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ABSTRACT Self-attention mechanism, which has been successfully applied to current encoder-decoder
framework of image captioning, is used to enhance the feature representation in the image encoder and
capture the most relevant information for the language decoder. However, most existing methods will
assign attention weights to all candidate vectors, which implicitly hypothesizes that all vectors are relevant.
Moreover, current self-attention mechanisms ignore the intra-object attention distribution, and only consider
the inter-object relationships. In this paper, we propose aMulti-Gate Attention (MGA) block, which expands
the traditional self-attention by equipping with additional Attention Weight Gate (AWG) module and
Self-Gated (SG) module. The former constrains the attention weights to be assigned to the most contributive
objects. The latter is adopted to consider the intra-object attention distribution and eliminate the irrelevant
information in object feature vector. Furthermore, most current image captioning methods apply the original
transformer designed for natural language processing task, to refine image features directly. Therefore,
we propose a pre-layernorm transformer to simplify the transformer architecture and make it more efficient
for image feature enhancement. By integratingMGA block with pre-layernorm transformer architecture into
the image encoder and AWG module into the language decoder, we present a novel Multi-Gate Attention
Network (MGAN). The experiments on MS COCO dataset indicate that the MGAN outperforms most of
the state-of-the-art, and further experiments on other methods combined with MGA blocks demonstrate the
generalizability of our proposal.

INDEX TERMS Image captioning, self-attention, transformer, multi-gate attention.

I. INTRODUCTION
Image captioning is a challenging task of automatically gen-
erating a fluent and reasonable sentence to describe visual
contents of an image. As an interdisciplinary field involv-
ing computer vision and natural language processing, it has
attracted numerous attentions in the past several years and has
great potential in human-machine interaction, supporting the
visually impaired and intelligent assistant.

Most existing image captioning methods that
apply the widely used attention-based encoder-decoder
framework [1]–[4] have achieved excellent results. Specifi-
cally, for a given image, a set of feature vectors are encoded by
a Convolutional Neural Network (CNN) first, and a caption
is then decoded via a Recurrent Neural Network (RNN) with
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these vectors. In between, the attention mechanism plays a
pivotal role by guiding the decoding process with dynamic
attended vector. Since the attention mechanism is introduced
by [1], it has become a basic module of practically all
image captioning models. Later on, other variants of attention
mechanism are proposed, such as semantic attention [5],
stacked-attention [6], adaptive attention [2] and channel
attention [7]. Recently, [8] shows the excellent performance
of self-attention, and the intention of stacking self-attention
layer has been expanded by some works [4], [9]–[11].

Despite the accomplishment that the aforementioned
attention-based approaches have achieved, attention mecha-
nism still remains some unsolved problems. Firstly, the atten-
tion weights will be assigned to all candidate vectors
(e.g. object region features) when calculating the atten-
tion vector. Hence, it may extract some unrelated or even
misleading information. This is particularly evident in
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self-attention-based encoder for image captioning, which cal-
culates pairwise similarity between all input feature vec-
tors and implicitly assumes that all vectors are relevant.
We argue that, for an object in image, it will not have
relationship with all other objects. Secondly, most attention
mechanisms concentrate on the object-wise attention dis-
tribution while neglecting the significance of feature-wise
information. Specifically, as for a set of image feature vec-
tors (object or patch feature), most attention mechanisms
simply treat all information equally in one feature vector
and multiply it by the same attention weight, which ignores
the noise that may exist in the feature vector itself. Further-
more, the self-attention-based transformer architecture [8] is
designed for natural language processing task (e.g. machine
translation), where the inputs are mainly text features, to cap-
ture the long-term dependencies among all input text features.
Whereas in image captioning, most recent works [4], [10]
adopt the transformer as feature enhancer in the encoder,
where the inputs are usually image features.

To tackle the problems mentioned above, in this paper,
we propose a Multi-Gate Attention (MGA) block with
pre-layernorm transformer architecture for image caption-
ing. It extends the vanilla self-attention by modifying
the architecture and adding multiple gate mechanisms.
Compared with the original transformer architecture
(Figure 1(a)), the presented pre-layernorm transformer
(Figure 1(b)) places the layer normalization before self-
attention module and further removes the feed-forward layer
and subsequent layers to simplify the model, making it more
efficient for image caption task. Then, based on the self-
attention, an Attention Weight Gate (AWG) module and
a Self-Gated (SG) module are incorporated to constrain
the attention mechanism to concentrate on the most rel-
evant information, and consider the intra-object attention
distribution.

