’ This criterion results in
minimization of the volume of the confidence ellipsoid of the
regression estimates. Joshi and Boyd adopted D-optimality
in a sensor selection problem. They proposed to utilize a
convex relaxation method and solved the approximate prob-
lem of D-optimal design [6]. This algorithm was recently
improved with the development of a randomized algo-
rithm [7]. Manohar et al. [3] proposed a greedy method based
on the discrete-empirical-interpolation method (DEIM) and
QR-DEIM (QDEIM) [14], [15]; these are methods in the
framework of reduced-order modeling using sparse sampling
points. Manohar et al. showed that this method was advanta-
geous in terms of being significantly faster than the convex
optimization method [3]. Their greedy method optimizes
the sensor location by QR-pivoting the row vector of the

sensor-candidate or related matrix. This greedy method was
shown [16] to correspond to selecting the row vector the norm
of which is the maximum and eliminating its component
from the rest of the matrix using a Gram-Schmidt procedure,
though QR implementation is much faster in practical con-
texts.More recently, Saito et al. [8]mathematically illustrated
that the objective function adopted by Manohar et al. [3]
corresponds to the maximization of the D-optimality objec-
tive function when the number of sensors is less than the
number of state variables, and derived a unified expression
of the objective function based on D-optimality regardless
of the number of sensors. Furthermore, they successfully
proposed an efficient greedy method based on D-optimality:
a hybrid of greedy methods based on QR decomposition and
the straightforward maximization of the determinant in the
case where the number of sensors is less and greater than
that of state variables, respectively. The proposed method
is confirmed to provide nearly optimal sensors as well as
the convex approximation method but significantly reduces
the computational cost compared to the convex approxima-
tion method and QR-based greedy method [8]. In addition,
a greedy method for sensor selection problems under cor-
related noise has also been developed in the framework of
extended D-optimality [9]. Thus, previous studies have pro-
vided valuable knowledge on the sensor selection problem in
the context of D-optimality.

There are a variety of criteria for optimal design. Two other
criteria that have a statistical interpretation in terms of the
information matrix are A- and E-optimality. In A-optimality,
the trace of the inverse of the information matrix, which
corresponds to the total variance of the parameter estimates,
is minimized. It is equivalent to minimization of the ‘average’
variance, hence ‘A’ stands for ‘averaged.’ In E-optimality,
the maximum eigenvalue of the information matrix is min-
imized, which minimizes the worst-case variance of esti-
mation error, where ‘E’ stands for ‘eigenvalue.’ Objective
functions based on these criteria have been introduced
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in [6], [13], and greedy methods based on D-, A-, and
E-optimality have been adopted in combinatorial optimiza-
tion problems [10], [11]. Krause et al. [10] compared
placements using greedy methods based on D-, A-, and
E-optimality with those using the proposed method, which
maximizes the mutual information between the chosen
sensors and the candidate sensor for the Gaussian pro-
cess regression. The results of numerical experiments show
that the proposed method tends to outperform the classi-
cal D-, A-, and E-optimal design, and the performance of
the D-, A-, and E-optimality-based greedy methods varies
depending on the problem. Moreover, Nguyen et al. [11]
extended their method in the context of A-optimality, and
proposed a separable optimization approach, which only
depends on spatial variations in spatio-temporal environ-
ments, in order to reduce the computational complexity of
the optimization problem. However, in the previous stud-
ies [10], [11], the performance characteristics of the greedy
methods based on D-, A-, and E-optimality were not dis-
cussed in detail. Furthermore, since the latent state variables
are equipped with prior information (averaged value and
variance), and the problem is regularized from the selection
of the first sensor, the formulation for the greedy sensor
selection for the underdetermined situation has not been
derived. Note that the formulation based on D-optimality
has been discussed in Saito et al. [8]. Thus, to the best of
our knowledge, the greedy method and its performance for
A- and E-optimality in underdetermined situations has not yet
been investigated.

For linear dynamical systems, objective functions based
on D-, A-, and E-optimal design were adopted in
Summers et al. [17]. The determinant, trace, and minimum
eigenvalue of the controllability Gramian, which corresponds
to the Fisher information matrix for non-dynamical systems,
are considered. Similar to linear dynamical systems, it is
also important to understand the characteristics of objective
functions for the reconstruction of snapshots of systems. This
would provide more fundamental knowledge for the sparse
sensor selection problem.

The aim of this study is to obtain insights into the objective
functions suitable for the sparse sensor selection problem,
especially focusing on the reconstruction of snapshots of
high-dimensional data by the greedy method. For this pur-
pose, greedy methods based on D-, A-, and E-optimality
including the underdetermined situation are proposed and
described, and evaluated in terms of their performance.
Firstly, the submodularity of objective functions is investi-
gated. Next, the performance of the greedy methods based
on D-, A-, and E-optimality is evaluated with respect to
two problems with ideal and nonideal conditions in terms
of statistical assumptions. The indices of optimality criteria,
reconstruction error, and computational cost are compared.
The main contributions of the paper are as follows:
• The Fisher information matrix for underdetermined
cases is derived in the observable subspace of the mea-
surement matrix in Section II.

FIGURE 1. Graphical image for sensor matrix H on (1) [8].

• Objective functions based on A- and E-optimality for
both underdetermined and overdetermined situations are
derived in Section II-B and II-C. Greedy methods based
onA- and E- optimality in the underdetermined situation
without regularization terms are introduced for the first
time; in previous studies, they have only been discussed
for the overdetermined situation.

