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ABSTRACT The application of photovoltaic power is becoming more and more extensive presently, when
the existing time-frequency analysis methods are used to analyze photovoltaic mutation signals such as
transient rise and transient fall, the cornered signal will produce Gibbs phenomenon and leads to errors. Thus,
the Broadband Mode Decomposition (BMD) method is proposed. The main idea of BMD is to search in the
associated dictionary that contains the wideband and narrowband signals. However, the BMD algorithmmay
treat the wideband signal as several narrowband components, when applied to a wideband signal interfered
by strong noise, because the relative bandwidth is not sufficiently small. Therefore, a modulated broadband
modal decomposition (MBMD) based on the modulation differential operator is proposed. By multiplying
a high-frequency single-frequency signal, the relative bandwidth of the effective wideband signal is much
smaller than 1, and the wideband signal is processed as an approximate wideband signal.Meanwhile, because
the errors of the traditional dot product sum algorithm in DC energy measurement cannot be positive
and negative offset, while the compound Simpson integral algorithm has small error and high calculation
accuracy. Therefore, a photovoltaic DC power calculation method based on the MBMD and compound
Simpson integration is proposed.

INDEX TERMS Modulated broadband mode decomposition algorithm, compound Simpson integral
algorithm, photovoltaic direct current power measurement, modulated difference operator.

I. INTRODUCTION
The application of photovoltaic power generation is increas-
ingly widespread. The solar photovoltaic power generation
industry is in a stage of rapid development. The extensive
use of various DC power electronic equipment such as rec-
tifiers, inverters, frequency converters, and charging piles
in photovoltaic power generation DC systems has brought
considerable economic benefits. However, due to the non-
linearity, impact and imbalance of the load, these equipment
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can increase various disturbance components in the power
grid, which may cause power quality problems such as rip-
ple, distortion, and noise in the power grid. These power
quality problems will seriously affect the stability of the
power supply network and the use of electrical appliances
[1]–[5]. Since most voltages in home circuits are AC volt-
age, the research on AC power has been in progress, and
the AC power measurement method has been developed
to be relatively mature. However, the DC power measure-
ment method is not sufficiently mature, so research for a
photovoltaic DC power measurement method is of great
significance [6], [7].
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In engineering fields, many time-frequency analysis meth-
ods are used to extract features from noise signals [8]–[15].
These adaptive time-frequency analysis methods can be
divided into two types: methods based on Fourier transform
and methods not based on Fourier transform [16], [17]. The
methods based on Fourier transform include wavelet trans-
form (WT) and variational modal decomposition (VMD)
methods. These methods that achieve signal decomposi-
tion are based on frequency domain calculations [18].
K. Dragomiretskiy and D. Zosso proposed the VMDmethod,
which is an adaptive filter based on multiple Wiener fil-
ters [18]. It has been proven that compared to the previous
methods, VMD shows good performance in the analysis of
complex nonstationary signals [19]–[21]. The methods that
are not based on Fourier transform are the ensemble empirical
mode decomposition (EEMD), empirical mode decomposi-
tion (EMD), and local mode decomposition (LMD), which
calculate the envelope of the extreme point and decompose
the original signal into several intrinsic mode functions [22].
Z. Wu et al. proposed the EEMD, by adding different lev-
els of white noise to the original signal, and averaging the
decomposition results, which improved the anti-noise ability
of EMD [23]. Recent studies have shown that the VMD and
EEMD methods are superior and effective [24], [25], so they
are selected as representatives of Fourier transform-based
methods and non-Fourier transform-based methods to com-
pare with the proposed methods.

In the photovoltaic DC signal, due to the input and output
of the DC linear load, a disturbance signal with sharp corners
similar to a square wave signal will be generated. The existing
time-frequency analysis methods have problems with ‘‘sharp
edges’’ signals such as sawtooth signals and square wave
signals, because their frequency bands are infinite [26], which
can be considered broadband signals.

First, for the method based on Fourier transform,
the essence of the algorithm is multiscale adaptive filtering.
However, Gibbs phenomenon shows that after filtering [27],
the high-frequency part of the broadband signal will attenuate
or disappear, which may cause a series of interference at
the breakpoint of the decomposition result. Second, for the
method that is not based on Fourier transform, the envelope of
the extreme point is calculated by the interpolation function,
and the original signal is divided into various ‘‘smooth’’
narrow-band intrinsic mode functions (IMFs). Hence, errors
will inevitably occur when addressing the broadband com-
ponents. Therefore, the Broadband Mode Decomposition
(BMD) algorithm [16], [17] is proposed. An association dic-
tionary containing common wideband data (such as square
wave, sawtooth and narrowband data) is constructed in the
BMD algorithm. Then, using optimization methods to get
the sparse solutions, by searching in the association dic-
tionary. The BMD method uses the regulating differential
operator as the best object. For noisy nonstationary signals,
BMD is suitable for extracting wideband and narrowband
features, which compared with previous signal decomposi-
tion algorithms. However, the BMD algorithm may treat the

wideband signal as several narrowband components, when
applied to wideband signals that are interfered by strong
noise [28], because the relative bandwidth is not sufficiently
small. Therefore, this paper proposes a broadband modal
decomposition (MBMD) method based on modulation dif-
ferential operator to denoise photovoltaic DC signals. By
multiplying the high-frequency single-frequency signal, the
effective wideband signal’s relative bandwidth is converted
to much less than 1, and the wideband signal is considered
an approximate wideband signal to obtain a more accurate
decomposition result.

