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ABSTRACT Augmented and virtual reality systems (AR/VR) are rapidly becoming key components
of the wireless landscape. For immersive AR/VR experience, these devices should be able to construct
accurate depth perception of the surrounding environment. Current AR/VR devices rely heavily on using
RGB-D depth cameras to achieve this goal. The performance of these depth cameras, however, has clear
limitations in several scenarios, such as the cases with shiny objects, dark surfaces, and abrupt color transition
among other limitations. In this paper, we propose a novel solution for AR/VR depth map construction
using mmWave MIMO communication transceivers. This is motivated by the deployment of advanced
mmWave communication systems in future AR/VR devices for meeting the high data rate demands and
by the interesting propagation characteristics of mmWave signals. Accounting for the constraints on these
systems, we develop a comprehensive framework for constructing accurate and high-resolution depth maps
using mmWave systems. In this framework, we developed new sensing beamforming codebook approaches
that are specific for the depth map construction objective. Using these codebooks, and leveraging tools
from successive interference cancellation, we develop a joint beam processing approach that can construct
high-resolution depth maps using practical mmWave antenna arrays. Extensive simulation results highlight
the potential of the proposed solution in building accurate depth maps. Further, these simulations show
the promising gains of mmWave based depth perception compared to RGB-based approaches in several
important use cases.

INDEX TERMS Beamforming codebooks, depth maps, millimeter wave, virtual reality.

I. INTRODUCTION
Wireless augmented and virtual reality (AR/VR) applications
are recently attracting increasing interest. Realizing wireless
AR/VR in practice can open the door for a wide range of
interesting applications and use cases. Enabling Immersive
AR/VR experience, however, requires high resolution and
accurate depth perception. This can potentially allow the
wireless AR/VR users to move freely within their indoor or
outdoor environment. Current depth perception approaches
for AR/VR systems rely mainly on RGB-D (depth) cameras
for constructing the depth maps. While RGB-D based depth
map construction approaches can generally provide good
accuracy, they suffer from critical limitations in scenarios
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with bright shiny or transparent surfaces, dark objects, and
large rooms among others. These limitations stem from the
fundamental properties of the way visible light propagate and
interact with the different surfaces.

In order to overcome these limitations, we propose to
leverage mmWave systems and signals for improving the
depth map estimation accuracy. This is motivated by the
interesting characteristics of mmWave signals and by the note
that mmWave systems will be deployed in future AR/VR
devices anyway for meeting the wireless communication
requirements [1]. In terms of the mmWave signal character-
istics, the propagation of these signals is not affected by the
interference from the light sources which makes mmWave
systems capable of detecting bright and dark objects. Further,
the mmWave diffuse scattering and specular reflection prop-
erties could help in detecting transparent objects as well as
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rough surfaces. These aspects among others motivate explor-
ing the potential of leveraging mmWave transceivers for
complementing the RGB-D depth-maps in AR/VR systems,
which is the focus of this paper.

A. PRIOR WORK
Previous depth map construction approaches focused on
leveraging: (i) monocular images using RGB cameras [2],
(ii) passive/active stereo images using either RGB-D depth
cameras [3], [4] or infrared (IR) stereo cameras [5], [6],
and (iii) gated images using active gated imaging cameras [7],
[8]. In [2], a monocular depth estimation approach capable
of capturing the object boundaries is proposed. In [3], RGB
images along with sparse depth samples, acquired from depth
cameras or computed via Simultaneous Localization and
Mapping (SLAM) algorithms, are used jointly to reconstruct
the depth maps. An alternative approach for depth estimation
was proposed in [4], where a monocular structured-light cam-
era—a calibrated stereo set-upwith one camera and one laser
projector— is leveraged for estimating the disparity. As for
the active stereo systems, in [5], IR projected pattern from
stereo IR cameras is adopted for depth estimation through
active stereo matching. The IR images are acquired from the
Intel Realsense camera [9]. Also, the IR pattern characteris-
tics needed for active stereo matching are described in [6].
In addition, high-resolution depth images can be achieved for
far objects using active gated imaging systems, as in [7], [8].

These depth map construction approaches [2]–[8], [10],
however, have several important limitations complications as
follows. (i) First, these depth map construction approaches
normally fail to sense the depth for shiny, dark, transparent,
and distant surfaces.While there are some attempts in solving
these challenges using IR stereo cameras [5] or excessive
processing of the RGB-D images [11], there is no complete
and general solution yet to this problem. (ii) Further, these
IR and RGB-D based depth map construction algorithms
suffer from a critical limitation, which is the depth ambiguity
for far objects/surfaces. The depths for distant surfaces can
not be resolved by the algorithms in [5], [11]. (iii) Another
key challenge is the additional bill of materials (BOM) cost
incurred from integrating the IR stereo camera systems into
the wireless AR/VR device architectures. On the contrary,
the existing mmWave systems in the wireless AR/VR device
architectures incurs no additional BOM cost when leveraged
for depth map estimation purposes jointly with the primary
purpose of wireless communications. (iv) The field of view
coverage is also a main challenge. The depth map coverage is
limited by the camera field of view. The camera field of view
is constrained by the camera lens and by the light sensor. The
field of view in mmWave MIMO systems, however, is con-
strained by the array radiation pattern, as will be explained in
Section VI. By contrast, the typical field of view in mmWave
MIMO systems can be larger than the typical camera field of
view.

These challenges motivate the research for other technolo-
gies to complement the RGB-D cameras in accurately sensing

the VR/AR environment. One promising technology for
this goal is employing wireless millimeter wave (mmWave)
systems. Since mmWave antenna arrays will be used to
satisfy the communication high data rate demands of wireless
VR/AR, it is interesting to investigate if they could also be
useful for VR/AR-relevant sensing functions, such as depth
estimation. Initial studies for using mmWave communication
arrays for radar and sensing were presented in [12], [13].
These studies, however, focused only on the ranging problem
(of one or multiple targets), not on the depthmap construction
problem. Other mmWave sensing and tracking work that was
not restricted to communications hardware was presented
in [14], [15]. The research in [14], [15], though, targeted
tracking a single object in a small distance, and cannot be
directly applied to depth estimation of surrounding surfaces
in VR/AR. Further, the work in [12]–[15], did not study the
trade-offs between estimation accuracy and different system
parameters, such as number of antennas and adopted band-
width, and did not compare between the system performance
under transceiver architectures constraints, such as those
imposed on the analog phased-array transceiver architectures.
By contrast, interesting research challenges are accompany-
ing the mmWave MIMO based scene depth map construction
framework ranging from beam codebook design challenges
to scene depth estimation challenges. These challenges will
be addressed in this work and will be explained in detail in
Section V.

B. CONTRIBUTION
In this paper, we consider the mmWave MIMO based depth
map construction problem for AR/VR systems, adopting
mmWave communication hardware and frame structure. The
contributions of this paper can be summarized as follows.

• mmWaveMIMOdepthmap construction framework:We
formulate the mmWave MIMO depth map construction
problem and propose a general framework for building
depth maps under the constraints imposed by mmWave
communication hardware and frame structure.

• A design for depth-map suitable sensing beamforming
codebook:We define the characteristics of the desirable
mmWave sensing beamforming codebook for efficient
depth map construction and develop a codebook con-
struction approach that meets these characteristics.

• High-resolution depth map construction approach:
Given the designed beamforming codebook, we develop
a novel signal processing approach for jointly processing
the signals received by the sensing beams and building
high-resolution depth maps.

The proposed solution is extensively evaluated using accurate
ray-tracing channels generated from Wireless InSite [16],
and ground truth depth images generated from Blender [17].
The simulation results show the promise of mmWave MIMO
sensing in becoming a viable depth estimation solution for
communication-constrained sensing systems, either as a stan-
dalone approach or as an integrated approach with RGB-D
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FIGURE 1. The considered setup where the mmWave communication system, deployed at the AR/VR device,
is jointly leveraged for sensing and depth map construction. This figure is generated using Blender [17] with 3D
models downloaded from [18]–[21].

depth cameras. These simulation results can be of great use-
fulness for various applications; they can be generally applied
to AR/VR devices, smart home devices, or auto drive devices.
Notation: We use the following notation throughout this

paper: A is a matrix, a is a vector, a is a scalar, A is a set of
scalars, andA is a set of vectors/matrices. ‖a‖p is the p-norm
of a. |A| is the determinant ofA, ‖A‖F is its Frobenius norm,
whereas AT , AH , A∗, A−1, A† are its transpose, Hermitian
(conjugate transpose), conjugate, inverse, and pseudo-inverse
respectively. [A]r,: and [A]:,c are the r th row and cth column of
the matrix A, respectively. diag(a) is a diagonal matrix with
the entries of a on its diagonal. I is the identity matrix. 1N
and 0N are the N -dimensional all-ones and all-zeros vector
respectively. A ⊗ B is the Kronecker product of A and B,
A◦B is their Khatri-Rao product, andA�B is their Hadamard
product.N (m,R) is a complex Gaussian random vector with
meanm and covarianceR.E [·] is used to denote expectation.
vec(A) is a vector whose elements are the stacked columns of
matrix A.

II. SYSTEM AND CHANNEL MODELS
In this section, the system model for the adopted
communication-constrained sensing framework is first for-
mulated, followed by the characterization of the adopted
channel model.