• A unified formulation of the objective function based on
A-optimality is introduced and proved to be submodular,
which provides the lower bound on the performance of
the greedy method in Section III-B. On the other hand,
the objective function based on E-optimality is proved
to be neither submodular nor supermodular while it is
monotone in the overdetermined case in Section III-C.

• Greedy methods based on D-, A-and E-optimality are
adopted with respect to ideal and nonideal problems in
terms of the statistics, and guidance on selecting a suit-
able objective function for a given dataset and situation
is provided in Section IV.

II. FORMULATION AND ALGORITHMS FOR SENSOR
SELECTION PROBLEM
We consider the linear system given by

y = HUz = Cz, (1)

where y ∈ Rp, H ∈ Rp×n, U ∈ Rn×r , z ∈ Rr , and C ∈ Rp×r

are the observation vector, the sparse sensor location matrix,
and the sensor candidate matrix, the latent state vector, and
the measurement matrix (C = HU), respectively. Here,
the element corresponding to the sensor location is unity
and the others are 0 in each row of H . In addition, p, n, and r
are the number of sensors, the number of spatial dimensions,
and the number of latent state variables, respectively. The
system above represents the problem of choosing p observa-
tions out of n sensor candidates for the estimation of the state
variables. The various sensor selections can be expressed by
changing H and by selecting row vectors as sensors from
the sensor candidate matrix U . A graphical image of the
foregoing equation is shown in Fig. 1.

The estimated parameters ẑ can be obtained by the pseudo-
inverse operation when uniform independent Gaussian noise
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N (0, σ 2I) is imposed on the observations as follows:

ẑ = C+y =

{
C>

(
CC>

)−1
y, p ≤ r(

C>C
)−1

C>y, p > r
. (2)

The covariance matrix of estimation error is expressed as
follows:

E
[(
z− ẑ

) (
z− ẑ

)>]
=

{
(I − PC )E[zz>](I−PC )+σ 2C>

(
CC>

)−2
C, p ≤ r,

σ 2
(
C>C

)−1
, p > r,

(3)

where PC = C>(CC>)−1C is the projection matrix onto the
row vector space of C. Here, the estimation error in the case
where p < r is further considered in the observable subspace
by the transformation. The full singular value decomposition
of C is given as follows:

C = UC6CV>C

=


UC

[
6̃C 0

] [ṼC
>

V̄C
>

]
, p ≤ r,

UC

[
6̃C

0

]
ṼC
>
, p > r .

(4)

The coordinate transform by ζ = ṼC
>
z is considered,

whereas VC is an orthonormal (or unitary) matrix and the
amplitude of the error in the observable subspace does not
change. This transformation only gives the observable com-
ponents in the latent state vector. The error in ζ becomes as
follows:

E
[(
ζ − ζ̂

) (
ζ − ζ̂

)>]
=

{
σ 2U>C

(
CC>

)−1
UC , p ≤ r,

σ 2ṼC
> (

C>C
)−1

ṼC , p > r .
(5)

Here, the only error covariance in the observable space is
obtained in the case of p ≤ r and the amplitude of the
error covariance matrix is given by (CC>)−1 because row
vectors in ṼC

>
are orthonormal to each other and their

absolute value is unity. Here, the first term of (3) in the
case of p < r disappears in (5) because the term only
has components in the unobservable space. In the optimal
design, the error covariance matrix and its inverse, the latter
of which corresponds to the Fisher information matrix, are
employed, and the optimality criteria are provided. Sensor
selection problems can be defined based on the optimality
criterion. There are a variety of optimality criteria, several of
which are addressed hereafter.

A. OBJECTIVE FUNCTION BASED ON D-OPTIMALITY
A D-optimal design maximizes the determinant of the Fisher
information matrix. It is equivalent to minimizing the deter-
minant of the error covariancematrix, resulting inminimizing

the volume of the confidence ellipsoid of the regression esti-
mates of the linear model parameters. Therefore, the problem
can be expressed as the optimization problem

maximize fD

fD =

{
det

(
CC>

)
, p ≤ r,

det
(
C>C

)
, p > r .

(6)

All the combinations of p sensors out of n sensor candidates
should be searched by a brute-force algorithm for the real-
optimized solution of (6), which takes an enormous amount
of computational time (O(n!/(n− p)!/p!) ≈ O(np)). Instead,
greedy methods for the suboptimized solution have been
devised by adding a sensor step by step. For the D-optimal
criterion, the objective function for the greedy method has
already been demonstrated in the literature [8].

B. OBJECTIVE FUNCTION BASED ON A-OPTIMALITY
AnA-optimal designminimizes the mean square error in esti-
mating the parameter z. Hence, the objective function is the
trace of the error covariance matrix in A-optimal design. The
sensor selection problem can be expressed as the following
optimization problem:

minimize fA

fA =

tr
[(
CC>

)−1]
, p ≤ r,

tr
[(
C>C

)−1]
, p > r .

(7)

In the step-wise selection of the greedy method, selection
of only the kth sensor is carried out in the kth step under
the condition that the sensors up to (k − 1)th are already
determined. Let S ⊂ {1, 2, . . . , n} be a set of labels of
selected sensors and CS be the corresponding sensor matrix.
Specifically, if S = {i1, i2, . . . , ik}, then CS is given by

CS = Ck =
[
u>i1 u

>
i2
· · · u>ik

]>
, (8)

where uik is the corresponding row vector of the sensor-
candidate matrixU . Therefore, the sensor index chosen in the
kth step of the greedy method can be described as follows:

ik = arg min
ik

fAG,

where

fAG =

tr
[(
CkC>k

)−1]
, p ≤ r,

tr
[(
C>k Ck

)−1]
, p > r .