Simpson integration algorithm [29]–[33] is a common
integration algorithm, which was created by the English-
man Thomas Simpson, where the numerical approximation
solution of a definite integral is obtained by the method
of quadratic curve approximation. Simpson algorithm has a
wide range of applications in medicine, mathematics, elec-
tronics, machinery, information, etc., but it is rarely used in
photovoltaic DC power measurement. In this paper, MBMD
algorithm is used to decompose signals and extract fea-
tures, then, the compound Simpson integral algorithm is
used to measure the DC energy. In the following, simulation
and experiment will demonstrate the effectiveness of this
method.

The remainder of the paper is as follows. Section 2 intro-
duces the theory MBMD signal decomposition algorithm
and compound Simpson integral algorithm, and establishes
a mathematical model. Section 3 verifies the correctness of
the theory through simulation signal. Section 4 analyzes the
measured data. Section 5 provides the conclusion.

II. THEORETICAL ANALYSIS
A. PHOTOVOLTAIC DC SIGNAL MODELING
The DC signal in the photovoltaic system has disturbances.
Therefore, a photovoltaic direct current signal model can be
established here for some common disturbances of direct
current signals. In the next chapter, the established signal
model will be simulated and analyzed by MATLAB. The
following model is constructed for the transient rise, transient
fall, harmonics and other disturbances that often occur in DC
signals:

First, a signal S with DC components, harmonics (because
the harmonics generated in the photovoltaic DC circuit are
mainly second harmonics, so the harmonics constructed here
are second harmonics) and noise is constructed.

Then, a signal model S1 with a signal with transient rise
and transient fall are constructed. Because there are linear
and nonlinear loads in the circuit, which have different signal
waveforms when they are connected to and disconnected
from the circuit, there is a buffering process for nonlinear
loads. The linear load is a process where the current directly
changes to the corresponding position when it is connected
or disconnected without buffering. To reflect the difference
between the two types of loads, the swell and sag signal of
the nonlinear load is added to signal S1.
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Based on signal S1, the swell and sag signal of the linear
load is added to form the new model S2.

S2 = u0(t)︸︷︷︸
DC signal

+

∑
k

Akuk (t)︸ ︷︷ ︸
Harmonic signal

+

∑
i

Aiui(t)︸ ︷︷ ︸
Linear load transient rise
and transient fall signal

+

∑
j

Ajuj(t)︸ ︷︷ ︸
Non-linear load transient rise
and transient fall signal

+ x(n)︸︷︷︸
Noise signal

(1)

In the above formula, u0(t) is the DC component in the
mixed signal S2, uk (t), ui(t) and uj(t) are the disturbance
components, Ak , Ai and Aj are their respective coefficients,
x(n) is the noise signal.

B. MBMD SIGNAL DECOMPOSITION
The definition of the narrowband signal is as follows [24]:

xnarrow(t) = A(t) cos(ωt + φ(t)) (2)

A(t) is limited by the frequency band, and its center fre-
quency ω′ is much smaller than ω, φ(t) is a slowly changing
function. The relative bandwidth is 2ω′/ω,and it is much less
than 1.

In Equation (2) the BMD adjustment difference operator
can effectively distinguish narrowband signals from noise,
because the operator can express the smoothness of non-
stationary signals, and narrowband or broadband signals are
always smoother than noise. In the BMDmethod, to constrain
the generated component to make it smoother than the orig-
inal signal, an adjustable difference operator is constructed.
Although for narrowband signals, this operator is applicable,
it can be applied to wideband signals too.

For wideband signals, pulse signals such as sawtooth sig-
nals and square wave signals with ‘‘sharp corners’’ are wide-
band signals, because their frequency bands are infinite [20].
The Fourier series of the square wave signal and sawtooth
signal are as follows:

square(t) =
+∞∑
i=1

1
2i− 1

sin [(2i− 1)t] (3)

sawtooth(t) =
+∞∑
i=1

(−1)(i−1)

(2i− 1)2
sin [(2i− 1)t] (4)

According to Equation (3) and Equation (4), the amplitude
of the sinusoidal component decreases when the frequency
increases. Therefore, the general form of the broadband sig-
nal can be constructed:

xbroad (t) =
+∞∑
i=1

Ai sin [iωt + θi(t)] (5)

Ai decreases with the increase in ω. When ω→∞, A→ 0
and θ (t) slowly change.

Although the wideband signal’s frequency is a multiple
of the narrowband signal in Equation (5), because the fre-
quency amplitude rapidly decreases, the wideband signal is
still smoother than the noise signal, which can distinguish
the wideband signal from the noise. However, there are
problems with wideband signals, because for narrowband
signals, the modulation differential operator was designed
originally. For xnarrow(t), the theoretically generated compo-
nent is using an envelope A(t)/A to multiply the first Fourier
series A cos(ωt + φ(t)), and in the narrowband signal, there
is only one dominant frequency ω.