Technically, before conducting self-attention, layer
normalization on the input vectors is implemented first.
Then utilize SG module to eliminate noise and other irrel-
evant information in the normalized feature vectors. After
SG module, self-attention module is applied to model rela-
tionships among all input feature vectors, where the similarity
scores between query and key vectors are calculated first,
and then passes these scores through a softmax layer to
generate attention weights. However, the softmax layer in
the self-attention will assign a corresponding weight to every
value vector, even if the query and key vector have no rele-
vancy. Therefore, we present the AWGmodule to relieve this
by restraining the outputs of softmax layer. More specifically,
by passing the attention weights and value vectors through
AWG module, the output attended vectors maintain only
the most contributive elements while eliminating the trivial
components. Afterwards we utilize GLU [12] to copewith the
concatenation of outputs of AWGmodule and SGmodule for
the purpose of further filtering irrelevant information. Finally,
a residual connection around GLU and layer normalization is
employed to generate the final outputs.

FIGURE 1. The structure of original transformer and pre-layernorm
transformer.

By integratingMGAblockwith pre-layernorm transformer
architecture into the image encoder and likewise AWG mod-
ule into the language decoder, a novel Multi-Gate Attention
Network (MGAN) is proposed to refine the feature repre-
sentation of the image encoder and provide more accurate
information for the language decoder. Main contributions of
this paper are as follows:
• We propose a pre-layernorm transformer for image fea-
ture enhancement in the image encoder. By only stack-
ing layer normalization and self-attention layer, it can
model relationships among image features efficiently.

• We propose a Multi-Gate Attention (MGA) block which
contains an AttentionWeight Gate (AWG)module and a
Self-Gated (SG)module to constrain the attentionmech-
anism and consider the intra-object attention distribution
respectively.

• By applying MGA block with pre-layernorm trans-
former architecture to the image encoder and
AWG module to the language decoder, a Multi-Gate
Attention Network (MGAN) is proposed. Extensive
experiments on MS COCO dataset indicate the effec-
tiveness and generalizability of our proposal.

II. RELATED WORKS
A. IMAGE CAPTIONING
Image captioning is an active and challenging research area.
Before the advent of neural network-based methods [9], [10],
[13], [14], earlier attempts to image captioning are mainly
template-based [15]–[17] and retrieve-based [18]–[20]. The
former produces templated image caption with slots which
are filled by the outputs of object detection or attribute pre-
diction. The latter retrieves the most similar captions, and
generates descriptions by recomposing and generalizing the
retrieved results. The generated sentences of these earlymeth-
ods are unsatisfying in terms of accuracy and diversity, highly
limited by the templates or the retrieved results.
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At present, neural network-basedmethods [3], [4], [9], [11]
dominate the image captioning community through supe-
rior achievement. Inspired by the advances in machine
translation, [13] first adopts the neural encoder-decoder
framework to solve the image captioning problem and
achieves tremendous improvement than previous methods.
Different from [13], which only inputs image features at ini-
tialization, Yao et al. [21] incorporate attributes information
into the decoder in different ways. Furthermore, retrieved
captions [22], reinforcement learning [23] are introduced to
boost image captioning.

B. ATTENTION MECHANISM
Attention mechanisms are widely used in current image
captioning models, where a weighted summation on candi-
date vectors is generated at each time step for word rea-
soning. Based on the neural network, [1] first integrates
the spatial attention mechanism into image captioning task.
On the basis of spatial attention, numerous variants of
attention mechanism have been proposed by researchers.
Reference [7] proposes a spatial and channel-wise attention,
which applies the channel-wise attention to assess the impor-
tance of each channel before spatial attention. Instead of
forcing attention to be active constantly, [2] presents an
adaptive attention mechanism which automatically decides
whether to utilize visual features or not. In addition,
[3] proposes a combination of bottom-up and top-down spa-
tial attention which enables attention to be conducted at
object level rather than equally-sized image regions. Different
from spatial attention, [5] presents a semantic attention where
visual features in the spatial attentionmechanism are replaced
by semantic concept proposals. Reference [14] integrates
both spatial and semantic attention into the language decoder,
as well as exploits Graph Convolutional Network (GCN) to
model spatial and semantic object relationships in the image
encoder. Moreover, lots of complex attention mechanisms
are proposed. Reference [24] presents a multimodal attention
network to manage information from different modalities.
Reference [25] proposes a multistage attention mechanism
which operates in a coarse-to-fine manner to ensure global
consistency and local accuracy. And in [26], a multiscale
self-attention is introduced to capture features from different
scales.