(9)

In the case of p ≤ r ,

tr
[(
CkC>k

)−1]
= tr

[([
ccCk−1
uik

] [
C>k−1 u

>
ik

])−1]

= tr
[(
Ck−1C>k−1

)−1]
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+tr

(Ck−1C>k−1
)−1

Ck−1u>ikuikC
>

k−1

(
Ck−1C>k−1

)−1
uik
(
I − C>k−1

(
Ck−1C>k−1

)−1
Ck−1

)
u>ik


+tr

 1

uik
(
I − C>k−1

(
Ck−1C>k−1

)−1
Ck−1

)
u>ik

 . (10)

Here, it is not necessary to evaluate the first term of (10) of
the last equation since

(
Ck−1C>k−1

)−1
is already determined

in the kth step. Considering the cyclic property of trace,
the greedy methods can be simply written as follows:

ik = arg min
ik

×
uikC

>

k−1

(
Ck−1C>k−1

)−2
Ck−1u>ik + 1

uik
(
I − C>k−1

(
Ck−1C>k−1

)−1
Ck−1

)
u>ik

, p ≤ r .

(11)

In the case of p > r ,

tr
[(
C>k Ck

)−1]
= tr

[(
C>k−1Ck−1 + u>i ui

)−1]
= tr

[(
C>k−1Ck−1

)−1]
−tr

[(
C>k−1Ck−1

)−1
u>i

(
1+ui

(
C>k−1Ck−1

)−1
u>i

)−1
× ui

(
C>k−1Ck−1

)−1]
. (12)

Taking into account the fact that the first term of (12) does
not contribute in the kth sensor selection, the greedy method
can again be simply written as follows:

ik = arg min
ik

−
ui
(
C>k−1Ck−1

)−2
u>i

1+ ui
(
C>k−1Ck−1

)−1
u>i
, p > r . (13)

In summary, the greedy method can be written as follows:

ik=


arg min

ik

uikC
>

k−1

(
Ck−1C>k−1

)−2
Ck−1u>ik+1

uik

(
I−C>k−1

(
Ck−1C>k−1

)−1
Ck−1

)
u>ik
, p ≤ r,

arg min
ik

−
ui
(
C>k−1Ck−1

)−2
u>i

1+ui
(
C>k−1Ck−1

)−1
u>i
, p > r .

(14)

C. OBJECTIVE FUNCTION BASED ON E-OPTIMALITY
An E-optimal design minimizes the worst-case variance of
estimation error, which corresponds to the maximum eigen-
value of the Fisher information matrix. Therefore, the sensor
selection problem can be expressed as the following opti-
mization problem:

maximize fE

fE =

{
λmin

(
CC>

)
, p ≤ r,

λmin
(
C>C

)
, p > r .

(15)

The sensor index chosen in the kth step of the greedy method
can be written as follows:

ik = arg max
ik

fEG,

where

fEG =

{
λmin

(
CkC>k

)
, p ≤ r,

λmin
(
C>k Ck

)
, p > r .

=

λmin

([
Ck−1

uik

] [
C>k−1 u

>
ik

])
, p ≤ r,

λmin
(
C>k−1Ck−1 + u>i ui

)
, p > r .

(16)

III. SUBMODULARITY AND APPROXIMATION RATE
In what follows, the objective functions are mathematically
redefined as set functions and their structural properties are
explored. Submodularity in the set functions plays an impor-
tant role in combinatorial optimization and provides a lower
bound of the greedy method.

A modular function has the property that each element of
a subset provides an independent contribution to the function
value. If the objective function is modular, it is straightfor-
ward to solve the optimization problem by the greedy method
by evaluating the objective function in a step-by-step manner.
On the other hand, also for monotone increasing submodular
functions, which are NP-hard, the greedy method can be
utilized to obtain a solution that is likely to be close to the
optimal solution.
Definition 1 (Submodularity): The function f : 2{1,2,...,n}

→ R is called submodular if for any S,T ⊂ {1, 2, . . . , n}
with S ⊂ T and i ∈ {1, 2, . . . , n} \ T , the function f satisfies

f
(
S ∪ {i}

)
− f (S) ≥ f

(
T ∪ {i}

)
− f (T ). (17)

Definition 2 (Monotonicity): The function f : 2{1,2,...,n}→
R is called monotone increasing if for any S,T ⊂

{1, 2, . . . , n} with S ⊂ T and i ∈ {1, 2, . . . , n} \ T , the func-
tion f satisfies

S ⊂ T ⇒ f (S) ≤ f (T ). (18)

The performance of the greedy method is guaranteed by
a well-known lower bound when the objective function is
monotone and submodular. Nemhauser et al. have proved that
the following inequality holds [18]:

f (Sgreedy) ≥
(
1−

(
1−

1
k

))k
f (Sopt)

≥

(
1−

1
e

)
f (Sopt)

≥ 0.63 f (Sopt), (19)

where k denotes the number of sensors, Sopt is an optimal
solution, and Sgreedy is the solution obtained from applying
the greedy method.