However, in xbroad (t), there are multiple main frequencies
with different amplitudes. For example, Ai−1 sin[(i + 1)ωt
+ θi−1(t) ] and Ai sin[iωt + θi(t) ]. The wideband signal’s
center frequency is ω, but among the sinusoidal components
the frequency interval is also ω. The bandwidth divided by
the center frequency is the definition of relative bandwidth,
which is ω/ω = 1. The narrowband signals’ relative band-
width are proved much less than 1 in Equation (2). The
BMD algorithm may consider Ai−1 sin [(i− 1)ωt + θi−1(t)]
andAi sin [iωt + θi(t)] as two different components, for wide-
band signals interfered by strong noise. Because the relative
bandwidth is not sufficiently small, and the wideband signal
will be divided into several narrowband components.

We will introduce how to construct the modulation differ-
ential operator:

x ′broad (t) = xbroad (t) sin(ω′t)

=

+∞∑
i=1

Ai sin [iωt + θi(t)] sin(ω′t) (6)

In the above Equation, M is a preset positive integer,
which can usually be set to 5-10, sin(ω′t) is a high-frequency
single-frequency signal with ω′ = Mω, and x ′broad (t) is a
modulated signal. Then, x ′broad (t) can be converted into the
following form:

x ′broad (t) =
1
2

+∞∑
i=1

Ai cos
[
(ω′ − iω)t − θi(t)

]
+

1
2

+∞∑
i=1

Ai cos
[
(ω′ + iω)t + θi(t)

]
(7)

The center frequency is moved fromω toω′+ω andω′−ω.
Thus, the relative bandwidths are ω/(ω′−ω) and ω/(ω′+ω),
which are much less than 1. It can be easily proven that the
relative bandwidth of a narrowband signal after modulation is
much less than 1. Therefore, we can construct the modulation
difference operator as follows:

Tj =
∥∥∥D(2)

[
IMF ji (n)

]∥∥∥2
2

+ λ

∥∥∥D(2)
[
x(n) sin(ω′t)− IMF ji (n)

]∥∥∥2
2

(8)

Then, based on the modulation difference operator,
the broadband mode decomposition algorithm is constructed
according to the following steps:
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FIGURE 1. The iteration procedure of MBMD.

Based on the modulation differential operator, which is
constructed in Equation (8), the main process of MBMD is
as follows and the flow chart of MBMD is shown in Figure 1.

(1) Set r0(n) to be equal to x(n).
(2) Extract direct current (DC) signals from the original

signal.

IMF0(n) = ifft[r̂0(1)] (9)

r1(n) = x(n)− IMF0(n) (10)

i is set to 1, ifft[r̂0(1)] is the IFT of r̂0(1), and r̂0(k) is the FT
of r0(n).

(3) Construct the optimal problem P1 as follows:

P1 : Minimize T1(A1, ω1, θ1,D1),

T2(A2, ω2, θ2,D2),T3[A3(n), ω3(n), θ3(n)]

S.T .x(n) =
N∑
i=0

IMF i(n)+ res(n), IMF
j
i ∈ Dicj (11)

Tj =
∥∥∥D(2)

[
IMF ji (n)

]∥∥∥2
2

+λ

∥∥∥D(2)
[
x(n) sin(ω′t)− IMF ji (n)

]∥∥∥2
2

(12)

Tj is the modulation difference operator, which is defined
in Equation (8), ω′ = Mω in which ω is equal to the

maximum frequency of ri(n), λ > 0 is always set to 1, and
D(2) is the second-order difference operator.
(4) use the ACROA to gain the optimal Tj(j=1,2,3) to solve

L1 problem, and then find the minimum Tj and choose the
optimal IMF i(n) of Tj. The procedure of the method is intro-
duced as follows:

(5) Update ri(n): ri+1(n) = ri(n)− IMFi(n).
(6) If the terminal condition in Equation (13) is achieved,

terminate the iteration procedure; otherwise, return to step 3.

‖IMFi(n)− IMFi−1(n)‖22 / ‖IMFi−1(n)‖
2
2 ≤ ε (13)

C. COMPOUND SIMPSON INTEGRAL ALGORITHM
Simpson algorithm is a common integration algorithm. Com-
pared to the dot product sum algorithm in the traditional
electric energy measurement, when calculating the parame-
ters such as voltage, current and power in the electric energy
measurement, the algorithm has higher algebraic accuracy.

The integral formula with which we are most familiar is
the first-order trapezoidal quadrature formula, where f (x) is
the integrand function, and [a, b] is the integration interval.

I =

b∫
a

f (x)dx ≈
b− a
2

[f (a)+ f (b)] (14)

The algebraic precision of the quadrature formula is 1. This
article uses Simpson quadrature formula with the algebraic
precision of 3.

The traditional dot product sum algorithm mainly uses the
P = UI formula, first, we sample the signal and calculate
the power of a single point, then, we integrate and sum it.
The algorithm steps are as follows:

First, apply the integral formula for the voltage and current,
where i(t) is the current signal and u(t) is the voltage signal.