C. TRANSFORMER BASED METHODS
Recently, in the field of machine translation, [8] proposes the
transformer architecture and demonstrates that remarkable
results can be attained by merely using self-attention mecha-
nism. Following this, several works extend the self-attention
mechanism to image captioning task. Reference [4] stacks
multiple layers of self-attention to refine visual object fea-
tures via modeling relationships between objects in the
encoder. Then it applies an attention gate to filter out irrel-
evant attention results. Later on, [10] introduces X-Linear
attention block which utilizes bilinear pooling and expo-
nential linear unit to model high-order feature interactions
across multimodal inputs. Different from the aforementioned

methods, which apply a transformer-like encoder and an
LSTM decoder [11] takes advantage of full attentive
model that introduces the benefits of normalization inside
self-attention and proposes geometry-aware self-attention
to calculate the pairwise geometry relations of objects.
Reference [9] presents an EnTangled Attention to utilize
visual and semantic information simultaneously in a tangled
way.

Inspired by the advancement of transformer [8] and dimen-
sionality reduction [27], [28], in this paper, we adopt the
transformer-like encoder to refine the feature representations
and an LSTM decoder to inference the appropriate word.

III. METHOD
In this section, the framework of our method will be pre-
sented first. Then, we introduce the pre-layernorm trans-
former architecture. Subsequently, the proposed Multi-Gate
Attention (MGA) block as well as its components, Self-Gated
(SG) module and Attention Weight Gate (AWG) module,
will be elaborated. Finally, we describe how to construct
the Multi-Gate Attention Network (MGAN) for image
captioning.

A. FRAMEWORK
Most existing image captioning methods adopt the
encoder-decoder paradigm. Recently, with the introduc-
tion of transformer [8], some works [4], [10] extend this
paradigm by adding an additional transformer-like encoder.
In this paper, we strive for improving the effectiveness
of using transformer-like encoder to enhance the feature
representation.

Given an image I , the encoder first extracts a set of image
feature vectors (patch or object region feature) Vr = {vi}ki=1,
where vi ∈ Rd , k is the number of image regions, and d
represents the dimension of each vector. Then, the feature Vr
will be enhanced by exploring relationships among all feature
vectors. In this process, the MGA blocks are applied in a
stacked manner. Finally, a sentence w = {w1,w2, . . . ,wT }
to describe the image is generated by the decoder.

Vr = CNN (I ) (1)

VN
r = MGAs(Vr ) (2)

S = Decoder(VN
r ,w) (3)

where CNN (·) is the image encoder and MGAs(·) is a stack
of MGA blocks with pre-layernorm transformer architec-
ture (N times). We omit some details of the decoder for
simplification.

Following previous works, our model is trained by the
cross-entropy (XE) loss first:

LXE (θ ) = −
T∑
t=1

log pθ (w∗t | w
∗

1:t−1) (4)

where θ represents the parameters of our model, and w∗1:T is
the ground-truth caption.
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Then the model is further optimized with CIDEr reward
using the Self-Critical Sequence Training [23]:

LRL(θ ) = −Ew∼pθ [CIDEr(w)] (5)

whereCIDEr(w) is the CIDEr reward for the random sampled
sentence. The gradients can be approximated as follows:

OθLRL(θ ) ≈ −(CIDEr(ws)− CIDEr(ŵ))4θ log pθ (ws) (6)

where ws = (ws1, . . . ,w
s
T ), w

s
t is the word sampled at time

step t . The CIDEr(ŵ) represents the reward obtained by
greedy sampling.