A. SYSTEM MODEL
In this paper, we propose to reuse the same AR/VR mmWave
communication system/circuits to do the sensing and depth
map construction, as shown in Fig. 1. Hence, we adopt a
sensing model that accounts for the mmWave communication
system/circuit constraints. This communication-constrained
sensing model consists of a transmitter and a receiver;
both are connected through a self-isolation circuitry to a
shared N antenna array, as depicted in Fig. 2. This type
of operation is commonly referred to as MIMO in-band

full-duplex operation [22]. We assume that the transmitter
and receiver chains are well-isolated by an isolation circuitry
to avoid any self-interference. This assumption is reason-
able with the recent developments of self-interference sys-
tems. One example of these systems is the magnetic-free
non-reciprocal circulators (i) based on coupled-resonator
loops [23] or (ii) based on CMOS circulators operating in the
28GHz mmWave band [24]. Another example is the receiver
with integrated magnetic-free non-reciprocal circulator and
baseband self-interference cancellation operating in the Sub-
6 GHz band [25]. A third example is the magnetic-free SOI
CMOS circulator operating in the 60GHz mmWave band
[26]. Accounting for this self-interference, however, is an
important direction for future extensions.

Further, and for the sake of having low-cost and power
consumption mmWave transceivers, we adopt an analog-only
architecture for the N -antenna array used for transmission
and reception, [27], [28], where the beamforming/combining
is done in the analog domain using a network of phase
shifters. Next, we summarize the transmit and receive signal
models.

1) TRANSMIT SIGNAL MODEL
We consider a wideband single-carrier waveform compris-
ing multiple time frames. These frames are transmitted over
an aggregated time interval of T seconds during which the
environment is assumed to be relatively static. This time
interval is commonly referred to as a coherent processing
interval (CPI) [29]. Each frame consists of both data and
preamble sequences designed for the wireless communica-
tion function. The co-existing sensing model also uses these
preamble sequences to sense the environment and build the
depth maps, as will be explained in detail in the following
sections. This can be achieved by either splitting the frames
between sensing and communication or by designing the
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FIGURE 2. A block diagram of the communication-constrained sensing model is illustrated. The sensing framework, 5, consists of
(a) the beam codebook design P and (b) the post-processing design g (.,P), to estimate the scene depth map D̂. The upper path
represents the transmitter path, while the lower path represents the receiver path.

sensing and communication beam training operations to share
the same preamble sequences. Next, for ease of exposition,
we assume that M frames/preamble sequences are dedicated
for sensing. If sm[n] denotes the nth transmitted symbol at the
mth frame, withE

[
|sm[n]|2

]
= 1, then the complex-baseband

representation of the transmit waveform can bewritten as [30]

a(t) =
√
Es

M−1∑
m=0

Nm−1∑
n=0

sm[n] δ(t − nTS−mTF), (1)

where Es represents the average energy per symbol, TS is the
symbol time, and TF is the frame duration. Nm is the number
of symbols in themth frame, which is divided into a preamble
sequence of length N p and a set of data symbols of length
N d
m. Further, we assume that the same preamble sequence

sp[n], n ∈ {1, . . . ,N p
}, is transmitted in the first N p symbols

of each frame. Note that for the sake of simplifying the
transmit and receive signal representation, we incorporated
the transmit pulse shaping and receive filtering functions into
the channel model. Finally, if a beamforming vector f ∈
CN×1 is used to transmit the signal at the AR/VR device,
the complex-baseband representation of the transmitted sig-
nal can expressed as

x(t) = fa(t). (2)

This transmitted signal will interact with the environment
(through reflection, scattering, etc.) and will be received back
by the AR/VR device. Next, we describe the receive signal
model.

2) RECEIVE SIGNAL MODEL
Let Gtar denote the number of targets/scatterers in the envi-
ronment. Then, focusing on the preamble sequence trans-
mission/reception (i.e., the first N p symbols of each frame),
the receive sensing signal of the mth frame can be written as

ym[n] =
Gtar∑
g=1

Ld−1∑
d=0

√
EswHHd,gfsp[n− d]+ wHvm[n], (3)

where w ∈ CN×1 is the combining vector at the AR/VR, and
vm[n] ∼ NC

(
0, σ 2

n I
)
is the receive noise with variance σ 2

n .
Hd,g ∈ CN×N , d ∈ {1, . . . ,Ld − 1}, is the delay-d channel
matrix between the transmission from and the reception by
the AR/VR antenna array, which is described in the following
subsection.

B. CHANNEL MODEL
Given that the depth sensing problem highly relies on
the accurate modeling of the surrounding environment and
its geometry, we adopt a geometric channel model in
this work. More specifically, we consider the extended
Saleh-Valenzuela wideband geometric channel model [31]–
[34]. Based on that, the gth target contribution in the delay-d
channel, Hd,g, can be modeled as

Hd,g=
√
Gg

Lray∑
`=1

[
α`e−j2π fcτ`p (dTs − τ`)

× aR
(
φR`,g, θ

R
`,g

)
aHT
(
φT`,g, θ

T
`,g

) ]
, (4)

where Lray is the number of channel clusters; each cluster
is contributing with one ray of complex channel coefficient
α`, time delay τ`, and azimuth/elevation angles of departure
and arrival, φT`,g, θ

T
`,g and φ

R
`,g, θ

R
`,g, respectively. aT(·, ·) and

aR(·, ·) represent the transmit and receive array response
vectors associated with the angles of departure and arrival
respectively. The transmit and receive pulse shaping signals
are included within p(t) such that p(t) = pT(t) ∗ pR(t). The
path gain associated with the gth target is denoted by Gg and
can be expressed as

Gg =
GTGRλ

2σRCS
g

(4π )3
(
ρg
)2PL , (5)

where GT and GR are the transmitter and receiver gains, λ
is the operating wavelength, PL is the path loss exponent.
Finally, ρg denotes the distance (range) between the AR/VR
device and the gth target/scatterer and σRCS

g denotes the radar
cross section of this target.
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III. PROBLEM DEFINITION
Our objective in this paper is to efficiently estimate the
depth/range map of the surrounding environment using the
communication-constrained mmWave MIMO sensing model
in Section II. Before delving into the formal problem defi-
nition, it is important to distinguish between the range and
the depth of a certain target. As depicted in Fig. 3, the range
of a target with respect to the AR/VR camera (which is
aligned with the AR/VR antenna array) is the linear radial
distance from the camera center (focal point) to the target.
For the depth, it is measured by the y-coordinate of the camera
center (focal point) with respect to the x-z plane of the target.
Given that the range and depth can be calculated from one
another, we focus our formulation on the depth estimation
problem. Next, we define the depth map of the surrounding
environment with respect to an AR/VR device.

FIGURE 3. This figure shows the conventional single target range
estimation problem, where one target exists in free space in line-of-sight
(LoS) with the AR/VR device. This device steers perfectly one beam
towards that target to estimate the range.

Definition (Depth Map): We define the depth map Dmap of
resolutionMh×Mw as an image ofMh pixels high andMw pix-
els wide, where the value of each pixel represents the smallest
depth between the AR/VR device and the targets/objects in
this pixel.

In this paper, we express this depth map as an Mh ×

Mw matrix Dmap ∈ RMh×Mw . Further, we use Mres =

MhMw to denote the total number of pixels in the depth
map. The range map Rmap ∈ RMh×Mw is similarly defined.
Now, given the system and channel models in Section II,
the AR/VR device constructs the estimated mmWave-based
depth map through two main steps: (i) sensing the envi-
ronment using several beamforming and combining sensing
vectors and (ii) post-processing the receive sensing signal
to construct the estimated depth map. More formally, if a
beamforming-combining pair (fm,wm) is used to transmit
and receive the N p symbols of the mth preamble sequence,
then the receive sensing signal can be expressed as

ym[n] =
Ld−1∑
d=0

√
EswH

mHd fmsp[n− d]+ wHvm[n], (6)

where n ∈ {0, 1, . . . ,N p
+ Ld − 1},Hd =

∑Gtar
g=1Hd,g.

By stacking the N p
+ Ld receive symbols (from transmitting

the preamble sequence), we get ym =
[
ym[0], . . . , ym[N p

+

Ld−1]
]T , which represents the receive sensing vector of one

preamble sequence using one beamforming-combining pair.
Next, if M preamble sequences are used to sense the envi-
ronment viaM beamforming-combining pairs (fm,wm) ,m ∈
{1, . . . ,M}, then the aggregated receive sensing signal can be
written as

Y = [y1, . . . , yM ]. (7)

For ease of exposition, we define the sensing beam-
forming codebook P as the codebook that includes the M
beamforming-combining pairs, i.e., P = {(fm,wm) : m ∈
{1, . . . ,M}}. Finally, given the receive sensing matrix Y,
a post-processing is applied for estimating the depth map.
If g(.) denotes the post-processing function, the estimated
depth map D̂map ∈ RMh×Mw can be written as

D̂map = g(Y;P). (8)

Our objective in this paper then is to design the sensing
beamforming codebook P and the post-processing g(·) to
efficiently estimate the depth map D̂map to be as close as
possible to the actual depth map Dmap. To evaluate the per-
formance of the proposed approaches, we will adopt the
root-mean squared estimation error (RMSE) and the mean
absolute error (MAE) between the depth maps, which are
defined as

1RMSE =

√
1
M

∥∥Dmap − g (Y;P)
∥∥2
2, (9)

1MAE =
1
M

∥∥Dmap − g (Y;P)
∥∥2
1 . (10)

In Section V, we will present the general framework of
our proposed depth map estimation approach. This will be
followed by a detailed description of the two main com-
ponents in this framework, namely the beamforming code-
book design P and the post-processing solution g(.), in
Sections VI and VII.