U2
=

1
T

T∫
0

u2(t)dt =
1
T

n−1∑
k=0

tk+1∫
tk

u2(t)dt

≈
1
T

n−1∑
k=0

u2(tk ) ·1T =
1
n

n−1∑
k=0

u2(k) (15)

I2 =
1
T

T∫
0

i2(t)dt =
1
T

n−1∑
k=0

tk+1∫
tk

i2(t)dt

≈
1
T

n−1∑
k=0

i2(tk ) ·1T =
1
n

n−1∑
k=0

i2(k) (16)

Then, according to P(t) = u(t) × i(t), use the integral
formula for power P:

P =
1
T

T∫
0

p(t)dt =
1
T

n−1∑
i=0

tk+1∫
tk

P(t)dt

≈
1
T

n−1∑
k=0

P(tk ) ·1T =
1
n

n−1∑
k=0

P(k) (17)
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To find the electric energy in sampling period T, use the
following formula:

E =

T∫
0

P(t)dt = lim
λ→0

n−1∑
k=0

P(tk )1tk ≈
n−1∑
k=0

P(k) ·1T (18)

where λ is the maximum subinterval length; T is the signal
period; 1T is the signal sampling time interval; n is the
number of sampling points, E is electric energy.

The dot product sum algorithm uses the traditional integral
summation. With this algorithm, it is troublesome to select
the number of sampling points, and the number of sampling
points must be determined according to the characteristics
of the harmonics. In addition, the accuracy of this method
is low, especially when we calculate complex DC current
signals, large errors will occur. Andwhen the dot product sum
algorithm is used in DC energy measurement, the positive
error generated will continue to accumulate, unlike the AC
energy measurement, which will produce positive and nega-
tive errors, the positive and negative errors can cancel each
other out. Therefore, the dot product sum algorithm is not
suitable for DC energy measurement.

The Simpson integral algorithm is a second-order integral
formula, and its formula is as follows:

b∫
a

f (x)dx ≈
b− a
6

[f (a)+ 4f (
a+ b
2

)+ f (b)] (19)

The coefficient of Simpson integral formula is calculated
according to Cotes coefficient formula, and its algebraic
accuracy is 3, which can better satisfy the accuracy require-
ments of electric energy measurement.

To further improve the accuracy of the integration
algorithm, we perform Simpson formula on multiple inter-
vals to obtain the compound Simpson formula. The steps
of the compound Simpson integral algorithm formula are as
follows:

First, take N points in sampling period T , divide the period
into N time intervals [tk , tk+1],= 0, 1 . . . ,N − 1 and divide
each interval in half, each interval is equally divided into two
intervals [t2k , t2k+2], i = 0, 1 . . . ,N/2 − 1. Then, integrate
the voltage, current, and power in every two intervals, the for-
mula is as follows:
t2i+1∫
t2i

u2(t)dt ≈
1
3
·
T
N
·

[
u2(t2i)+ 4u2(t2i+1)+ u2(t2i+2)

]
(20)

t2i+1∫
t2i

i2(t)dt ≈
1
3
·
T
N
·

[
i2(t2i)+ 4i2(t2i+1)+ i2(t2i+2)

]
(21)

t2i+1∫
t2i

P(t)dt ≈
1
3
·
T
N
· [P(t2i)+ 4P(t2i+1)+ P(t2i+2)] (22)

Because this is a compound integral over two intervals,
the coefficient is multiplied by 2 on the original Simpson
integral formula.

Then, sum the integrals of the above formula for each
interval, and the following formula can be obtained:

U2
=

1
T

T∫
0

u2(t)dt =
1
T

N
2 − 1∑
i=0

t2k+1∫
t2k

u2(t)dt

≈
1
N

N
2 − 1∑
i=0

1
3
·

[
u2(t2i)+ 4u2(t2i+1)+ u2(t2i+2)

]
(23)

I2 =
1
T

T∫
0

i2(t)dt =
1
T

N
2 − 1∑
i=0

t2k+1∫
t2k

i2(t)dt

≈
1
N

N
2 − 1∑
i=0

1
3
·

[
i2(t2i)+ 4i2(t2i+1)+ i2(t2i+2)

]
(24)

P =
1
T

T∫
0

p(t)dt =
1
T

N
2 − 1∑
i=0

t2k+1∫
t2k

p(t)dt

≈
1
N

N
2 − 1∑
i=0

1
3
· [p(t2i)+ 4p(t2i+1)+ p(t2i+2)] (25)

E =

T∫
0

P(t)dt =

N
2 − 1∑
i=0

t2k+1∫
t2k

P(t)dt

≈
T
N

N
2 − 1∑
i=0

1
3
· [P(t2i)+ 4P(t2i+1)+ P(t2i+2)] (26)

The above compound Simpson formula has been widely
used in AC electric energy measurement and can be appro-
priately modified and applied to the DC electric energy
measurement.

According to the analysis of the measured signal, there are
DC, harmonics, distortion (including broadband signal and
narrowband signal) and noise signal in the DC signal. In addi-
tion to the noise signal, other signal components are to be
calculated. In AC energy measurement, the power calculation
of harmonics is P = UI cos θ , but since there is basically no
power factor in the DC signal, the power calculation formula
of harmonics is P = UI . This article will first use the MBMD
algorithm to denoise the DC signal, and then use the complex
Simpson integral algorithm for energy measurement.