We now evaluate the submodularity and monotonicity of
objective functions introduced in the previous section.
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A. OBJECTIVE FUNCTION BASED ON D-OPTIMALITY
Saito et al. derived a unified expression of the objective
function in both cases where p ≤ r and p > r for
D-optimality. The objective function in (6) is redefined to be
det

(
C>C + εI

)
, where ε is a sufficiently small number. It has

been proved to be the monotone submodular function [8].

B. OBJECTIVE FUNCTION BASED ON A-OPTIMALITY
We now consider the trace of the error covariance matrix in
A-optimal design. Similar to the previous study [8], we first
introduce the unified formulation for both cases in which the
number of sensors is less than or equal to that of the modes
and the number of sensors is greater than that of the modes.

arg min tr
[(
C>C + εI

)−1]
= arg min tr

[
−
1
ε
CC>

(
εI + CC>

)−1]
+
r
ε

= arg min tr

[
−

1
ε

(
εI + CC>

) (
εI + CC>

)−1
+
(
εI + CC>

)−1
]
+
r
ε

= arg min tr
[
−
1
ε
I +

(
εI + CC>

)−1]
+
r
ε

= arg min tr
[(
εI + CC>

)−1]
+
r − p
ε

≈ arg min tr
[(
CC>

)−1]
(20)

Therefore, the present objective function for the case where
p < r can be considered to be an asymptotic formula-
tion of the unified objective function with a sufficiently
small regularization term. For the proof of submodularity and
monotonicity in this section, the function with the regular-
ization term is employed as the objective function based on
A-optimality hereafter.

Define a function fA : 2{1,2,...,n}→ R by

fA(S) = −tr
[(
C>S CS + εI

)−1]
+

r
ε
. (21)

for each S ⊂ {1, 2, . . . , n}. An offset term r/ε is added so
that the value of f for the empty set could be regarded as
fA(∅) = 0.
Proposition 1: fA defined by (21) is submodular.
Proof: Take arbitrary S,T ⊂ {1, 2, . . . , n} such that

S ⊂ T . For simplicity of notation, let us set A := C>S CS +εI
and B := C>S CS + u>i ui + εI . It follows from the definition
of fA that, for any i ∈ {1, 2, . . . , n} \ T ,

fA(S ∪ {i})− f (S)A

=−tr
[(
C>S CS + u>i ui + εI

)−1]
+ tr

[(
C>S CS + εI

)−1]
= tr

(
A−1 − B−1

)
. (22)

Due to the positive definiteness of A, the value of (22) is
positive for any ui 6= 0. We next evaluate f (T ∪ {i}) − f (T ).

Since S ⊂ T , there exits a permutation matrix P such that

PCT =

[
CS
CT\S

]
. (23)

Hence, we have

C>T CT = C>T P
>PCT = C>S CS + C

>

T\SCT\S , (24)

where the fact P>P = I has been used. Direct computation
together with (24) gives

f (T ∪ {i})− f (T )

= −tr
[(
C>T CT + u>i ui + εI

)−1]
+ tr

[(
C>T CT + εI

)−1]
= tr

[(
A+ C>T\SCT\S

)−1]
− tr

[(
B+ C>T\SCT\S

)−1]
= tr

[
A−1 − A−1C>T\S

(
I+CT\SA−1C>T\S

)−1
CT\SA−1

]
−tr

[
B−1 − B−1C>T\S

(
I + CT\SB−1C>T\S

)−1
CT\SB−1

]
.

(25)

Therefore,

f (S ∪ {i})− f (S)− f (T ∪ {i})+ f (T )

= tr
[
A−2C>T\S

(
I + CT\SA−1C>T\S

)−1
CT\S

]
−tr

[
B−2C>T\S

(
I + CT\SB−1C>T\S

)−1
CT\S

]
≥ tr

[
A−2C>T\S

(
I + CT\SA−1C>T\S

)−1
CT\S

]
−tr

[
B−2C>T\S

(
I + CT\SA−1C>T\S

)−1
CT\S

]
= tr

[(
A−2 − B−2

)
C>T\S

(
I + CT\SA−1C>T\S

)−1
CT\S

]
,

(26)

where the fact that the trace of a positive semidefinite
matrix is nonnegative and the following semidefiniteness are
adopted for the derivation of the inequality of the second to
third equation.

C>T\S
(
I + CT\SA−1C>T\S

)−1
CT\S

−C>T\S
(
I + CT\SB−1C>T\S

)−1
CT\S � 0. (27)

Since

A−2 − B−2 � 0 (28)

and

C>T\S
(
I + CT\SA−1C>T\S

)−1
CT\S � 0, (29)

the trace of the product of a positive and nonnegative semidef-
inite matrix is nonnegative. This completes the proof. �
Proposition 2: fA defined by (21) is monotone increasing.
Proof: For given S,T ⊂ {1, 2, . . . , n} with S ⊂ T ,

it is clear that (22) holds also for any i ∈ T \ S.

46736 VOLUME 9, 2021



K. Nakai et al.: Effect of Objective Function on Data-Driven Greedy Sparse Sensor Optimization

Hence, f (S ∪ {i}) − f (S) ≥ 0. Similarly, we can show that
f (S ∪ {i} ∪ {j}) − f (S) ≥ 0 for j ∈ T \ (S ∪ {i}). Repeated
application of this argument yields f (S) ≤ f (T ), which is the
desired conclusion. This completes the proof. �

C. OBJECTIVE FUNCTION BASED ON E-OPTIMALITY
We demonstrate the property of the objective function based
on E-optimality, given by (15). The objective function returns
the minimum eigenvalue of the Fisher information matrix.