B. MULTI-GATE ATTENTION BLOCK
Based upon the self-attention mechanism, we propose a novel
attention module, namely MGA block, which integrates the
pre-layernorm transformer architecture, AWG module and
SG module.

1) PRE-LAYERNORM TRANSFORMER
Transformer-like architectures are widely used in sequence
modeling tasks such as language modeling [29] and machine
translation [30]. It also represents the state-of-the-art in image
captioning [10], [11]. Nevertheless, the original transformer
architecture is designed for capturing the long-term depen-
dencies among all input text features for natural language
processing task. Inspired by the recent progress on modified
transformer [31] and image captioning [4], we present a
pre-layernorm transformer to explore a more effective way
to utilize transformer for image captioning.

We first review the original transformer architecture,
as shown in Figure 1(a), which mainly consists of two sub-
layers: a self-attention layer and a feed-forward network
layer. Besides, residual connection and layer normalization
are applied for both sub-layers respectively.

As for the pre-layernorm transformer, as illustrated
in Figure 1(b), which removes the feed-forward network
sub-layer and puts the layer normalization layer before
self-attention. Compared with the original transformer, our
pre-layernorm transformer is more simplified and requires
fewer parameters. More importantly, it gets rid of the
warm-up stage essential for transformer-based image cap-
tioningmethods [9]–[11] andwon’t degrade the performance.

2) ATTENTION WEIGHT GATE MODULE
In conventional self-attention mechanism, which calculates
the similarity scores between queries Q and keys K first, and
then passes the scores through a softmax layer to generate
the attention weights W . Finally, it takes a weighted sum of
values V on the basis of attention weights. This process can
be defined as:

Attention(Q,K ,V ) = WV = softmax(
QKT
√
d

)V (7)

where Q,K ,V are three different linear projections of image
feature vectors Vr , and d is the dimension of Q. Similar to

transformer [8], the self-attention in this paper is conducted
in a multi-head fashion (with 8 heads).

Nevertheless, the softmax layer will assign a corresponding
weight to each value vector, even if the query and key vector
have no relevancy. To solve this problem, the AWG module
is proposed, which directly constrains the output of softmax
layer (attention weights) since the exponential operation in
softmax will enlarge the numerical difference between ele-
ments. As shown in Figure 2(b), based upon the attention
weights W , AWG first masks the weight value Wij below
the threshold value by multiplying the mask M . Then, each
row of the output matrix is normalized to 1. The details of
AWG are as follows:

Mij =

{
1 if Wij ≥ gi
0 if Wij < gi

(8)

Wm
ij = Norm(WijMij) =

WijMij∑k
j=1WijMij

(9)

FIGURE 2. Comparison between self-attention mechanism and
self-attention with AWG. The AWG module directly constrains the
output W of softmax by masking the values below threshold value.

where i, j represent the row and column of matrix respec-
tively, and G = (g1, . . . , gk ), gi is the l-th largest value or
mean of the i-th row ofW . Eq. (9) denotes the normalization
operation. The final result is calculated as follows:

V̂ = V �Wm (10)

where � denotes element-wise multiplication, and Wm is
the masked attention weights. The throughout process of
AWG can be defined as:

AWG(W ,V ) = V � Norm(WM ) (11)

Note that AWG module can be seamlessly integrated into
conventional self-attention mechanism without increasing
any parameters.

3) SELF-GATED MODULE
Most recent image captioning methods apply the pre-trained
Faster R-CNN [32] to extract image region features since it
is introduced by [3]. However, the detected object regions in
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image are usually located by bounding box, and thus these
regions may contain some irrelevant information (e.g. back-
ground or parts of other objects). In addition, the extracted
feature vectors are directly used by language decoder or
attention mechanism. Therefore, we propose a SG module to
consider the intra-object attention distribution for eliminating
the irrelevant information in object feature vector.

Specifically, given an image feature vector setVr , the intra-
object attention distribution is produced by projecting Vr via
an embedding layer, followed by a sigmoid activation func-
tion. Then, SG module generates the gated feature vectors by
accumulating another linear projection ofVr with intra-object
attention weight:

SG(Vr ) = σ (Wv1Vr )�Wv2Vr (12)

where Wv1 and Wv2 are learnable matrices. SG module does
not change the dimension of feature vectors V , and thus can
be integrated into self-attention mechanism.