III. SIMULATION ANALYSIS
A. COMPARISON OF MBMD AND BMD
The advantage of MBMD over BMD is to address square
wave signals with strong noise or insufficient signal relative
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bandwidth; since the constructed S2 model is a photovoltaic
signal model, there will be almost no case of excessive rela-
tive bandwidth. To better distinguish the algorithm ofMBMD
and BMD, another signal model S3 with a relatively large
bandwidth and strong noise is constructed in this section.
square(ωn, rate) is the signal that defined as square wave,
the duty ratio is the rate, and the angular frequency is ω. x1(n)
in Equation (27) consists of a noise signal that signal-to-noise
ratio (SNR) is -1, a square wave signal, and the sampling
rate is 4 kHz. In Figure 2, we show the mixed signal and its
components.

x1(n) = square(30π t, 0.5)+ n(t)+ sin(30π t) (27)

FIGURE 2. Time domain waveform of x1(n). (a) Mixed signal (SNR = -1);
(b) square wave signal; (c) noise signal; (d) sinusoidal.

FIGURE 3. x1(n)’s decomposition result generated by BMD.

x1(n) is decomposed by BMD and MBMD. The result of
BMD generation is shown in Figure 3. From the original
mixed signal, BMD can separate the sine wave signal (IMF1)
and noise (IMF2), but the effective square wave signal is
decomposed into three narrow-band components, which are
IMF3, IMF4 and IMF5, and a noise component. Obviously,
IMF3 is similar to a square wave signal. The decomposition

result of MBMD is shown in Figure 4, which is highly consis-
tent with the actual composition. The evaluation parameters
of the square wave component of x1(n)and the effective com-
ponents (IMF1 of MBMD and IMF3 of BMD) are shown in
Table 1, where r1 is the correlation coefficient, and E1 is the
energy error. Thus, Table 1 shows that although MBMD runs
for a longer time, MBMD obtains more accurate results.

According to the form of Fourier series of the square wave
function of Equation (3), the Fourier series of square wave
signal in signal x1(n) can be expressed as follows:

square(30πn, 0.5) =
+∞∑
i=1

1
2i− 1

sin[(2i− 1)× 30π t] (28)

The square wave signal’s Fourier series coefficient is 1
2i−1 ,

and the amplitude will rapidly decrease. Considering the first
five components, the square wave signal can be expressed as
follows:

square(30πn, 0.5) ≈ sin(30π t)+
1
3
sin(90π t)

+
1
5
sin(150π t)+

1
7
sin(210π t)+

1
9
sin(270π t) (29)

Figure 5 shows the comparison of square wave sig-
nals generated by BMD and three IMFs’ Fourier series in
the time domain. In Figure 5, IMF3, IMF4 and IMF5 are
compared with sin(30π t), 1

3 sin(90π t) +
1
5 sin(150π t) and

1
7 sin(210π t) +

1
9 sin(270π t), respectively. The red line rep-

resents the theoretical signal, and the black line represents
the decomposed IMF component. The black line and red line
have a high degree of similarity. Thus, BMD decomposes the
square wave component into three narrowband components:
IMF3, IMF4, and IMF5. As demonstrated in the theoreti-
cal analysis in Chapter 3, Section 2, the BMD algorithm
may treat the Fourier series of the square signal as three
narrowband components, because the square wave signal is
interfered by strong noise. For the MBMD algorithm, it can
generate more accurate decomposition results, due to the
square wave signal is modulated by a high-frequency signal.

FIGURE 4. x1(n)’s decomposition result generated by MBMD.

B. COMPARISON OF OTHER ALGORITHMS WITH
MBMD ALGORITHM
The signal model in this section is photovoltaic signal model
S2 constructed by Equation (3). The simulation experiment
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TABLE 1. Evaluation parameters of active ingredients.

FIGURE 5. Comparison between the actual Fourier series of x1(n) and
IMFs of BMD.

uses the MATLAB experiment platform, the sampling fre-
quency is 2000 Hz, and this signal is shown in Figure 6.

FIGURE 6. S2 signal model graph.

FIGURE 7. S2 decomposition result generated by VMD.

To facilitate the comparison, we use EEMD, VMD and
MBMD to separate S2 respectively. The decomposition result
using the VMD algorithm is shown in Figure 7. The VMD
algorithm decomposes S2 into four components: IMF1, IMF2,
IMF3 and IMF4. There are a series of obvious interference in

the figure. IMF1 is the closest to the original signal, but the
corners of its square wave component have obvious sharpen-
ing phenomenon because VMD’s theory is adaptive filtering,
which is affected byGibbs phenomenon, so sharp corners will
appear. Figure 8 illustrates the decomposition result of the
EEMD algorithm. Obviously, the useful obtained information
is incorrect. Among them, the IMF3 component is the most
similar to the original signal, but the component is very
smooth and more like a sinusoidal signal, and its similarity
is not as good as the IMF1 component obtained by the VMD
decomposition. Because an interpolation algorithm is used
in EEMD algorithm to obtain the extreme envelope, which
will produce a smooth IMF component. When calculating the
envelope to obtain the IMFs, the final EEMD separation result
will become a smooth IMF when we analyze the broadband
data set.