We first show by counterexample that the objective func-
tion fails to be submodular. If it is submodular, adding a
sensor to a subset where a smaller number of sensors is
selected gives a higher increment in the minimum eigenvalue
than adding one to a subset where a larger number of sensors
is selected. Let us set r = 3 and n= 10, and consider a sensor
candidate matrix U defined by

U =


u1
u2
u3
u4
u5
u6

 =


0.2 −0.1 −0.2
−0.5 −0.1 0.2
−0.2 0.3 0.2
−0.5 0.3 −0.3
−0.4 −0.3 −0.4
0.3 0 0

 .

Suppose the measurement matrices where 3, 4, and 5 sensors
are selected given by

C3 =
[
u>1 u>2 u>3

]>
,

C4 =
[
u>1 u>2 u>3 u>4

]>
,

C5 =
[
u>1 u>2 u>3 u>4 u>5

]>
.

Then, comparing the increment in the minimum eigenvalue
by adding a sensor, we obtain

λmin
(
C3p

)
− λmin (C3) > λmin

(
C4p

)
− λmin (C4) , (30)

where

C3p =

[
C3
u5

]
, C4p =

[
C4
u5

]
,

and

λmin
(
C4p′

)
− λmin (C4) < λmin

(
C5p′

)
− λmin (C6) , (31)

where

C4p′ =

[
C4
u6

]
,C5p′ =

[
C5
u6

]
.

Since (30) and (31) correspond to submodularity and
supermodularity, respectively, the objective function based
on E-optimality is neither submodular, supermodular, nor
modular.

We now turn to the monotonicity of (15). There is a well-
known theorem which shows the lower bound in the mini-
mum eigenvalue by rank-one modification of the Hermitian
matrix [19]. According to the theorem, the objective function
based on E-optimality is monotone increasing in the case
of p > r . Note that the minimum value of the eigenvalues
of CC> is not monotone in the case of p ≤ r because

if an eigenvalue is newly added into the system it can be
lower or higher than the minimum eigenvalue of the previous
subset.

IV. RESULTS AND DISCUSSION
In this section, the performance of sparse sensor selection
methods based on different optimality criteria and schemes is
evaluated. The results of numerical experiments on randomly
generated systems and on a practical dataset of global ocean
surface temperature are illustrated.
The performance of each method depends on the charac-

teristics of the dataset and situation. Therefore, numerical
experiments under two different conditions are conducted
and guidance on selecting a proper objective function is put
forward for these differing contexts. These problems are the
minimum set, but they clearly show the characteristics of the
greedy methods with three sensor selection criteria adopted
in the present study, i.e., D-optimality, A-optimality, and
E-optimality. The first problem is sensor selection for the
estimation of the latent state variables given by the Gaussian
distribution on randomly generated systems, which is the
ideal case where the statistical assumption for the system
is valid. The second problem is conducted using a practical
dataset concerning global ocean surface temperature, and
it focuses on sensor selection for the estimation of mode
strengths as latent state variables under the situationwhere the
test data are different from the training data. It corresponds
to the nonideal case where the statistical assumption for the
system is not valid as in the cross-validation study.

TABLE 2. Sensor selection methods investigated in this study.

Four methods are compared: the D-optimality-based
greedy (DG) method, the A-optimality-based greedy (AG)
method, the E-optimality-based greedy (EG) method, and
the D-optimality-based convex relaxation (DC) method listed
in Table 2. The comparison between the DG, AG, and EG
methods provides insights into the characteristics of three
sensor selection criteria when they are used in conjunction
with the greedy method. The DGmethod which is efficient in
terms of computational time was proposed by Saito et al. [8].
In the DGmethod, the sensors are determined by maximizing
the determinant of (6) for each step in the case where p > r ,
and on the other hand, QR pivoting [3] is employed in the case
where p ≤ r since QR implementation for the greedy method
is much faster than the straightforward implementation of
the greedy method maximizing (6). Furthermore, ‘‘eig’’ and
‘‘min’’ functions in MATLAB R2020a are employed and the
minimum eigenvalue is obtained in the EG method. The DC
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TABLE 3. Computational environment.

method corresponds to the D-optimality-based convex relax-
ation method proposed by Joshi and Boyd [6]. TheMATLAB
code is available on Github [20]. The numerical experiments
are conducted under the computational environment listed
in Table 3.

A. PERFORMANCE ON RANDOM SYSTEMS
In this subsection, randomly generated data are considered
and the performance of the sparse sensor selection methods
listed in Table 2 is evaluated. The random sensor-candidate
matrices, U ∈ Rn×r , are set where the component of the
matrices is given by the Gaussian distribution ofN (0, 1) with
n= 2000 and r = 10, and the p sparse sensors are selected by
each method. Then, the values of indices utilized for optimal
criteria, i.e. the determinant, the trace of the inverse, and the
minimum eigenvalue of the Fisher information matrix are
evaluated. In addition, the latent state variables are recon-
structed using the sparse sensors selected by each method in
order to compare the estimation accuracy. Each component
of the latent state variables vector, z ∈ Rr×m, is given by the
Gaussian distribution of N (0, 1) with r = 10 and m = 1 in
this error evaluation test. The computational time required to
obtain the sparse sensors by each method is also compared.