IV. BACKGROUND
Before going into the proposed framework for estimating
depth/range maps using mmWave MIMO, we provide a brief
background on the basis of the single-target range estimation
problem. For a preliminary model, consider one target in the
free space with a Line-of-sight (LoS) path to the AR/VR
device. Further, consider the case when one mmWave beam
is perfectly steered towards that target, as depicted in Fig. 3.
Adopting this preliminary model, the target range estimation
accuracy bound will be first examined. Then, a description
of the main algorithms used in the literature to approach this
problem is provided.

A. TARGET RANGE ESTIMATION ACCURACY
Our main objective is to find the fundamental limit for
mmWave MIMO based depth estimation, which can be
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FIGURE 4. The figure summarizes the proposed sensing framework for mmWave MIMO based depth estimation, which involves
sensing the scene using the designed beamforming codebook P and applying the proposed post-processing operations g(.;P) to
the receive signal to construct the estimated depth map D̂map.

considered as range estimation at every possible eyesight
direction, i.e. at every azimuth angle φ ∈ [0, 2π [ and every
elevation angle θ ∈ [0, π[. For the range estimation accuracy,
one useful metric is the Cramer-Rao lower bound (CRLB) on
the range estimation. For white Gaussian noise, the CRLB
provides a lower bound on the mean-squared-error of any
unbiased estimator, hence it is used as a benchmark for the
performance analysis of parameter estimation [35]. Consider-
ing the case of range estimation for a single target, the CRLB
of this single target range is formulated as [13], [29], [35]

σ 2
ρ̂
≥

ς2

8 Pint η2 B2 SNRrad
, (11)

where ς is the speed of light, B is the transmission bandwidth,
Pint is the integration gain and is equal to the number of
symbols used for preamble estimation, and η depends on
the power spectral density shape of a(t) over the pream-
ble duration. Under the assumption of a flat spectral den-
sity for a(t), η2 = (2π)2 /12. The radar signal-to-noise
ratio for this target can then be expressed as SNRrad =

EsGrad/σ
2
n , where Grad denotes the path gain associated with

the target.

B. TARGET RANGE ESTIMATION ALGORITHMS
Estimating the round trip delay τ̂ is equivalent to finding
the range estimate ρ̂, since they are directly related through
τ̂ = 2ρ̂/ς . Given the extensive research on delay estimators
in the literature [29], [36], we will restrict the scope of this
paper on the magnitude based delay estimators in [37] for
simplicity. In a general sense, given a known transmit pream-
ble sequence x0[n] and the received baseband sequence z[n],
the receiver can estimate the round-trip delay by maximizing
an objective function, the cross-correlation function between
the two time-sequences, over a range of possible delays.
Based on this notion, two delay estimators are formulated as
follows [37].

1) BASIC CORRELATOR
The basic correlator is a coarse delay estimator that per-
forms the maximization at the same sampling frequency, fS,
tuned by the AR/VR communication system. Assume that the
length of the received baseband sequence, z[n], is Lz samples,
where the last Nz samples are non-zeros. The range estimate
can then be formulated as

ρ̂BC =
ςTS
2

argmax
q:q∈Q

∣∣∣∣∣∣
Lz−1∑

n=Lz−Nz

x0[n]× z∗[n− q]

∣∣∣∣∣∣
2

. (12)

where TS = 1
fS
=

1
B denotes the sampling time,Q represents

the set of possible discrete sample delays, and the optimal
q solution is denoted by qBC. Unfortunately, the accuracy
of this range estimate is limited by the sampling frequency
fS. One attempt of improving the estimation accuracy is by
performing the maximization at a higher sampling frequency.
This attempt, however, increases the computational complex-
ity dramatically, which motivates the role of the upcoming
delay estimator, the massive correlator [37].

2) MASSIVE CORRELATOR
The primary function of the massive correlator is to perform
the maximization of the objective function at a higher sam-
pling frequencywithout the computational burden of comput-
ing the shift in real time. For this reason, [37], [38] introduced
the solution of pre-designing a specific correlator bank that
contains shifted versions of the reference sequence, x0[n].
The receiver will then multiply the received sequence by the
correlator bank to compute the objective function.

We describe the steps of the massive correlator algorithm
as follows [37], [38]. (a) Upsample x0[n] with a sampling
frequency higher than fS, denoted as fest. (b) Define the
correlator bank matrix, X0, where each row of this matrix
is a shifted version of the upsampled x0[n]. Let the number
of rows in X0 be equal to (2δ + 1), where δ is the largest
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FIGURE 5. (a) The intersections between the classical codebook beam directions and the x-z depth plane form the parabolic shape of
the classical codebook grid. (b) The mismatch between the classical codebook grid of a 16× 16 UPA and the desirable rectangular grid
for a depth map is illustrated at a y = 13.32mm depth plane, for a scene of 100◦ field of view and 16/9 aspect ratio.

lag/advance discrete fractional delay in the receive sequence,
such that δ = fest

2fS
. (c) Downsample independently each row

of the correlator matrix to the lower sampling frequency fS;
let the resulting matrix be named as B0. The reason for this
step is to test delays at the higher sampling frequency, fest, but
only apply multiplications at the lower sampling frequency,
fS. (d) Shift back the receive sequence, z[n], with the coarse
discrete delay estimate, qBC, such that z̄[n] = z[n + qBC],
and then concatenate the sequence into one row vector, z̄.
(e) Calculate the fractional range estimate, ρ̂′, such that
ρ̂′ =

ς
2 fest

(
−(δ + 1)+ argmaxq′ [g]q′

)
, where g = z̄ × BH0 .

(f) Calculate the fine range estimate, ρ̂MC, such that ρ̂MC
=

ρ̂BC + ρ̂′.
With an end goal of constructing depth maps, these range

estimation algorithms will then be leveraged by the mmWave
MIMO based depth estimation as explained in the upcoming
sections. In the next section, we formulate a general frame-
work for scene depth estimation.

V. GENERAL FRAMEWORK FOR SCENE DEPTH
ESTIMATION
In this section, we highlight the key elements of the pro-
posed depth map estimation approach, namely the sensing
beamforming codebookP and post-processing g(.), and dis-
cuss the challenges associated with designing these elements.
As depicted in Fig. 4, we first design the sensing beamform-
ing codebookP offline based on the desired AR/VR proper-
ties such as the field of view, the scene aspect ratio, and the
number of horizontal and vertical beams covering the scene
view. To build the depthmap of a certain scene, the beam pairs
of the designed codebook are used to sense the environment
and acquire the receive sensing matrix Y in (6). This receive
signals are then jointly processed using the post-proposed
approach to build the depth map. In the remaining of this
section, we explain the challenges associated with design-
ing the codebook and the post-processing operations. Then,
we will present how our proposed solutions overcome these
challenges in Sections VI and VII.

A. CODEBOOK DESIGN CHALLENGES
To effectively sense the surrounding environment and build
efficient depth maps, the beams of the sensing codebooks
should be designed to scan the full scene. Since the mmWave
MIMO based depth maps may potentially complement the
RGB-D based maps, our objective is to build a beamforming
codebook that scans the full rectangular grid of the typical
depth sensors of the AR/VR cameras. However, the classi-
cal beam steering codebooks such as the DFT codebooks
[39], that independently sample the azimuth and elevation
directions, do not normally fit a rectangular grid. They
instead form a parabolic grid, i.e., for a fixed elevation angle,
the grid line of these codebook beams are parabolic curves
as shown in Fig. 5(a). This mismatch between the mmWave
MIMO-based and camera-based depth grids could lead to
clear distortion in the joint mmWave/RGB-D depth map con-
struction and make it hard to complement the RGB-D depth
map using mmWave MIMO sensing.

One possible solution is to estimate the depths on the
parabolic grid using the classical beamforming codebook
and then interpolate/extrapolate to calculate the rectangular
depth map. The main disadvantage of this solution, however,
is that the interpolation can potentially lead to considerable
loss in the depth map accuracy as the changes of the depth
are not normally smooth in nature. Hence, in order to avoid
the interpolation loss, the more persuasive solution is to
develop a depth map compatible beamforming codebook that
fits exactly the desirable rectangular sensor grid. With this
motivation, we propose a beamforming/combining design
approach in Section VI to overcome the codebook mismatch
challenge.