In order to incorporate SG module into pre-layernorm
transformer, we design three variants: Pre-SG, Post-SG and
Parallel-SG, as illustrated in Figure 3. If not mentioned par-
ticularly, in this paper, SG refers to Pre-SG.

FIGURE 3. The structure of SG module and three variants of combining
SG with pre-layernorm transformer.

C. MGAN FOR IMAGE CAPTIONING
Based upon the encoder-decoder structure, we present the
model, MGAN, which integrates MGA blocks into the image
encoder for feature enhancement and AWG module into the
language decoder for feature selection.

1) ENCODER WITH MGA
There are two image encoders in MGAN. One is the
pre-trained Faster R-CNN which extracts the image region
features Vr , and the other is MGAs which refines the features
Vr by modeling relationships among all the regions. MGAs
is composed of a stack of N MGA blocks (N = 6), as shown
on the left of Figure 4.

For a set of image feature vectors Vr = {v1, . . . , vk}
provided by the CNN encoder,MGAs is utilized to strengthen
the representation of each feature vector vi via exploring

relationships between all feature vectors. Take the first block
of MGA (MGA1) as an example, layer normalization on
the input vectors is performed first. Then a SG module is
applied to filter out some unrelated information in the feature
vectors. The output of SG module is fed to the subsequent
self-attention and AWG module to explore the interactions
between all input vectors. After that, the outputs of AWG
and SG module are concatenated and then input to a GLU
for further eliminating the irrelevant attention results. Finally,
same to [8], residual connection is used to generate the final
output. This process can be defined as:

Vln = LayerNorm(Vr ) (13)

Vsg = SG(Vln) (14)

Q,K ,V = Linears(Vsg) (15)

V̂ = AWG(W ,V ) (16)

V 1
= Vln + GLU ([V̂ ,Vsg]) (17)

where Linears(·) denotes three different linear projections
of Vsg, and [, ] represents the concatenation operation. W is
attention weights defined in Eq. (7).

Note that the aforementioned MGA block doesn’t change
the dimension of its input. Therefore, in the image encoder,
N MGA blocks can be stacked in sequence to generate the
enhanced feature vectors VN .

2) DECODER WITH MGA
The language decoder is designed to generate a sentence w
with the enhanced image feature vectors. Since the image fea-
tures used by the decoder have been refined by the encoder,
we discard the SG module in the decoder. As illustrated
in Figure 4, conditioned on the word embedding vector
Wewt−1, mean-pooled global image feature v̄ = 1

k

∑k
i=1 v

N
i ,

where vNi is the i-th vector of VN , and previous context vector
ct−1, a LSTM is utilized to generate the hidden state ht :

ht = LSTM ([Wewt−1, v̄+ ct−1], ht−1) (18)

where We is a word embedding matrix. Afterwards,
self-attention mechanism and subsequent AWG module are
applied to calculate the attended image feature vector V̂t :

W = softmax((Wqht ) · (WkVN )T /
√
d) (19)

V̂t = AWG(W ,WvVN ) (20)

whereWq,Wk andWv are learnable matrices. Next, we obtain
the context vector ct from a GLU:

ct = GLU ([V̂t , ht ]) (21)

Such a context vector ct is finally utilized to predict the
probability distribution of theword through a linear layer with
softmax activation:

p(wt | w1:t−1) = softmax(Wpct ) (22)
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FIGURE 4. The overall framework of the proposed Multi-Gate Attention Network. The Faster R-CNN first detects a
set of object region feature vectors Vr . Then, a stack of MGA blocks are utilized to enhance the feature
representation by modeling relationships between them. Based on the enhanced features V N , language decoder
with AWG module is applied to generate plausible image captions.

IV. EXPERIMENT
A. DATASET
To evaluate the effectiveness of our proposal, extensive
experiments are carried out on the MS COCO dataset [33].
Following most image captioning methods, we utilize the
Karpathy data split [34] for performance comparisons which
contains 113, 287 images for training, 5, 000 for validation
and 5, 000 for testing. Each image has 5 human annotated
captions. For the dataset, all sentences are converted to lower
case, and the words that appear less than 5 times are dropped.
We trim each caption to a maximum of 16 words, which
results in a vocabulary of 10, 369 words.