FIGURE 2. Normalized determinant of CC> (p ≤ r ) or C>C (p > r ) against
the number of sensors for random systems.

First, the optimal indices for sensors selected by each
method are demonstrated. Figs. 2, 3, and 4 show the rela-
tionship between the number of sensors and three indices:
the determinant, the trace of the inverse, and the mini-
mum eigenvalue of the Fisher information matrix, that is,

FIGURE 3. Normalized trace of
(
CC>

)−1
(p ≤ r ) or

(
C>C

)−1
(p > r )

against the number of sensors for random systems. The results of the
random selection are omitted because they are larger than the plotted
range.

FIGURE 4. Normalized minimum eigenvalue of CC> (p ≤ r ) or C>C
(p > r ) against the number of sensors for random systems. The results of
the random selection are omitted because they are smaller than the
plotted range.

CC> = HUU>H> (p ≤ r) andC>C = U>H>HU (p > r),
respectively. The results of the DG, AG, EG, DC, and random
selection methods are plotted together for comparison. Note
that the results obtained from the random selection method
are not plotted in Figs. 3 and 4 because the values of the trace
of the inverse and minimum eigenvalue are larger and smaller
than the range of the figures, respectively. The values plotted
in Figs. 2, 3, and 4 are averages over 2000 random samples
and normalized by those of the DG method since this study
focuses particulary on evaluating methods based on A- and
E-optimality in comparison with that based on D-optimality.

Fig. 2 reveals that the determinant obtained by the DG
method is higher than that obtained by the AG and EG meth-
ods for any number of sensors. This indicates that the greedy
method utilizing the objective function based onD-optimality
is the most suitable for the maximization of the determinants,
as expected. Fig. 2 also demonstrates that the sensors selected
by the AG method are superior to those selected by the EG
method in terms of maximizing the determinant.
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Fig. 3 shows that the sensors selected by the AG method
work better for minimizing the trace of the inverse in the case
where p ≤ 12 compared to the DG and EG methods. The AG
method works as well as the DG method in the case where
p > 12. Note that the trace of the inverse obtained by the
AG method, which is dedicated to minimizing the trace of
the inverse, is slightly higher than that obtained by the DG
methodwhen p exceeds 12. This is mainly because the greedy
method does not obtain a combinatorial optimized solution
but a suboptimal one in a step-by-step manner. On the other
hand, the sensors selected by the EG method have signifi-
cantly higher trace of the inverse in the case where p > 10
compared to those according to the AG and DG methods.
Therefore, the greedy methods based on A- and D-optimality
are more suitable for minimizing the trace of the inverse.

Fig. 4 shows that the sensors selected by the EG method,
which seeks to maximize the minimum eigenvalue, work best
for maximizing the minimum eigenvalue in the case where
p ≤ 11. However, the minimum eigenvalue obtained by the
EG method is lower than that obtained by the DG and AG
methods in the case where p > 12. This might be due to the
fact that the objective function based on E-optimality is not
submodular; thus, its combination with the greedy method
does not lead to good results, as stated in Section III. On the
other hand, the AG method works as well as the EG method
in the case where p ≤ 11, and the sensors selected by the
AG method have the highest minimum eigenvalue in the case
where p > 11. This might be because the original objective
function of the AG method is more related with maximiza-
tion of the minimum eigenvalue of the Fisher information
matrix than that of the DG method, as discussed in the next
paragraph. Therefore, in contrast to the EG method, the AG
method utilizing the submodular objective function performs
well in terms of maximizing the minimum eigenvalue of the
Fisher information matrix. Accordingly, the greedy method
based on A-optimality and, depending on the conditions,
the greedy method based on E-optimality are suitable for the
selection of sensors which have higherminimum eigenvalues.
Further, compared to the DG, AG, and EG methods, the DC
method works well on the determinant, but not on the trace
of the inverse or the minimum eigenvalue. Although, in broad
terms, this can be attributed to the convex relaxation formu-
lation, the detailed reason requires further investigation.

Here, the reason why the objective function of the AG
method has stronger relationship with that of the EG method
than that of the DG method is qualitatively explained. The
objective function of the DG, AG and EG methods can be
written for the oversampling situation as follows:

fD = λ1 × λ2 × · · · × λr , (32)

fA =
1
λ1
+

1
λ2
+ · · · +

1
λr
, (33)

fE = λr , (34)

where λi is the ith largest eigenvalue of C>C and λr = λmin.
A rational increase in any eigenvalue works evenly for the
improvement in the objective function of the DG method,

and therefore, the increase in minimum eigenvalue λr is not
necessarily required for the improvement if there is a sensor
selection which increases other eigenvalues more in ratio.
On the other hand, the increase in λr is more important for the
objective function of the AG method because 1/λr = 1/fE is
the largest term in fA. Therefore, the increase in λr is strongly
demanded in the minimization of fA in the AG method.

FIGURE 5. Reconstruction error against the number of sensors for the
random system.The results of the random selection are omitted because
they are larger than the plotted range.

Next, the performance of the greedy methods based on
different objective functions is discussed from the perspective
of the reconstruction error. Fig. 5 shows the relationship
between the number of sensors and reconstruction error,
where the reconstruction error of latent state variables is
defined by the ratio of the difference between reconstructed
value and true value to the true value. Note that results
from the random selection method are not plotted in Fig. 5
because the reconstruction error in this case is too large and
exceeds the range of the figure. The reconstruction error
decreases as p increases for the sensors selected by all the
methods. The reconstruction error using the sensors selected
by the DG and AG methods is lower than that by the EG
method, and that by the DG method is slightly lower than
that by the AGmethod except for a couple of conditions. This
indicates that the determinant and the trace of the inverse of
the Fisher information matrix, which correspond to the deter-
minant of the error covariance matrix and mean square error,
respectively, are important indices for accurate reconstruction
in the case where the statistical assumption for the system is
valid.