B. SCENE DEPTH ESTIMATION CHALLENGES
The sensing beamforming codebook is used to sense the
surrounding environment. Now, given the receive sensing
matrix Y, the objective of the post-processing is to construct
an accurate depth map of the facing scene. This process,
however, has several challenges. In order to explain these
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challenges, let’s first consider the case when the environment
has only a single target. In this case, the sensing/scanning
beam that is directed towards the region that includes this
target will result in some backscattering signal. This signal
can be used for calculating the round-trip time of flight
and consequently the range of this target, leveraging the
MIMO radar concepts [29], [40] and the algorithms detailed
in Section IV-B. In terms of the range/depth map, the pixel
that includes the region of this target will simple have the
value of the estimated range/depth. In practice, however,
the environment has several targets/surfaces and themmWave
arrays have strict constraints on their hardware: power bud-
get, computational complexity, etc. These limitations lead to
critical challenges for our objective of building accurate depth
and range maps of the environment. More specifically, if we
adopt the approach that scans the surrounding scene using
a beamforming codebook and processed the receive sensing
signal of each beam independently to estimate the depth of
the region defined by this beam, then this approach will have
the following key drawbacks.
• Low-resolution depth-maps: The low resolution draw-
back is mainly due to (i) the limitation on the number of
AR/VR antennas, which is controlled by many factors in
the AR/VR device such as the device dimensions, com-
putational complexity, circuit routing, power consump-
tion, etc., and (ii) the number of beams in the sensing
codebook P , which is limited by the time allocated for
the depth estimation process.

• Inter-target interference: The constraints on the
number of antennas at the AR/VR device limit the
system spatial resolution. This makes it hard to dif-
ferentiate between the ranges/depths of the different
targets/surfaces that are close to each other. In other
words, when measuring the depth of the object in a par-
ticular region/ direction, multiple objects/surfaces may
reflect the incident signal at the same time. The inter-
ference between these reflected/scattered signals may
highly affect the accuracy of the range/ depth estimation.
Hence, if a certain pixel has multiple objects/surfaces,
it will be difficult to estimate the shortest depth of the
objects in this pixel (to follow the depth map definition
in Section III).

• Inter-path interference:When sensing the range/depth
of a certain target, the optimal situation (in terms of
depth estimation accuracy) is when the target backscat-
ters a single ray to the receiving array. In practice,
however, the signal incident on a certain target may
experience more than one phenomenon, such as scatter-
ing, reflection, diffraction, etc., which results in multiple
rays. More than one of these rays could traverse the
environment in different ways/directions, especially in
indoor environments, before reaching the receiver. This
means that they may reach the receiving array from
multiple angles and with different time of flights. This
causes an inter-path interference which makes it hard
to accurately estimate the range/depth of the target

FIGURE 6. The multipath estimation challenge for scene range estimation
is illustrated. The design challenge is how the sensing framework can
detect and estimate the range through the desired channel path (path 1
in blue) and avoid making faulty estimation because of the other
undesired paths (paths 2-4) in the environment.

of interest. For example, if the receiver estimates the
range/depth based on a wrong path, this may notice-
ably degrade the accuracy of the depth map estimation.
This challenge is depicted in Fig. 6. As illustrated,
the challenge is how to design the sensing framework
(the codebook and post-processing) to detect the desired
channel path (the path in blue) while filtering out all the
undesired channel paths. Examples of undesired paths
are the paths 2-4. Path 2 is transmitted and received
within the main lobe. Path 3 is transmitted and received
within the side lobe. Path 4 experiences multiple reflec-
tions instead of back-scattering, before reaching back
the receiver. It has to be noted that the diffuse scattering
and specular reflection properties of the mmWave sig-
nals are still crucial for constructing depth maps despite
their contribution to the inter-path interference chal-
lenge. Without these properties, the sensing framework
may not be able to construct a meaningful depth scene
of the surrounding environment.

In the next two sections, we efficiently design the two ele-
ments of our proposed depth map sensing framework, namely
the sensing codebook and the post-processing, to address
these challenges.

VI. DEPTH MAP BASED DESIGN FOR SENSING
CODEBOOKS
As discussed in Section V-A, our objective is to design a
sensing beamforming codebook that fits the rectangular grid
of the depth camera. In this section, we first present our
codebook design that achieves this objective. Then, we incor-
porate a new side-lobe reduction approach to ameliorate the
inter-path interference problem.

A. PROPOSED CODEBOOK DESIGN
Since the objective from the beamforming-combining pair
codebook design is for the codebook grid to match the desired
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FIGURE 7. The comparison between (a) the classical (on the left side) and (b) the proposed (on the right side)
beam codebook design is demonstrated for a scene of 100◦ field of view and 16/9 aspect ratio, using 16× 16 UPAs.
The proposed codebook eliminates any grid mismatch distortion. The top figures are the 3D codebook radiation
patterns, while the bottom figures are the 2D codebook grids at a plane within 13.32mm depth.

rectangular grid of a range/depth scene, we start with the
relevant camera geometry equations. The scene definition
starts by defining the key quantities of the field of view,
FoV, and the scene aspect ratio, AR. Let the field of view be
centered around the boresight antenna array direction. It is
worth noting that the separation distance of the camera plane
away from the antenna array reference point, aka the focal
length, is irrelevant in our codebook design. This is based on
the notice that the beamforming/combining codebook design
normally depends on angles rather than distances.

In a general sense, for any chosen value of focal length,
the sensor grid points’ coordinates are first calculated to
determine the codebook angles accordingly. More specifi-
cally, assume that the focal length is set to a certain value,
FL. The camera plane width, aka the sensor grid width in
the horizontal dimension, SH, and camera plane height, aka
the sensor grid height in the vertical dimension, SV, can be
calculated as

SH = 2FL tan (FoV/2) , and SV = SH/AR. (13)

For designing a beamforming-combining pair codebook, let
N = NV × NH, where NV and NH denote the number of
UPA antennas on the elevation (vertical) and azimuth (hor-
izontal) dimensions, respectively. Consider an oversampled
beamforming codebook of M = NVNH beams, where
NV = NVFOS

V and NH = NHFOS
H with FOS

V and FOS
H denot-

ing the oversampling factors in the elevation and azimuth

dimensions, respectively. The grid spacing in the vertical and
horizontal directions are expressed as QV = SV/NV and
QH = SH/NH. Notice that the codebook resolution of NVNH
beams will be mapped at the end to the desired up-scaled
depth image resolution ofMres = Mh ×Mw pixels.

Let the x- and z-axes be aligned in the direction of the
sensor grid width and height respectively, and let the y-axis be
the direction of the depth. The (x, y, z) rectangular coordi-
nates of the sensor grid points on the camera plane can then
be defined as

(x, y, z) ∈ C, C = X × Y × Z,
X =

{
x : x ∈

{
−SH
2 +

QH
2 ,
−SH
2 +

3QH
2 , . . . , SH2 −

QH
2

}}
,

Y = {y : y = FL} ,

Z =
{
z : z ∈

{
−SV
2 +

QV
2 ,
−SV
2 +

3QV
2 , . . . ,

SV
2 −

QV
2

}}
,

(14)

where we note that |C| = NVNH = M . After defining the
(x, y, z) coordinates of every grid point on the camera plane,
their M corresponding (θz, θx) angles with respect to the
z- and x-axes can now be calculated using the mapping from
rectangular to spherical coordinates, such that

O =
{
(θz, θx) : θz =

[
π
2 − arctan

(
z√
x2+y2

)]
,

θx =

[
π
2 − arctan

(
x√
y2+z2

)]
, (x, y, z) ∈ C

}
. (15)
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Finally, after calculating the (θz, θx) angles for each and
every grid point, the beamforming codebook, F , for an
NH × NV transmit UPA, is then expressed as

F =
{
f ∈ CN×1

: f= b̃V(θz)◦ b̃H(θx) ,(θz, θx)∈O
}
,

b̃V (θz) =
[
1, e−jκds cos(θz), . . . , e−j(NV−1)κds cos(θz)

]T
,

b̃H (θx) =
[
1, e−jκds cos(θx), . . . , e−j(NH−1)κds cos(θx)

]T
,

(16)

where κ = 2π
λ

is the wave number, λ is the operating
wavelength, and ds is the antenna element spacing between
adjacent UPA elements in meters. b̃H ∈ CNH×1 and b̃V ∈
CNV×1 are the horizontal and vertical basic vectors used for
constructing the beamforming codebook. We will call these
vectors, b̃H and b̃V, the constituent horizontal and vertical
beamforming vectors, respectively. In our depth estimation
problem, the receive combining codebook, W , can be sim-
ilarly defined for the NH × NV receive UPA. For such case,
the cardinalities of the sets are equal, |W| = |F | = |C| =
|O| = M . Further, let F ∈ CN×M and W ∈ CN×M

be the matrices that consist of the codebooks beams of F
andW . Then, the proposed sensing beamforming-combining
pair codebook P can be expressed as

P =
{
(fm,wm) ∈ CN×1

× CN×1
: fm = [F]:,m ,

wm = [W]:,m ,m ∈ {1, . . . ,M}
}
. (17)

A comparison between the classical and the proposed beam
codebook design is demonstrated in Fig. 7 for a scene of 100◦

field of view and 16/9 aspect ratio, using 16× 16 UPAs. The
top figures are the 3D codebook radiation patterns, while the
bottom figures are the 2D codebook grids at a plane within
13.32mm depth. As shown, the proposed beam codebook
eliminates any grid mismatch distortion.