B. IMPLEMENTATION DETAILS
We utilize the Faster R-CNN [32] pre-trained on
ImageNet [35] and Visual Genome [36] to extract image
object region features [3]. Each original object feature is a
2, 048-dimensional vector. Before being used by other mod-
ules, it is transformed into the dimension of 512. The hidden
size of LSTM is also set as 512, and the dimension of
word embedding layer is set as 1, 024. In the training phase,
Adam [37] optimizer is used, and we first train the model
under cross-entropy loss for 30 epochs with a batch size
of 32. Then we further optimize it with CIDEr reward for
additional 30 epochs. The learning rate for the first stage is
set as 2e-4 and decays by a factor of 0.8 every 3 epochs.
In addition, the warm-up step is not required. As for the
CIDEr-optimization phase, the learning rate is fixed at 2e-5.
At the inference stage, the beam search strategy is adopted
and the beam size is set as 2. Five different metrics are used,
including BLEU@N [38], METEOR [39], ROUGE-L [40],
CIDEr [41] and SPICE [42], to evaluate the performance of
our model.

C. ABLATION STUDY
The key components of the proposed MGAN include the
pre-layernorm architecture, AWG module and SG module.

We first design the Base model which only adopts the visual
features Vr extracted by Faster R-CNN in the encoder, and
discards the AWG module in the decoder as well as replaces
the GLU with a linear transformation. Based on the Base
model, ablation experiments are designed as below:

1) PRE-LAYERNORM TRANSFORMER
To explore the performance of stacking pre-layernorm trans-
former in the image encoder, we apply it to the Base
model. As shown in Table 1, the models with additional
transformer-like encoder surpass the Base model by a
large margin, which indicates the significance of explor-
ing relationships among objects. The training process of
‘‘+transformer’’ is unstable as we dropped the warm-up
step. Therefore, following [9], we set the warm-up steps as
20, 000 to train thismodel only. Comparing to ‘‘+transformer’’,
‘‘+pre-layernorm’’ is more lightweight and does not hurt
model performance.

2) AWG MODULE
The selection of threshold value may affect the performance
of attention mechanism in the encoder and decoder. Reserv-
ing too many or too few attention weight values may degrade
the performance of self-attention by either keeping irrele-
vant information or filtering out some important information.
Table 2 illustrates the effect of the threshold value gi in the
encoder and the decoder respectively.

We start from the definition of the enhanced BaseLine (BL)
for subsequent experiments. As it can be seen from the
first row of Table 2, on the basis of Base model with
pre-layernorm transformer (Pre-layernorm), adding a GLU
in the pre-layernorm transformer (incomplete MGA block)
can boost the performance. Then, integrating the same GLU
into the decoder, a further performance improvement can be
observed, and we define this model as the BL. Similarly, via
adding AWG and GLU to the pre-layernorm transformer and
decoder respectively, the models have competitive results,
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TABLE 1. Ablation study about the Base model with different additional
encoders on MS COCO Karpathy’s test split under XE loss, where B@N, M,
R, C and S are short for BLEU@N, METEOR, ROUGE-L, CIDEr and SPICE
scores. The Time refers to the average running time (seconds) per epoch.

TABLE 2. Ablation study about the use of AWG module in the image
encoder and language decoder on MS COCO Karpathy’s test
split under XE loss.

which indicates the effectiveness of AWG module and GLU.
Furthermore, the model with AWG doesn’t introduce any
parameters, but has almost the same results obtained from the
model with GLU.

Based on the BL, we add the AWG module with dif-
ferent threshold value to the attention module in encoder
and decoder respectively. In Table 2, the AWG(l) and
AWG(mean) represent the l-th largest value and mean of
an attention weight vector respectively. When incorporating
AWG module in the encoder, all models outperform BL or
have comparable performance. Compared with BL, continu-
ing to increase the value of l will not bring positive or negative
effects to the model, since too large l value means that the
AWG module hardly works. Applying AWG module to the
decoder, inappropriate l value tends to degrade the perfor-
mance. In summary, AWG(10) works best in the encoder
while AWG(mean) is more suitable for the decoder, which
is also the default setting for subsequent experiments, if not
mentioned specifically. We argue that this difference may be
caused by the change of the query vector (visual features Vr
to contextual feature ht ).