Fig. 6 illustrates the computational time required for sensor
selection using the DG, AG, EG, DC, and random selection
methods. The computational time for the AG and EGmethods
gradually increases with increasing p because the greedy
method chooses sensors in a step-by-step manner. The AG
and EG methods need less time than the DC method. This
indicates that all the greedy methods based on D-, A-, and
E-optimality are superior to the convex relaxation method in
terms of computational time. On the other hand, the AG and
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FIGURE 6. Computational time against the number of sensors for random
systems.

EG methods require more time than the DG method. This is
mainly because the DG method utilizes QR decomposition
in the case where p ≤ r . Although the AG method seems to
be comparable to the DG method in terms of the indices of
selected sensor quality, considering the computational cost,
the latter is more effective for sensor selection in the ideal
case where the statistical assumption for the system is valid.

B. PERFORMANCE ON K-FOLD CROSS-VALIDATION
IN NOAA-SST PROBLEM
In this subsection, K -fold cross-validation is conducted for
sensor selection of the data-driven reconstruction problem of
the NOAA OISST (NOAA-SST) V2 mean sea surface tem-
perature dataset. Therefore, the performance of the sensors
selected by the DG, AG, and EG methods is evaluated in the
case where the statistical assumptions of equally distributed
independent Gaussian noise is not exactly valid, which seems
to be a more practical situation of the cross-validation. Note
that the DC method is not applied to this problem because
of its high computational cost for the cross-validation as
shown in Fig. 6. Numerical tests using the same data as
that for the training (that is not a cross-validation study)
have also been conducted, and as a result, the indices and
the reconstruction error of each method have intermediate
characteristics between those for the random system problem
discussed in Subsection IV-A and those for the K -fold cross-
validation discussed in this subsection. In addition, numerical
tests of the K -fold cross-validation with K = 3 and 7 have
been conducted. Although the results change quantitatively
by varying the K parameter, the qualitative performance of
each method does not depend on the value of this parameter.
Furthermore, we have evaluated the performance on another
practical dataset related to the flowfield around an airfoil, and
obtained results similar to those for the cross-validation in
the NOAA-SST problem. These results are omitted here for
brevity.

The NOAA SST dataset consists of weekly global sea
surface temperature measurements in the years between

1990 and 2000 [21]. Dimensional reduction is conducted
for this problem in exactly the same way as in a previous
study [8]. The data matrix X ∈ Rn×m, which consists of
m snapshots of the spatial temperature distribution vector
of dimension n, is decomposed into the left singular matrix
U ∈ Rn×m, the diagonal matrix of singular values S ∈ Rm×m,
and the right singular matrix V ∈ Rm×m, by economy SVD,
corresponding to POD. Here, U , S, and V show the spatial
POD modes, the POD mode amplitudes, and the temporal
POD modes, respectively. Hence, the reduced-order model
X ≈ U1:rS1:rV>1:r is given by applying the truncated SVD
for a given rank r . Then, the measurement matrix is described
by C = HU1:r , and the latent state variables become the
PODmode amplitude: Z = S1:rV>1:r . Refer to [8] for detailed
information. The NOAA-SST dataset has 520 snapshots on a
360 × 180 spatial grid, and the data truncated to the r = 10
POD modes are used in this study. The 520 snapshots are
partitioned into 5 segments (K = 5). One segment is used as
the test data with the remaining segments used for the training
data.

FIGURE 7. Sensor locations in the case where p = 15 for the NOAA-SST
problem.

Fig. 7 shows the sensor locations obtained by using the
DG, AG, and EG methods, respectively, in the case where
p = 15 of one test. Although the locations selected are
slightly different depending on the method, they are similar,
especially with respect to the DG and AG methods.

The results of optimal indices are shown in
Figs. 8, 9, and 10: the determinant, the trace of the inverse,
and the minimum eigenvalue of the Fisher information
matrix, respectively. Figs. 8, 9, and 10 illustrate that the
characteristics of indices are similar to those for the random
system problem discussed in Subsection IV-A, though plots
are noisy because results pertain to only five tests of sensor
selection. Fig. 8 shows that the determinants obtained by the
DG method are the highest, and those by the EG method are
the lowest with the AG method being intermediate for any
number of sensors, as with the random system problem. The
sensors selected by the DG and AG methods also work better
for minimizing the trace of the inverse compared to those by
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FIGURE 8. Normalized determinant of CC> (p ≤ r ) or C>C (p > r ) against
the number of sensors for the NOAA-SST problem. The results of the
random selection are omitted because they are larger than the plotted
range.

FIGURE 9. Normalized trace of
(
CC>

)−1
(p ≤ r ) or

(
C>C

)−1
(p > r )

against the number of sensors for the NOAA-SST problem. The results of
the random selection are omitted because they are smaller than the
plotted range.

the EGmethod in the case of large p, as shown in Fig. 9. Note
that, unlike the results of the random system problem, the sen-
sors selected by the AG method are marginally superior to
those by the DG method for any number of sensors. Fig. 10
shows that the sensors selected by the EG method work best
for maximizing the minimum eigenvalue in the case where
p ≤ 12, and the sensors selected by the AG method tend to
have a high minimum eigenvalue regardless of the number of
sensors, similar to the random system problem. Note that the
sensors selected by the EG method work better for larger p
than in the random system problem.