B. SIDELOBE REDUCTION APPROACH
As discussed in Section V-B, to rectify the inter-path inter-
ference problem, the sensing framework needs to filter out
the undesired channel paths. As illustrated in Fig. 6, one type
of undesired channel paths is the type of paths transmitted
from/received by the sidelobes of a codebook beam. For this
reason, we propose an efficient sidelobe reduction (SLR)
approach. In [41], [42], an SLR approach was proposed
for low sidelobe beamforming in uniform circular arrays.
Inspired by their work, we propose a new efficient sidelobe
reduction approach to uniform planar arrays (UPAs) to reduce
beamforming/combining sidelobe levels.

The key idea of this approach is when applying differ-
ent weights on the beamforming/combining vector elements,
the sensing framework can control the beam radiation pat-
tern in a way to increase the power difference between the
mainlobe and the sidelobes. Specifically, let cH ∈ RNH×1

and cV ∈ RNV×1 represent the horizontal and vertical weight
vectors for sidelobe reduction. Let bH and bV denote the

horizontal and vertical constituent beamforming vectors after
sidelobe reduction. The updated beamforming codebook,F ,
for an NH × NV transmit UPA, can then be rewritten as

F =
{
f ∈ CN×1

: f=bV (θz) ◦ bH (θx) , (θz, θx) ∈ O
}
,

bV (θz)= b̃V (θz)� cV, bH (θx)= b̃H (θx)� cH,

[cV]rV = e
−(rV−µV)2

2σ 2V , µV=
NV
2 , σV=

NV
δV
, rV ∈ {1, . . . ,NV},

[cH]rH = e
−(rH−µH)2

2σ 2H , µH=
NH
2 , σH=

NH
δH
, rH ∈ {1, . . . ,NH},

(18)

where δH, δV denote the sidelobe reduction control variables;
the higher the values, the greater reduction in the sidelobe
power levels compared to the mainlobe power level. The
updated combining codebook W can be similarly defined.
The beam codebook P follows the same definition in (17).

Fig. 8 illustrates the radiation pattern in dB for one beam-
forming vector out of the updated beamforming codebook,
F , for different values of the sidelobe reduction control
variables, δH, δV. As depicted, increasing the values of the
control variables increases the power gap between the main-
lobe level and the sidelobes levels. To take into considera-
tion the phase quantization of the RF phase shifters in the
AR/VR transceiver architecture previously shown in Fig. 2,
we examine the effect of 2-bit phase quantization on the
power radiation pattern. The 2-bit discrete phase shift set is{
0, π2 , π,

3π
2

}
. Fig. 9 compares the normalized power radia-

tion pattern between the case of continuous phase shifts and
the case of 2-bit quantized phase shifts. As depicted, the phase
quantization affects the beam pattern shape of the sidelobes.

One main advantage of this approach is its computational
efficiency; as formulated, only two element-wise multi-
plication between the weight vectors and the constituent
beamforming vectors, b̃H, b̃V, are needed to update the
beam radiation pattern. Thismultiplication, however, requires
an analog beamforming architecture with the capability of
changing both the phase andmagnitude. In the results section,
we only used this SLR-based beam codebook in the sim-
ulations of Fig. 24. In the future work, it is interesting to
explore phase-only approximations of this SLR-based beam
codebook structure. By contrast, reducing the sidelobe lev-
els dramatically increases the beamwidth of the mainlobe,
as depicted in Fig. 8. The increased mainlobe beamwidth,
however, can be mitigated by the other solutions proposed
for rectifying the inter-path interference problem, e.g. the
successive interference cancellation (SIC) algorithm and
the joint processing (JP) solution, as will be described in
the following section.

VII. PROPOSED SCENE RANGE/DEPTH ESTIMATION
In this section, given a pre-designed beamforming/combining
codebook, P , we propose an efficient approach for the
scene range/depth estimation in AR/VR devices. As depicted
in Fig. 4, once the beamforming/combining codebook has
been designed, the AR/VR transmits the sensing signal
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FIGURE 8. Normalized power radiation pattern comparison between (a) the case without the sidelobe reduction (SLR)
approach, (b) the case with the SLR approach where δH = δV = 3, and (c) where δH = δV = 4. As shown, increasing the
values of the control variables (the deltas) increases the gap between the mainlobe level and the sidelobes levels. The top
figures are the 3D views of the patterns while the bottom figures are the top views.

FIGURE 9. Normalized power radiation pattern comparison between the case with no phase
quantization and the case with 2-bit phase quantization, for two scenarios: without or with the
sidelobe reduction (SLR) approach where δH = δV = 4.

while sweeping over all the beamforming-combining vec-
tor pairs. Specifically, for a beamforming-combining vector
pair (fm,wm), where m ∈ {1, . . . ,M}, the receive sensing
signal, ym ∈ CN p

+Ld , can be modeled as in (6) and (7).
After reception, the acquired sensing signals are processed
to estimate the range and depth maps, as will be thoroughly

explained in this section. Our proposed post-processing
solution has three main elements: (i) The use of oversam-
pled/overlapped beams, (ii) the successive interference can-
cellation based management of inter-target and inter-path
interference, and (iii) the joint processing of the signals
received using the codebook beams to realize high-resolution
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Algorithm 1 Successive Interference Cancellation
Inputs: Receive sensing signal ym[n], transmit preamble sig-

nal sp[n], threshold level ATH, beamforming-combining
pair codebook P .

Outputs: Candidate delay set for each beam, Tm, ∀m ∈
{1, . . . ,M},.

1: for m = 1 to M do
2: Initialize:Updated signal ỹm[n]← ym[n], solution

set Tm←∅,∀m, and Ã← ATH.
3: while Ã ≥ ATH do
4: Calculate the delay of the path with maximum

cross-correlation

q̃← argmax
q:q∈Q

∣∣∣∣∣∣
Ly−1∑

n=Ly−Ny

sp[n]× (ỹm[n− q])
∗

∣∣∣∣∣∣
2

.

5: Add the candidate delay q̃ to the solution set

Tm← Tm ∪ {q̃} .

6: Calculate the energy of the transmit signal up
to q̃

EQ←
Ly−q̃−1∑
n=Ly−Ny

∣∣sp[n]∣∣2 .
7: Perform interference cancellation at q̃

Ã←

 Ly−1∑
n=Ly−Ny

sp[n]× (ỹm[n− q̃])
∗

 .
ỹm[n]← ỹm[n]−

Ã
EQ

sp[n− q̃].

8: Calculate the next max. in the cross-correlation

Ã← max
q:q∈Q

∣∣∣∣∣∣
Ly−1∑

n=Ly−Ny

sp[n]× (ỹm[n− q])
∗

∣∣∣∣∣∣
2

.

and accurate depth maps. Next, we explain these three ele-
ments in Sections VII-A-VII-C before presenting the scene
range/depth map construction approach in Section VII-D.

A. OVERLAPPED BEAMS
With the objective of increasing the resolution of the
mmWave MIMO based depth maps, we propose to adopt
oversampled sensing codebooks to scan the surrounding envi-
ronment. In particular, for the sensing codebook, we adopt
the developed codebook in Section VI-A with oversampling
factors of FOS

H and FOS
V in the azimuth and elevation direc-

tions. While the oversampled codebook has the potential of
enhancing the depth map resolution, it is important to note
that advanced post-processing (for the receive signals using
these oversampled beams) needs to be incorporated to achieve
this goal. The reasonmainly goes back to the wide beamwidth

(and low spatial resolution) of the codebook beams, which
is fundamentally limited by the number of AR/VR antennas.
This wide beamwidth leads to a number of challenges: (i) The
spatial regions scanned by the oversampled beams have high
overlap. Thismakes it hard to differentiate between the depths
of the different objects in the depth map pixels, which chal-
lenges the objective of realizing high-resolution depth maps.
(ii) Since the codebook beams still have wide beamwidth,
the inter-target interference problem discussed in SectionV-B
still exists.

To address these challenges, we propose a novel
post-processing approach based on successive interference
cancellation and joint-beam processing. This approach in
summarized in two main steps as follows. In the first step,
a successive interference cancellation (SIC) based algorithm
is used to detect the most dominant channel paths con-
tributing to the range/depth estimation of the region cov-
ered by each codebook beam. These paths form a set of
candidate ranges/depths for the scene range/depth estima-
tion. In the second step, a developed joint-beam processing
solution selects one range/depth out of the set of candi-
date ranges/depths formed by the SIC algorithm. These two
sequential algorithms are discussed in detail in the following
two subsections.

B. SUCCESSIVE INTERFERENCE CANCELLATION
The main goal of the successive interference cancella-
tion (SIC) algorithm is to detect all the dominant paths that
might contribute to the range estimation of the region of inter-
est. This is motivated by its good performance in multi-target
detections problems [43]. The SIC algorithm is applied in the
discrete-time domain and is summarized in Algorithm 1. The
algorithm is described as follows. Let the length of the receive
sensing sequence ym[n] be Ly = N p

+ Ld symbols. First,
as shown in Fig. 10, for every codebook beam, the delay posi-
tion of the maximum cross-correlation magnitude value is
detected.Q is the set of possible delays. Second, the SIC algo-
rithm encodes the transmit preamble signal to be shifted to
this delay position and subtracted it from the received signal.
Afterwards, the algorithm repeats itself to detect the second
local maximum above the threshold value. Finally, The SIC
algorithm stops iterating when all the local maxima above
the threshold value are detected. The output of this algorithm
is a set of candidate delays for every codebook beam. These
sets pass as input to the next algorithm, the joint processing
solution, as will be explained in the next part. In Fig. 10,
note that the cross-correlation magnitude plot appears to be
drawn as a continuous plot, only for illustration purposes. The
actual cross-correlation magnitude, however, is expressed in
discrete time delays.