3) SG MODULE
As shown in Figure 3, three variants of integrating SG mod-
ule into image encoder are proposed. The experiments are
conducted on the basis of BL, therefore, we introduce
the GLU into these variants by placing GLU behind self-
attention. From Table 3, it can be observed that the Pre-SG
model is more effective than the Post-SG and Parallel-SG
because it eliminates irrelevant information in the input

TABLE 3. Ablation study about SG module on MS COCO Karpathy’s test
split under XE loss.

vectors at the beginning. Compared with BL, the Post-SG
slightly degrades the BLEU scores, which indicates that
stacking gate in an inappropriate position will not bring
benefit for performance even decline the performance. The
Parallel-SG has no obvious performance gain than the BL.
We infer this may be caused by the addition operation of the
outputs of SGmodule, self-attention and residual connection,
which will introduce redundant information.

4) RUNNING TIME
In order to compare the training efficiency of different models
more intuitively, we also report the average running time per
epoch for all models as well, which is presented in Table 1,
Table 2 and Table 3. Note that all the models are trained on a
single NVIDIA GTX 1080Ti GPU.

From Table 1, we observe that the additional transformer-
based encoders increase the running time significantly. These
two models have comparable performance, whereas the
‘‘+transformer’’ has a much heavier computation load due to
its feed-forward network layer. It can be seen from Table 2
that the GLU and AWG slightly raise running time, while
also bringing performance gain. Compared with BL model,
the added time of integrating AWGmodule in the encoder and
decoder is distinct, which can be attributed to the difference
in the size of query vector. In Table 3, we can find that the
time complexity of the three SG models is similar. Moreover,
the running time of the full model (MGAN) is 546.1 seconds,
which is still lower than the ‘‘+transformer’’ model. The
MGAN outperforms the original ‘‘+transformer’’ model by
a large margin and maintains a shorter running time. In sum-
mary, the comparison results demonstrate the effectiveness of
our proposal in improving model performance and reducing
computational overhead.

D. PERFORMANCE COMPARISON
We compare the proposed MGAN, where MGAs is applied
in the encoder and AWG(mean) is adopted in the decoder as
shown in Figure 4, with the existing state-of-the-art models
on the widely used Karpathy’s test split. The models we
compared include: NIC [13], SCST [23], LSTM-A [21],
Up-Down [3], RFNet [43], GCN-LSTM [14], ETA [9],
AoANet [4], Sub-GC [45], MT [44] and NG-SAN [11]. In all
the abovemodels, except NIC and LSTM-A, the other models
all employ attention mechanism. Moreover, Sub-GC and MT
leverage extraGraphConvolutional Network (GCN) tomodel
the relationships among visual features, while ETA, AoANet
and NG-SAN are transformer-based methods.
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TABLE 4. Performance comparison with state-of-the-art methods on MS COCO Karpathy’s test split under XE loss. h and v represent the hidden size of
LSTM and the embedded image feature size. - indicates that the metric is not provided. * denotes the results come from our reimplementation where the
changes are h, v and batch size only.

TABLE 5. Performance comparison with state-of-the-art methods on MS COCO Karpathy’s test split under CIDEr reward optimization.

As the transformer-based models which stack multi-
ple layers of encoder have heavy computational overhead,
we applied a lower-dimensional image feature size (512) to
alleviate this. Additionally, in order to verify the impact of
the feature size, we use the publicly available codes provide
by [4] to reimplement the AoANet where the only changes
compared to the original implementation are batch size
(10 to 32), hidden size and image feature size (1, 024 to 512).
Meanwhile, we report the hidden size of LSTM and embed-
ded image feature size of all compared methods in Table 4
and Table 5.

For the XE loss training stage, the experimental results
are reported in Table 4, from which we can observe that the
proposed MGAN has the best results among all compared
methods in terms of BLUE-1 to BLEU-3 and SPICE, as well
as performs on par with AoANet and MT in METEOR
and ROUGE. In particular, MGAN exceeds AoANet by 1.0
points on the BLEU-1 score. Besides, MGAN outperforms
AoANet* (our reimplementation) in all metrics. The perfor-
mance boost demonstrates the effectiveness of our model.