FIGURE 8. Decomposition result of S2 generated by EEMD.

FIGURE 9. S2’s decomposition result generated by MBMD.

Figure 9 shows the decomposition result using the MBMD
algorithm. In total, 5 components are obtained: IMF1, IMF2,
IMF3, IMF4 and IMF5. It can be clearly seen from the fig-
ure that each component corresponds to the component of
the S2 signal. IMF1 is the DC component in the S2 signal,
IMF2 is the swell and sag component caused when the non-
linear load is connected or disconnected from the circuit,

VOLUME 9, 2021 51409



Z. C. Wang et al.: Calculation Method of PV DC Energy Based on MBMD and Compound Simpson Integral Algorithm

it is a narrowban9999d component, IMF3 is the swell and
sag component caused by linear load shutdown, which is
a square wave component (wideband signal), IMF4 is the
harmonic component generated in the circuit, here is mainly
the second harmonic, for the convenience of observation,
the small picture next to this component has intercepted the
waveform of 0.1s time, and IMF5 is the noise component.
It can be seen that the obtained IMF3 component does not
incur Gibbs phenomenon, and it is highly similar to the square
wave component in the original signal.

To make a more accurate comparison, Table 2 lists the
accuracy parameters of the separated IMFs obtained by the
three algorithms, including the accuracy parameters of energy
error Ei, correlation coefficient ri and time T . Table 2 shows
that the IMF obtained byMBMD is closer to the actual square
wave component. The separation process was performed on
the same computer to compare the calculation time. From the
analysis results, the MBMD decomposition has the smallest
error and the most accurate decomposition result. However,
due to the complex optimization procedures, the MBMD
algorithm requires more calculation time than the EEMD and
VMD algorithms.

TABLE 2. The generated signal’s evaluation parameters.

IV. EXPERIMENTAL ANALYSIS
A. SIGNAL ACQUISITION
From the photovoltaic power metering device’s experimental
platform of in Figure 10, the experimental photovoltaic data
were collected. The experimental platform consists of solar
panels, computers, controllers, batteries, signal measurement
modules, AD conversion modules, DC loads, AC loads, and
inverters. The size of the solar panel is 1480 mm × 680 mm.
There are two pieces in total. The battery voltage is 12 V.
The inverter is a 12 V,1000 W industrial frequency inverter.
The DC load includes the DC linear load (DC bulb) and DC
nonlinear load (DC motor)., The AC load also includes the
AC linear load (AC bulb) and AC nonlinear load (AC motor).
The signalmeasurementmodule contains theHall DC voltage
sensor, DC current sensor, AC voltage sensor, and AC cur-
rent sensor. The signal is collected by the specific collection
software on the computer. The signal acquisition frequency
is 2 kHz, and the sampling time is 20 s. Figure 11 shows a
set of collected front-end and back-end experimental data of
the inverter from top to bottom in the order of DC voltage,
DC current, AC voltage, and AC current. The DC current and
voltage are collected from the inverter to the battery, while the
AC voltage and current are collected from the inverter to the
AC load. The DC voltage and DC current collect the voltage
and current data from the inverter to the battery, while the AC

voltage and AC current collect the data from the inverter to
the AC load.

Equation (1) and (9), the amplitude of the sinusoidal com-
ponents is decreased along with the increasement of fre-
quency. Therefore, a general form of the broadband signals
can be constructed:

FIGURE 10. Photovoltaic energy metering device experimental platform
diagram: ¬ computer;  36 w AC bulb; ® 10 w AC motor; ¯ 28 w AC
motor; ° 20.4 w DC motor; ± battery; ² 50 w DC bulb; ³ inverter; ´
controller; µ signal measurement module; AD conversion module.

FIGURE 11. Experimental signal graph.

The two current diagrams show, that there are different
signal sags and sags caused by the connection and discon-
nection of linear loads and nonlinear loads within 20 s of
collecting signals. The AC voltage is 0 for 10-12 s because
the main switch of the AC load is disconnected, so the AC
voltage cannot be measured. However, in the period of 0-2 s,
the AC current is 0, and the AC voltage is not 0 because the
main AC switch is open, but no AC load is open. Therefore,
we collected the 220 V AC voltage and 0 A AC current.
Although there is no load, there is a slight disturbance in the
circuit, the actual collected current signal slightly fluctuates
above and below 0 A. Since the DC voltage measures the
voltage from the inverter to the battery, it is actually the
voltage at both ends of the battery. Regardless of the change
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in AC terminal load, the DC terminal voltage will fluctuate at
approximately 12 V and will not drop to zero.

FIGURE 12. DC current graph.

FIGURE 13. MBMD decomposition diagram: (a) DC current signal; (b) DC
component; (c) wideband signal; (d) narrowband signal; (e) harmonic
signal; (f) noise signal.