Fig. 11 shows the relationship between the reconstruction
error and the number of sensors. In contrast to the random
system problem shown in Subsection IV-A, the error associ-
ated with the DGmethod is higher than that of the AG and EG
methods, and the AG method has a lower error than the EG
method. This might be because the worst-case variance of the

FIGURE 10. Normalized minimum eigenvalue of CC> (p ≤ r ) or C>C
(p > r ) against the number of sensors for for the NOAA-SST problem. The
results of the random selection are omitted because they are smaller
than the plotted range.

FIGURE 11. Reconstruction error against the number of sensors for the
NOAA-SST problem. The results of the random selection are omitted
because they are larger than the plotted range.

estimation error governs the performance in the case where
the statistical assumption for the system is not valid. This
corresponds to E-optimality, which is the objective function
of the EG method. Accordingly, the sensors selected by the
EG and AGmethods, which have a high minimum eigenvalue
of the Fisher information matrix as demonstrated in Fig. 10,
perform better in terms of the estimation error than those by
the DG method. In addition, the sensors selected by the AG
method, which tend to have a high minimum eigenvalue for
any number of sensors as shown in Fig. 10, work better than
the EGmethod. Therefore, the greedy method with the objec-
tive function based on A-optimality is the most suitable for
reconstruction of practical problems, in which the statistical
assumption for the noise involved is not exactly valid, because
of the higher minimum eigenvalue of the Fisher information
matrix of the sensors selected by the AG method rather than
that by the EG method.
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FIGURE 12. Computational time against the number of sensors for
NOAA-SST problem.

Fig. 12 shows the computational time required to obtain the
sensors. The qualitative characteristics in Fig. 12 are the same
as those in Fig. 6. Therefore, considering the reconstruction
error and computational cost comprehensively, the greedy
method based on A-optimality is the most suitable for select-
ing the appropriate sensors for the reconstruction of the prac-
tical dataset.

V. CONCLUSION
The problem of choosing an optimal set of sensors estimating
a snapshot of high-dimensional data is considered. Greedy
methods for D-, A-, and E-optimality of optimal designs
are considered, corresponding to designs that maximize the
determinant, minimize the trace of the inverse, and maximize
the minimum eigenvalue of the Fisher information matrix,
respectively.

Objective functions based on A-and E-optimality are
derived, and their submodularity and monotonicity are inves-
tigated. Then, the D-, A-, and E-optimality-based greedy
(DG, AG, and EG) methods are applied to two problems
with different conditions, and guidance on selecting a suit-
able objective function for a given dataset and situation is
provided. A randomly generated systemwith known statistics
(random system problem) is used and a practical dataset
of global ocean surface temperature is reconstructed with
a K -fold cross-validation test (NOAA-SST problem). The
random system problem is almost ideal in terms of statistics,
while the NOAA-SST problem is nonideal since the test data
statistics of noise are not exactly the same as what is assumed
for the system owing to the cross-validation study.

Trends in optimal indices concerning the sensors selected
by each method do not change for the two problems. The DG
and EG methods have the trends expected from the objective
functions. On the other hand, it is of significance that the AG
method works best not only on minimization of the trace of
the inverse, but also on maximization of the minimum eigen-
value. This is because the increase in theminimum eigenvalue

is strongly demanded in the objective function of the AG
method while the EG method does not work significantly for
maximization of the minimum eigenvalue due to the absence
of submodularity.

Meanwhile, reconstruction error trends differ between
the two problems. In the ideal case where the statistics of the
system are well known, the determinant and the trace of the
inverse are the important indices, and accordingly, the DG
method is the most suitable for accurate reconstruction and
low computational cost. On the other hand, in the nonideal
case where the statistical assumption for the system is not
valid as in the cross-validation study, the worst-case variance
of the estimation error governs the performance, and accord-
ingly, the AGmethod is the most suitable. Based on the supe-
riority of A-optimality as shown in this study, we constructed
a new proximal-operator-based sensor selection algorithm
based on A-optimality [12].

In addition, these results also seem to be applicable
to the sampling point of the reduced-order model (ROM)
using the DEIM or Q-DEIM framework (hereafter, ROM-
DEIM). This is because the procedure employed in Q-DEIM,
i.e., QR decomposition, corresponds to optimization using
the D-optimality criterion for the number of sensors less
than or equal to that of the latent variable, as stated previously.
Although oversampling in the DEIM framework is an issue,
we suggest that this is straightforward to navigate using an
optimal experimental design, as done in the present study.
This suggests that other optimal designs, e.g., A-optimal or
E-optimal designs, can also be utilized for selecting sampling
points for the ROM-DEIM framework. These applications
are interesting, though we will need to address whether the
assumption of the ROM-DEIM framework [14], [22] is rel-
atively ideal or not ideal in terms of the sensor selection
problem and to clarify which is the better choice between
D- and A-optimality. The comparison is partially demon-
strated in the Appendix of reference [8], but is beyond the
scope of this study. The applicability of the sensor selection
methods in the present study to the sampling and oversam-
pling strategy in the ROM-DEIM framework will be consid-
ered in future research.
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