C. JOINT PROCESSING SOLUTION
The purpose of the joint processing (JP) solution between the
overlapped beams is to estimate the transitions in depth/range
maps more accurately. The proposed JP solution is summa-
rized in Algorithm 2. The algorithm is described in detail as
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FIGURE 10. The operation of the successive interference cancellation (SIC) algorithm is illustrated. The delay position of the maximum
cross-correlation is first detected. The SIC algorithm then encodes a signal shifted at this delay position and subtracted it from the
receive signal. After that, the algorithm repeats itself until all the local maxima above the threshold value are detected.

FIGURE 11. This figure illustrates the basic operation of the joint
processing (JP) solution for overlapped beams. The JP solution sweeps
from left to right, then from top to bottom. The JP solution decides on
which path to choose from the current candidate set by a simple
comparison with the sets of the surrounding grid points.

follows. First, the JP solution works on the candidate delay
sets, the output from the SIC algorithm, {Tm}Mm=1, to choose
one range estimate out of the candidate delay set. This pro-
cessing, however, is employed relative to the 2D codebook
grid, as illustrated in Fig. 11. Following this notion, the linear
indices in Tm is now converted into matrix subscripts Th,v
through the transformation m = (v − 1)NH + h, such that
Tm = Th,v, where v is the elevation beam index (vertical
grid index) and h is the azimuth beam index (horizontal grid
index). The objective is to calculate the scene range estimates
across all beam directions,

(
ρ̂h,v

)SRE
,∀h, v.

As shown in Fig. 11, the JP solution sweeps from left to
right, then from top to bottom. For each grid point, the JP
solution uses (i) the set of the current grid point, named as the
‘‘current set’’, and (ii) the sets of the previous adjacent grid
points to construct a ‘‘common adjacent set’’. This common
adjacent set is the union of the sets of all previous adjacent
grid points. Then, to investigate if a new object/surface tran-
sition appears, this current set is compared with the common
adjacent set to detect if there is any set difference. This is
based on the notion that the difference set can probably be the
new edges that will appear in the range map while sweeping.
If the set difference is not empty, then the solution chooses the
path with the least time-of-flight from the set difference. Oth-
erwise, if the set difference is empty, then the solution chooses
the path with the least time-of-flight from the current set.

Algorithm 2 Joint Processing Solution
Inputs: Candidate delay set for each beam, Th,v,∀h ∈
{1, . . . ,NH},∀v ∈ {1, . . . ,NV}.

Outputs: Scene range estimate
(
ρ̂h,v

)SRE
,∀h, v.

1: Initialize:Common adjacent set Nh,v← ∅,∀h, v,
difference setMh,v← ∅,∀h, v.

2: for v = 1 to NV do
3: for h = 1 to NH do
4: Construct the common adjacent set

Nh,v←
(
Th−1,v ∪ Th,v−1 ∪ Th−1,v−1 ∪ Th+1,v−1

)
.

5: Construct the difference set

Mh,v← Th,v \Nh,v.

6: ifMh,v 6= ∅ then
7: Choose the least delay from the difference

set (
ρ̂h,v

)SRE
←

ςTS
2

minMh,v.

8: else
9: Choose the least delay from the candidate

set (
ρ̂h,v

)SRE
←

ςTS
2

min Th,v.

D. RANGE/DEPTH MAP CONSTRUCTION
In this section, we formulate the depth map construction
approach, the last step in Fig. 4. In summation of the broader
view, the mmWave MIMO sensing based range/depth map
estimation framework is outlined in Algorithm 3. The algo-
rithm steps are summarized as follows. Step 1 refers to the
design of the beamforming-combining pair codebookP was
covered in Section VI. Step 4 refers to the successive interfer-
ence cancellation described in Section VII-B. Step 5 refers
to the joint processing solution detailed in Section VII-C.
After that, in Step 6, the fine range estimate can be calculated,
such that

(
ρ̂m
)MC
=
(
ρ̂m
)SRE
+
(
ρ̂m
)′, where (ρ̂m)′ is com-

puted from the algorithm described in Section IV-B2. Next,
after calculating the range estimates, the upcoming steps
(Steps 7,8) are focused on constructing the range and depth
maps. Note that the range of an object is actually the radial
distance in spherical coordinates. Fortunately, the (x, y, z)
rectangular coordinates of the sensor grid points on the
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Algorithm 3 mmWave MIMO Sensing Based Range/Depth
Estimation Framework
Inputs: Field of viewFoV, aspect ratioAR, number of hori-

zontal and vertical beamsNH,NV.
Outputs: Range map R̂map, depth map D̂map.
1: Design the beamforming-combining pair codebook, P ,

following Section VI.
2: for m = 1 to M do F For each pair (fm,wm).
3: Acquire receive sensing signal, ym[n], as in (6), ∀n ∈

{0, 1, . . . ,N p
+ Ld − 1}.

4: Calculate the candidate delay set for each beam,Tm,
∀m, as in Algorithm 1.

5: Calculate the scene range estimate,
(
ρ̂m
)SRE, ∀m, as in

Algorithm 2.
6: Calculate fine range estimates, following Section IV-B2.(

ρ̂m
)MC
←
(
ρ̂m
)SRE
+
(
ρ̂m
)′
,∀m.

7: Construct the range map, R̂map, from (20).
8: Construct the depth map, D̂map, from (21).

camera plan were already calculated for the design of the
beamforming-combining pair codebook using (14). These
rectangular coordinates in (14) can then be converted to
spherical coordinates, such that

S =
{
(θz,8) : θz =

[
π
2 − arctan

(
z√
x2+y2

)]
,

8 = arctan
( y
x

)
, (x, y, z) ∈ C

}
. (19)

In order to construct the matrices for the range and depth
maps, let2,8 ∈ RNV×NH be the matrices that represent the
angles of the spherical coordinates (θz,8) ∈ S, respectively.
Following Step 6 in Algorithm 3, the range map estimate
R̂map ∈ RNV×NH can be expressed as[

R̂map
]
v,h =

(
ρ̂m
)MC

, m = (v− 1)NH + h, (20)

where m ∈ {1, . . . ,M}, h ∈ {1, . . . ,NH}, v ∈ {1, . . . ,NV}.
Given the angles in spherical coordinates and the range map
estimate, the depth map estimate D̂map ∈ RNV×NH can then
be expressed as[

D̂map
]
v,h =

∣∣ρ̂ sin (θz) sin (8)∣∣ , (21)

where ρ̂ =
[
R̂map

]
v,h , θz = [2]v,h , 8 = [8]v,h , ∀v, h.

Finally, since the range and depth map resolutions are set
to NH × NV, two-dimensional image interpolation can be
employed to scale the maps to the desired resolutions,
Mh ×Mw. Examples of interpolation methods are the near-
est neighbor interpolation and the bicubic interpolation.
Although the bicubic interpolation can probably be the inter-
polation method of choice for achieving more estimation
accuracy, the nearest neighbor interpolation is more compu-
tationally efficient. In the simulation results of Section VIII,
we evaluate the two interpolation approaches for our
mmWave MIMO based depth map construction problem.

VIII. SIMULATION RESULTS
In this section, we evaluate the performance of the proposed
mmWave based depth estimation approach. First, we describe
the adopted simulation framework in Section VIII-A before
extensively studying the estimation accuracy of the proposed
approach under various scenarios and system parameters. The
simulation results presented can be of great usefulness for
various applications; they can be generally applied to AR/VR
devices, smart home devices, or auto drive devices.

A. SIMULATION FRAMEWORK
Since the depth estimation heavily depends on the environ-
ment under test, it is crucial to evaluate the performance
of the proposed solution based on realistic channels. This
motivates using channels generated by accurate ray-tracing
to capture the sensing dependence on the environment geom-
etry, scatterers’ materials, AR/VR position, etc. This is why
we designed the simulations models using RemcomWireless
InSite [16], which is an accurate 3D ray-tracing simulator.
Further, to efficiently incorporate diffuse scattering models,
we need to have highly detailed floor plans with a sufficient
number of faces. To achieve this objective, we resorted to
the high-fidelity game engine, Blender [17], to build accu-
rate floor plans. These plans/models are then exported to
Wireless InSite to obtain the ray-tracing outputs, and finally
to MATLAB to construct the channel models in (4) and
implement the proposed depth estimation approach. The pro-
posed evaluation framework is illustrated in Fig. 12. For
benchmarking, we also use the Blender floor plans to obtain
the ground truth depth maps, which are essential to evaluate
the accuracy of our solutions. The ground truth maps are
generated by placing a Blender camera at the same posi-
tion of the UPA reference antenna element, and adjusting
the Blender camera parameters to capture the same field
of view.