B. COMPARISON OF COMPOUND SIMPSON AND DOT
PRODUCT SUM
Because the DC current is the most representative of DC sig-
nals, the comparison between MBMD and other algorithms
is based on the DC current signal collected in Figure 11 as
an example. From the point of view of DC current, there are
two time periods where the current is 0, and there are only
some noise signals. It is meaningless to analyze the signals
of these two time periods. Therefore, the signals of these
two time periods are deleted, and the remaining signals are
combined for electric energy measurement. Although a part
of the signal is intercepted, the electric energy of this part
is 0, so the total electric energy is unchanged, the average
power is P = E/t , E does not change, t takes 20s, then

the average power obtained will not change. Figure 12 (a) is
the original DC current signal. The red ellipses are used to
mark the current in the two time periods to be deleted, and
the specific time is marked. Figure 12 (b) is the intercepted
DC current graph. Figure 13 is the decomposition of the
intercepted DC current signal by theMBMD algorithm, (b) is
the DC component in the current signal, (c) is the wideband
signal, (d) is the narrowband signal, it can be seen from the
figure that the signals of (c) and (d) are divided into several
segments in the figure. The difference is that at least one end
of each segment of the broadband signal contains a sharp
corner, the ends of each segment of the narrowband signal are
rounded, (e) is a harmonic signal, it can be seen that there are
10 complete sine waveforms within 0.1s, and the frequency
of the harmonic is 100Hz, which is exactly twice the power
frequency, and it is the second harmonic. In the photovoltaic
DC signal, most of the harmonics are the second harmonic,
and the other harmonics have less content, (f) is the noise
signal.

Before comparing the advantages and disadvantages of the
compound Simpson integral algorithm, dot product algorithm
and algorithm to calculate the DC signal power, a simple
experiment was conducted. The experimental platform is
that of the photovoltaic power metering device in Figure 10.
Since the AC terminal voltage and current are stable, the DC
terminal power can be obtained by dividing the AC terminal
power by the inverter conversion efficiency, and we use this
power as a standard to measure the accuracy of the compound
Simpson integral algorithm and dot product sum algorithm.
The conversion efficiency of the inverter is 85%. To verify the
actual conversion efficiency of the inverter, we open several
different AC loads to make the load work in a stable state.
We first measure the power at the AC load (the average power
taken here), then, we measure the power at the DC end and
compare the two powers to obtain the conversion efficiency
of the inverter. Table 3 lists several sets of data measured in
this experiment. The conversion efficiency of the inverter is
within 85%±0.01%.

TABLE 3. Measured inverter conversion efficiency.

We perform the MBMD decomposition on the DC cur-
rent signal, DC voltage signal. Then, we superimpose the
effective components and delete unnecessary signals such
as noise, to rebuild a new signal, which is conducive to the
electrical energymeasurement of the system. Figure 14 shows
the DC current signal and DC voltage signal after MBMD
decomposition, as well as the AC current signal and AC
voltage signal without MBMD decomposition, and each sig-
nal deletes two meaningless time periods from the original
signal. Figure 14(a) is the reconstructed DC current signal
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formed by superimposing the signals (b), (c), (d) and (e) of
Figure 13 together. Similarly, Figure 14(b) is the DC voltage
signal after MBMD decomposition and reconstruction, and
Figure 14(c) and (d) are the undecomposed reconstructed AC
current and AC voltage signals.

FIGURE 14. The reconstructed signal diagram: (a) reconstructed DC
current signal; (b) reconstructed DC voltage signal; (c) reconstructed AC
current signal; (d) reconstructed AC voltage signal.

Since the most commonly used algorithm to calculate the
AC power is the dot product sum algorithm, and the AC signal
is stable, we use the dot product sum for signals (c) and
(d) to find that the AC power is E = 853.500 J, the average
power is P = E/t = 42.675 w, and the DC power is
P1 = P÷ η = 42.675÷ 0.85 = 50.206 w. The signal at the
DC terminal is decomposed by MBMD, so the comparison
of the two integration algorithms is based on the same signal
decomposition algorithm. We use P1 as the standard of DC
terminal power to compare the compound Simpson integral
algorithm and dot product sum algorithm, as shown in table 4,
where E is the electric energy, P is the power, and r is the
error. Obviously, the error of using the compound Simpson
integral algorithm to find the DC terminal power is smaller,
and the accuracy is higher.

TABLE 4. Algorithm parameter comparison.

C. VERIFICATION OF THE EFFECTIVENESS OF MBMD
ALGORITHM
Since the DC current signal is the most representative,
the MBMD algorithm, EEMD algorithm and VMD algo-
rithm are compared by taking the DC current signal in
Figure 12 as an example. In Section 4.2, Figure 12 shows the
decomposition effect of MBMD on the DC signal. For the
convenience of comparison, Figure 15 shows the component
(b) of Figure 12, which is the intercepted DC current graph.

Figure 16 shows the result of MBMD algorithm decompo-
sition, excluding the component (a) of Figure 13, Figure 17
shows the decomposition diagram of the VMD algorithm,
Figure 18 shows the decomposition diagram of the EEMD
algorithm, and Figure 16, Figure 17, and Figure 18 are the
decomposition results of Figure 15.

FIGURE 15. DC current graph.

FIGURE 16. MBMD decomposition graph: (a) DC signal; (b) wideband
signal; (c) narrowband signal; (d) harmonic signal; (e)noise signal.

FIGURE 17. VMD decomposition graph.