For the CIDEr reward optimization stage, the comparison
results are reported in Table 5. From the table, we can find
that MGAN outperforms most competing methods. MGAN
has comparable results with AoANet, while comparing favor-
ably to AoANet*. We infer that this difference may be
caused by the low-dimensional image feature size and hidden
size of LSTM. Furthermore, MGAN performs on par with

MT but inferior than NG-SAN. We speculate that this is
because NG-SAN utilizes high-dimensional image feature
size and additional relative position and geometry relation-
ships among objects to boost image understanding. Never-
theless, considering that our motivation is to simplify the
transformer-based encoder and reduce computational over-
head, the performance of MGAN is competitive.

E. RESULTS ON OTHER MODELS COMBINED WITH MGAs
The proposed MGAs, which stacks N layers of MGA block,
is an additional image encoder and is flexible to be integrated
into image caption models adopting encoder-decoder frame-
work. Therefore, to completely verify the generalizability of
MGAs, we combine it with three existing models: Up-Down,
AoANet and X-LAN. For the Up-Down, theMGAs is applied
in the same way as our MGAN, just plugging MGAs into
the image encoder. As for the AoANet and X-LAN, which
already have an extra transformer-like encoder, so we replace
it with MGAs. Note that we do not make any modifications
to the other modules of these two models.

As illustrated in Table 6, it can be observed that the MGAs
boosts the performance of Up-Down, AoANet and X-LAN.
Especially for Up-Down, the CIDEr score increases by
4.2 points. The improvement of AoANet and X-LAN is not
as significant as Up-down. This can be attributed to that the
visual features used in the decoder of AoANet and X-LAN
have been refined by a transformer-like encoder, while the
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TABLE 6. Performance of other models combined with MGAs on MS
COCO Karpathy’s test split under XE loss. * indicates that the
results come from our reimplementation.

FIGURE 5. Examples of captions generated by Up-Down, AoANet, X-LAN
and these models with MGAs respectively.

features used for Up-Down are not. Moreover, it is worth
noting that additional exponential linear units are adopted in
the encoder of X-LAN, but not in MGAs. Even so, the MGAs
still brings further performance boost over these two strong
baselines. The performance improvement on these threemod-
els indicates the advantages of constraining attention weight
and considering the intra-object attention distribution.

Figure 5 illustrates some qualitative comparisons of image
captioning results from Up-Down, AoANet, X-LAN and
these models with MGAs. Compared with Up-Down, the Up-
Down+MGAs can generate more accurate descriptions like
‘‘trash can’’ and ‘‘two sinks’’ instead of wrong object or
quantities like ‘‘toilet’’ and ‘‘a sink’’ as shown in the first
example. And in the second and third instances, the captions
provided by Up-Down all lack vital objects as ‘‘man’’ and
‘‘boat’’. The sentences produced by the AoANet are relevant
and exact to image content. However, the AoANet+MGAs
further generates more specific and detailed descriptions. For
instance, AoANet+MGAs infers that the scene in the image
is ‘‘a public restroom’’ rather than ‘‘a bathroom’’ in the first
example; the ‘‘train’’ is ‘‘blue and yellow’’ in the fourth
instance. As for X-LAN and X-LAN+MGAs, the generated
sentences of these two models are similar, and both are accu-
rate for the image content.

V. CONCLUSION
In this paper, we propose a Multi-Gate Attention (MGA)
block, which modifies and extends the conventional

self-attention by following components: an Attention Weight
Gate (AWG) module that constrains the attention mechanism
to focus on the most relevant information; a Self-Gated
(SG) module that explicitly calculates the intra-object atten-
tion distribution of individual object feature vector; and a
modified transformer, namely pre-layernorm transformer.
By stacking multiple MGA blocks in the image encoder and
applyingAWGmodule in the language decoder, we devise the
Multi-Gate Attention Network (MGAN) for image caption-
ing. Extensive comparative experiments and ablation studies
on MS COCO demonstrate the effectiveness of the MGAN
as well as each component. Furthermore, the results on other
models combined with MGA indicate the generalizability of
our proposal.
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