1) SIGNAL MODEL
We adopt the signal model described in Section II with
a focus on the sensing system performance. The AR/VR
device is assumed to be fixed in position. Unless other-
wise mentioned, the UPA size is 16 × 16 antennas (NH =

NV = 16) at the mmWave 60GHz operating band with
transmission bandwidth of 2GHz. The antenna elements have
a gain of 0dBi with half-wavelength antenna spacing. The
transmit power is set to 30dBm. The preamble sequence
is the same as the one in the single carrier PHY packet
preamble of the IEEE 802.11ad standard (3328 symbols).M
preamble sequences are used to sense the environment viaM
beamforming-combining pairs. For the sake of calculating a
rough estimate of the time allocated for environment sensing
through transmission and reception, assume that all the M
preamble sequences are transmitted sequentially with guard
intervals in between. The highest M value reported in the
upcoming simulation results is 4096 beams. Assuming a
sampling rate of 2Gsps, the estimate of the longest sensing
time is then ≈ 7ms.
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FIGURE 12. This figure demonstrates the adopted simulation framework for scene depth estimation. The framework consists of designing
the indoor setup, generating the ground truth range/depth maps, and constructing the estimated maps for performance evaluation. For
more complex setups, designing the indoor scenarios jointly in Wireless InSite and Blender can be more effective.

TABLE 1. The adopted diffuse scattering parameters for different materials.

2) CHANNEL GENERATION
The channel matrix, Hd , is generated in two steps. The first
step is generating the channel rays using the ray-tracing soft-
ware,Wireless InSite. TheWireless InSite propagationmodel
is set to ‘X3D’ with 0.1◦ ray-spacing and enabled mode of
diffuse scattering. Up to three reflections, one diffraction, and
one transmission properties are allowed for each ray in the
Wireless InSite simulation. The diffuse scattering model used
is ‘‘directive with backscatter’’; this model is fixed across
all materials in all the testing scenarios. The chosen diffuse
scattering model creates two scattering lobes; a forward lobe
of diffuse scattered power centered on the direction of spec-
ular reflection and a backward lobe centered on the opposite
direction of incidence. The diffuse scattering parameters of
the different materials are summarized in Table 1. The values
reported in Table 1 follow the ITU default parameter values
at 60GHz. The second step in the sensing channel gener-
ation is calculating the delay-d channel matrix out of the
channel paths using the DeepMIMO dataset generation code
[44]. Using these channels and following (4)-(3), the noisy
receive sensing sequences are generated. The noise power is
calculated based on a 2GHz bandwidth and a receiver noise
figure of 7dB.

3) mmWave bASED DEPTH ESTIMATION PARAMETERS
The beamforming-combining pair codebook is designed
based on a 100◦ field of view centered on the antenna
array boresight, a 16/9 scene aspect ratio, and horizontal
and vertical oversampling factors of unity. The ground truth
depth maps are generated from Blender using a Blender
camera with a 100◦ field of view, a focal length of 13.43mm

FIGURE 13. The maps for the one wall scenario are depicted for a
separation distance of 7 meters from the AR/VR device with 16× 16 UPAs.
The depicted maps are the estimated maps (at the top), ground truth
maps (at the bottom), range maps (on the left side), and 1080p depth
maps (on the right side). Comparing (a) with (b), the range map
estimation error: MAE = 0.098m. Comparing (c) with (d), the depth map
estimation error: MAE = 0.12m.

corresponding to a sensor width of 32mm. The ground
truth depth map image quality is set to 1080p resolution;
i.e., 1920 × 1080 pixels. Concerning the massive correlator,
fest is set to 100 multiple of the sampling frequency fS;
i.e., δ = fest

2fS
= 50. Unless mentioned otherwise, the
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FIGURE 14. The depth maps for the one wall scenario are depicted for different antenna
configurations and codebook resolutions, for a separation distance of 7 meters. Figures (a), (b), and
(c) illustrate the estimated 1080p maps for 8× 8, 16× 8, and 16× 16 UPAs. Figures (d) illustrate the
ground truth maps. The top maps are with no codebook oversampling while the bottom maps are with
codebook oversampling factors of two.

FIGURE 15. The 1080p depth maps for the one wall scenario are depicted at different antenna configurations, for a
separation distance of 7 meters. The same number of antenna elements is used (24 elements) and codebook
oversampling factors of four are employed. Figures (a), (b), and (c) illustrate the estimated maps for 12× 2, 8× 3, and
6× 4 UPAs. Figures (d) illustrate the ground truth depth map.

FIGURE 16. The 1080p depth maps for the one wall scenario at 7m separation distance
are estimated for two cases of the RF phase shifters at the AR/VR device: (a) continuous
phase shifts and (b) 2-bit quantized phase shifts. 16× 16 UPA is employed with
codebook oversampling factors of two. Figures (c) illustrate the ground truth depth map.

massive correlator is adopted for range estimation. Through-
out this paper, two performance metrics are used: (i) root-
mean-square-error (RMSE) between the estimated map and
the ground truth map to indicate the standard deviation of

the estimation error, and (ii) mean-absolute-error (MAE) to
denote the expected value of the estimation error. The two
metrics are defined in (9). Next, we evaluate the perfor-
mance of our proposed mmWave MIMO depth estimation
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FIGURE 17. For the one wall scenario, the error performance of the proposed mmWave MIMO based depth estimation solution is evaluated under
different error metrics in (a) and is evaluated for different preamble sequence lengths in (b). The wall is 7 meters away from the AR/VR device with
16× 16 UPAs. The figures show the robustness of the developed approach under relatively low SNR regime. Note that the displayed transmit power range
in (b) corresponds to average SNR range of −20.7dB to −0.7dB.

approach in four main scenarios: (i) A one wall scenario in
Section VIII-B, (ii) a two walls scenario in Section VIII-C;
(iii)) a room with two pillars scenario in Section VIII-D,
and (iv) a conference room scenario in Section VIII-E.

B. ONE WALL SCENARIO
The one wall scenario consists of an AR/VR transceiver
facing a wall in free space propagation. Unless otherwise
mentioned, the separation distance between the wall and
the transceiver is 7 meters and the wall building material
is concrete. In Fig. 13, we show the estimated range and
depth maps for the one wall scenario compared to the ground
truth maps. Fig. 13(a) and Fig. 13(b) show that the range
map estimation error has an average MAE of 0.098m and
RMSE of 0.127m. Further, the depth map estimation error
Fig. 13(c) and Fig. 13(d) has an average MAE of 0.12m
and RMSE of 0.153m. Overall, these figures show that the
proposed approaches can accurately estimate the range/depth
maps for a wall at 7m distance from the AR/VR device with
around 10cm error, which highlights the effectiveness of this
approach.
Impact of the Important System Parameters: Next,

we briefly evaluate the impact of the various system parame-
ters on the performance of the proposed mmWave depth map
estimation solution.
• Number of antennas and sensing codebook beams:
In Fig. 14, we plot the estimated and ground-truth
depth maps for a different number of antennas and
codebook oversampling factors. As illustrated, the depth
estimation accuracy can generally improve by increas-
ing the number of antennas and/or the codebook
oversampling factors. This comes with the cost of

deploying more antennas at the AR/VR device or
employing more beams, which translates to a longer
sensing time. In Fig. 15, we plot the estimated and
ground-truth depth maps for different antenna config-
urations using the same number of antenna elements.
As depicted, the depth estimation accuracy depends on
the UPA configuration, with the best configuration being
the 6 × 4 UPA because of its closeness to the 1080p
aspect ratio.

• RF phase shift quantization: As previously described
in Section VI-B, the phase quantization of the RF phase
shifters in the AR/VR transceiver architecture produces
a noticeable change in the radiation pattern shape of
the sidelobes. To examine the effect of this phase quan-
tization on the estimated depth maps, Fig. 16 shows
the comparison of the estimated depth maps for two
cases of the RF phase shifters at the AR/VR device:
(a) continuous phase shift and (b) 2-bit quantized phase
shifts. As depicted, the phase quantization contributes
with a small negative impact on the depth map estima-
tion accuracy for the one wall scenario at a separation
distance of 7 meters.

• Transmit sensing power: In 17a, we investigate the
effect of changing the transmit power on the depth map
estimation accuracy. The SNR value of 0dB corresponds
to a transmit power of 15dBm. This figure shows that
a transmit power of 5dBm (SNR of −10dB) could be
sufficient to reach around 10cm error for the depth
estimation accuracy.

• Preamble sequence length: The estimation error versus
transmit power is depicted in 17b for different values of
preamble sequence lengths, namely preambles with 50,
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TABLE 2. The estimation error results of the one wall scenario for different wall materials.

FIGURE 18. The error performance of the proposed mmWave MIMO
based depth estimation solution is evaluated across different separation
distances for the one wall scenario. The estimation error starts
from ≈ 1.5m at a 1m distance and reaches around 10cm at a 7 meters
distance.

100, 1000, and 3000 symbols. As shown in this figure,
increasing the preamble sequence length improves the
depth estimation accuracy at the expense of increased
sensing time and post-processing complexity.

• Separation distance between the AR/VR device and
the facing wall: Fig. 18 investigates the impact of
increasing the depth value on the depth estimation accu-
racy. As shown in this figure, the larger the distance
between the AR/VR device and the facing surface, the
larger the error in the depth estimate, which is expected.
This figure also highlights some advantage for the bicu-
bic interpolation compared to the other interpolation
methods.