Both the VMD algorithm and the EEMD algorithm have
many IMF components. Some of the multiple IMF com-
ponents have similar characteristics. Here, the similar com-
ponents are superimposed together, and three of the IMF
components are taken for analysis. Among the three IMF
components decomposed by the VMD algorithm, IMF1 is the
closest to the original DC signal, but it can be seen that it
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has an obvious Gibbs phenomenon, the characteristics of the
broadband signal are not retained, and all sharp corners are
separated. The sharp corners appearing in the IMF2 compo-
nent are the abrupt features of the distorted signal (wideband
signal), and the IMF3 component is the remaining signal
components, including harmonics, noise and some residual
abrupt features. Among the three components decomposed by
the EEMD algorithm, IMF1 contains abrupt characteristics,
and the IMF2 component is closest to the original signal.
Since EEMD uses an interpolation algorithm to obtain the
extreme envelope, the IMF generated by EEMD is completely
different from the square wave signal. Because it processes
the wideband square wave signal into a sinusoidal signal,
the IMF component obtained is relatively smooth, which will
cause serious modal confusion. IMF3 is the remaining signal
component, including harmonics, noise and some residual
abrupt characteristics. The MBMD algorithm decomposes
DC signals, distorted signals (wideband signals and narrow-
band signals), harmonic components and noise components
one by one, and the decomposition effect is very good, and
Gibbs phenomenon will not occur.

FIGURE 18. EEMD decomposition graph.

FIGURE 19. Comparison of decomposition effects: (a)DC current signal
(b)MBMD reconstruction signal (c)VMD decomposition signal (d)EEMD
decomposition signal.

To make a more accurate comparison, Figure 19 combines
the other signals except noise component obtained by the
MBMD algorithm to form a reconstructed signal, extracts the

IMF1 component of the VMD decomposition diagram and
the IMF2 component of the EEMD decomposition diagram,
and compares them with the original DC current signal. It
can be seen from Figure 19 that the decomposition effect of
the MBMD algorithm is obviously better than the other two
algorithms. The characteristics of the square wave signal in
the direct current signal containing the square wave signal are
retained, and the appearance of the Gibbs phenomenon in the
decomposed signal is effectively suppressed.

The previous section compared the compound Simpson
integral algorithm and the dot product sum algorithm on the
basis of the MBMD decomposition algorithm, and proved
the superiority of the compound Simpson integral algorithm.
In this section, the original DC terminal signal, MBMD
decomposed signal, EEMD decomposed signal and VMD
decomposed signal are respectively used to calculate the
electric energy by compound Simpson integration algorithm
to compare the accuracy and error of different algorithms.
The comparison parameters of the three algorithms are listed
in Table 5, including the obtained electric energy E , power
P, and the absolute error r of the power. The first item
in Table 5 is that the original DC signal without any decom-
position algorithm uses the complex Simpson integration
algorithm. Table 5 shows that MBMD decomposition plus
compound Simpson integration algorithm has higher accu-
racy and smaller error than other algorithms, and can effec-
tively measure DC energy. It can be seen in Table 5 that the
MBMD decomposition algorithm combined with the com-
pound Simpson integration algorithm has higher accuracy
than other algorithms, with smaller errors, and can effectively
measure DC energy.

TABLE 5. Evaluation parameters of the different algorithms.

Simulation and experimental analysis results show that
MBMD has better accuracy and denoising than the other two
methods (EEMD and VMD), andMBMD is better than BMD
in addressing the strong noise and insufficient relative band-
width. In addition, in the experimental analysis, the result
calculated by the compound Simpson integral algorithm after
the MBMD decomposition is more accurate than the result
calculated by other algorithm.

V. CONCLUSION
The photovoltaic DC signal is taken as the research object in
this paper. The signal decomposition, signal feature extrac-
tion, electric energymeasurement for decomposed signal, and
a series of algorithm research are performed. A photovoltaic
DC power calculation method based onMBMD and complex
Simpson integral is proposed.

(1) Due to the deficiencies of the BMD algorithm in
dealing with broadband signals whose relative bandwidth
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is not small enough, the MBMD algorithm is pro-
posed. The MBMD algorithm multiplies a high-frequency
single-frequency component signal as a modulation differen-
tial operator to ensure that the relative bandwidth of the signal
is far less than 1, which overcomes the shortcomings of the
BMD algorithm that the wideband signal is regarded as sev-
eral narrowband components, resulting in modal confusion.
Simulation and experimental results verify the effectiveness
of the method. The results show that the method can accu-
rately extract the effective ingredients.

(2) As the dot product sum algorithm is applied to DC
energy measurement, the error generated cannot be positive
and negative to cancel each other, so the compound Simpson
integration algorithm with smaller error and higher accuracy
is adopted. Combining the compound Simpson integral algo-
rithm and the MBMD algorithm, a new method of photo-
voltaic DC signal measurement is proposed. The result shows
that this method has higher accuracy of the electric energy
measurement. The algorithm can be accurate to at least three
decimal places.

(3) Due to the compound optimization process, MBMD is
still more time-consuming than VMD and EEMD. Therefore,
we will study the rapid optimization method of MBMD in the
future.
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