• The surface material: Now, we evaluate the perfor-
mance of the proposed approach for different surface
materials. More specifically, we summarize in Table 2
the range map MAE for different candidates of the
wall material. Overall, we can notice some correlation
between the estimation accuracy and the scattered to
incident power ratio property of the materials, which
are summarized in Table 1.

C. TWO WALLS SCENARIO
The two walls scenario consists of one AR/VR device facing
two walls in free space propagation as depicted in 19a. The

FIGURE 19. (a) The adopted two walls scenario is illustrated. (b) The
maps for the two walls scenario are depicted. The AR/VR device is
employed with 16× 16 UPAs. The depicted maps are the estimated maps
(at the top), ground truth maps (at the bottom), range maps (on the left
side), and 1080p depth maps (on the right side). Comparing (a) with (b),
the range map estimation error: MAE = 0.052m. Comparing (c) with (d),
the depth map estimation error: MAE = 0.046m.

separation distance between the front wall and the AR/VR
device is 1m while the separation between the back wall
and the AR/VR device is 2m. The walls’ building material
is concrete. Each wall consists of 2, 048 faceted faces, and
each face contributingwith atmost one backscattered ray. The
purpose behind studying this scenario is to test the alignment
of the estimated map compared to the ground truth depth
map. The results of this test are illustrated in 19b, where the
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FIGURE 20. Figure (a) illustrates the bird view of the room with two
pillars. Figure (b) shows the scene from the AR/VR device position,
centered at the front door. The 5m×5m room consists of a concrete floor
plan with two wood pillars in the middle of the room. The wood pillars
are at 2 meters distance from the AR/VR device.

estimated range and depth maps are compared to the ground
truth maps. As shown in 19b, the two edges of the front
wall in the estimated maps align reasonably well with the
one displayed in the ground truth maps. This highlights the
promising performance of proposed mmWave based depth
estimation solution.

D. A ROOM WITH TWO PILLARS
In this scenario, we consider a 5m×5m room where one
AR/VR device is centered at the front door of the room,
as depicted in Fig. 20. The room consists of a concrete
floor plan with two wood pillars in the middle of the
room. The wood pillars are at 2 meters distance from the
AR/VR transceiver. The floor plan consists of 15, 488 faceted
faces whereas each of the wood pillars consists of 3, 072
faceted faces. Note that the ceiling of the floor plan is set
to the invisible mode for visibility purposes only. For the
estimation error assessment of the indoor space scenario,
Fig. 21 shows the comparison between estimated and ground
truth maps for 16 × 16 UPA antennas with a codebook
oversampling factors of four in both azimuth and elevation
dimensions.

First, Fig. 21(a) with Fig. 21(b) show the estimate and
ground truth range maps, which have a MAE of 0.139m
and RMSE of 0.355m. For the depth maps, Fig. 21(c) with
Fig. 21(d) represent 1080p maps with estimation error of
(i) 0.126m for the MAE and 0.356m for the RMSE with
nearest neighbor interpolation, and (ii) 0.123m for the MAE
and 0.328m for the RMSE with bicubic interpolation. From

FIGURE 21. The maps for the room with two pillars are depicted. 16× 16
UPAs are employed with codebook oversampling factors of four. The
depicted maps are the estimated maps (at the top), ground truth maps
(at the bottom), range maps (on the left side), and 1080p depth maps (on
the right side). Comparing (a) with (b), the range map estimation error:
MAE = 0.139m. Comparing (c) with (d), the depth map estimation error:
MAE = 0.126m.

FIGURE 22. For the room with two pillars, the error performance of the
proposed mmWave MIMO based depth estimation is evaluated for
different error metrics. 16× 16 UPAs are employed with a codebook
oversampling factors of four in both dimensions. This figure shows the
robustness of the proposed mmWave MIMO based depth estimation
under relatively low SNR regime.

observing the difference in maps, the mmWave reasonably
recover most of the depth information of the scene with
low codebook resolution (16 × 16) compared to the ground
truth 1080p resolution. With narrower transmit and receive
beams, i.e. more antenna elements, the estimation accuracy
is expected to further improve.
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FIGURE 23. (a) the bird view of the conference room scenario; (b) and (c) the scenes under study. The 10m×10m indoor space contain a
6m×6m conference room in glass. the indoor space walls are made from layered drywall, the ceiling is made from ceiling board and the
floor is made from floorboard. The conference room chairs and tables are made from wood.

The depth map estimation accuracy for this scenario is
also evaluated at different SNRs in Fig. 22. In this figure,
we adopt the model and system parameters used in Fig. 21
with 16×16 UPAs and oversampling factors of four. It is also
worth mentioning that 0dB SNR corresponds to −20dBm
transmit power in our setup. As shown in Fig. 22, the esti-
mated depth maps have MAE of almost 10cm at 0dB, which
highlights the promising performance of our proposed depth
map estimation approach at relatively low SNRs and in an
indoor room with several surfaces and different materials.
This will be further emphasized in the following subsection.

E. CONFERENCE ROOM SCENARIO
In this scenario, we consider the conference room shown in
Fig. 23. The ceiling of the indoor space is set to the invisible
mode for visibility purpose only. The 10m×10m indoor space
has a 6m×6m conference room with glass walls. The indoor
space walls are made of layered drywall, the ceiling is made
of ceiling board, and the floor is made of floorboard. The
conference room chairs and tables are made of wood. The
conference room door opening is 1m in width and 2.7m in
height. The number of facets for each item in the indoor
space is as follows: 2, 048 facets for the layered drywall,
2, 048 facets for the floorboard, and 2, 048 facets for the
ceiling board. In addition, the number of facets for each item
in the conference room is as follows: 1, 568 facets for the
glass wall, 4, 446 facets for the table, 21, 192 facets for the
office chairs. The conference room scenario consists of two
AR/VR devices for two scenes under study— the first device
is centered at the front door of the conference room while

the second transceiver is placed outside of the conference
room facing the other glass facet. The scenes captured by the
AR/VR camera for the two cases are shown in Fig. 23(b) and
Fig. 23(c).
One main motivation for leveraging mmWave MIMO to

estimate the depth maps (compared to RGB based depth
estimation approaches) is the expected higher efficiency in
detecting transparent and dark objects. In Fig. 24, we compare
our mmWave MIMO based depth estimation approach with
the RGB based depth estimation approach, detailed in [2],
for the two considered conference room scenarios. It’s worth
emphasizing here that the algorithms in [2] achieve consid-
erably good depth accuracy when tested on the NYU depth
V2 dataset [45]. As shown in Fig. 24, the mmWave MIMO
based estimator outperforms the RGB based estimator in
recognizing transparent and dark objects. For the first scene,
the glass wall was not detected by the RGB estimator. Also,
in the presence of a scene with low illumination, themmWave
MIMO based estimator performance shows robustness in the
estimation accuracy compared to the RGB based estimator.
Figure 1.c) and 2.c) were generated with the aid of the SLR
approach in Section VI-B, with δH = 2, δV = 3. For
this reason, the depth maps constructed by the mmWave
MIMO system seem coarser than the one constructed by RGB
cameras, which can be resolved using morphological image
processing operations, e.g., the erosion operation. As for
the second scene, the RGB based estimator is unable to
detect the transparent glass compared to the mmWaveMIMO
based estimator. Interestingly, despite the fact that the glass
scattering ratio is 0% based on Table 1, the conference room
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FIGURE 24. For the conference room scenario, the proposed mmWave MIMO based depth estimation is compared with the RGB based
depth estimation in [2]. 16× 16 UPAs are employed with codebook oversampling factors of four. The depicted maps are the maps of
the first scene with lights on/off (The top two rows) and the second scene (the bottom row). (a) The scenes under study; (b) the
estimated maps from monocular RGB images; (c) the estimated maps from our proposed solution; (d) the ground truth depth maps.

glass wall is partially recovered by the mmWave MIMO
based estimator because of the boresight reflection path. This
makes the wireless AR/VR experience safer by providing
the ability to detect transparent surfaces. All these promising
results highlight the potential of leveraging the proposed
mmWave MIMO based depth map estimation approaches for
immersive AR/VR experience.

IX. CONCLUSION
In this paper, we considered the problem of estimating accu-
rate depth maps for AR/VR devices, which is an essential
goal for immersive mixed-reality experience. For this prob-
lem, we proposed leveraging the mmWave communication
systems that are deployed on the AR/VR devices to estimate

and build high-resolution depth maps. We formulated the
communication-constrained depth map sensing problem and
proposed a comprehensive framework for realizing this
objective. The proposed framework includes (i) the construc-
tion of depth map specific sensing codebooks using practical
mmWave antenna arrays and (ii) the development of efficient
post-processing solutions for jointly processing the receive
signals from the multiple sensing beams and estimating
high-resolution depth maps. Simulations using accurate 3D
ray-tracing models confirmed the promising accuracy of our
proposed mmWave based depth map estimation approach
in various environment scenarios. In particular, the results
show that the proposed approach can construct relatively
high-resolution depth maps with less than 10cm error using
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practical mmWave systems. This highlights the potential of
leveraging this solution to complement RGB-D based depth
maps and realize immersive depth perception for wireless
virtual/augmented reality systems.
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