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ABSTRACT Verifying pollen germination using microscopic images is a difficult task. It is usually
time-consuming and may entail reduced accuracy and reproducibility. Therefore, in this study, we used
random forest (RF) and convolutional neural network (CNN) models to perform image classification on raw
data corresponding to pollens with different germination rates; the data were obtained via flow cytometry.
A heat map, which was based on the RF analysis results, showed that the variables that significantly
influenced the classification decision between NG and 60G categories were mainly located in the center
and top-right regions of the 30 × 30 pixel image. Additionally, a variable importance plot showed that
among the 900 input variables, pixel_316 was the variable that contributed the most toward prediction.
Gradient-weighted class activation mapping was used to visualize the class activation maps of the CNN
model. The bottom-left region of the activation map was activated in the NG image. However, the 60G image
showed that not only the bottom-left region but also the top-right region was activated. Both the models
classified the input images into NG and 60G categories with high accuracy. However, considering that the
RF model does not reflect the characteristics of adjacent variables, the CNN model is more appropriate for
classifying pollen germination images corresponding to pollen with various germination rates into distinct
classes. Taken together, these results suggest that the CNNmodel can provide a reliable method for verifying
the pollen performance.

INDEX TERMS Classification, CNN, image, pollen, RF, variables.

I. INTRODUCTION
Most pear cultivars require insect-mediated pollination, but
insect populations are in rapid decline caused by recent
environmental changes such as habitat loss, environmental
pollution and climate change [1]–[5]. Thus, the artificial
pollination has been compelled to offset the decline in insect
pollinators and ensure satisfactory crop yields in many com-
mercial orchards [6], [7]. It is necessary to find an easy and
reliable method to assess viability of stored pollen before
applying it to artificial pollination, as pollen viability, which
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affects pollination efficiency, may be reduced during storage
period.

Numerous methods have been developed to assess pollen
viability, of which in vitro germination is the most com-
monly used method [8]. This method is easy and simple,
but it is necessary to determine the optimal conditions for
pollen germination. Furthermore, there is a limitation in that
the germination rate in vitro is determined using only the
pollens identified from microscopic image, not all pollen
used in the assay [9]. In this method, the germination rate
is calculated as the proportion of pollen grains germinated
to the total number of pollen grains existed in microscopic
image.
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In a previous study [9], we proposed amethod of evaluating
pollen viability through flow cytometry in order to reduce
the drawbacks of conventional method (i.e., in vitro germi-
nation) in respect of reliability, subjectivity of counting, and
analysis time, and to improve the accuracy of measurement.
The presence or absence of the pollen tubes (i.e., pollen has
germinated or not) can be determined by flow cytometry,
which can distinguish individual pollen according to their
size (FSC parameter) or internal complexity (SSC parame-
ter). This became evident through our previous result, which
confirmed the difference in density distribution on the dot
plot between pollen samples with different viability. In addi-
tion, since 50,000 pollen grains are used per flow cytometric
analysis, reproducibility and accuracy can be ensured, unlike
conventional method of measuring germination rate from
200-300 pollen grains. Coordinate values of the FSC (x-axis)
and SSC (y-axis) parameters derived from 50,000 pollen
grains following flow cytometric analysis are transformed
into a germination image, which is suitable for fitting a
neural network classification, through data refining process.
It may therefore provide a new perspective to establish a
reliable method of verifying pollen performance, as germi-
nation images of pear pollen, which can vary depending on
the germination rate.

Unlike structured data, the image data are high-
dimensional. So, the problem may occur with the number of
parameter being increased in conventional machine-learning
model, when dealing with the image data. For that reason,
shallow neural networks using fully connected layers are not
suitable for classifying the image data.

Themost usedmodel inmachine learning is random forests
(RF), which use a random subspacemethod based on decision
trees [10], [11]; this concept entailed a method of building
a forest of uncorrelated trees using a CART-like procedure,
combined with randomized node optimization and bagging.
RFs offer many advantages, namely, satisfactory predictive
performance, robustness to both noise and overfitting, and
extraction of information regarding the variables that are
important for the classification [11]–[13].

Generally, in image data, adjacent pixels are spatially
correlated [14], and loss of information may occur during
vectorization because of the spatial characteristics of pixels.
However, conventional machine-learning techniques do not
reflect the spatial characteristics of the image and rather use
each pixel as a variable, which in turn cause increased the
time and number of parameters required for learning [15].
Therefore, LeCun et al. [16] proposed a convolutional neural
network (CNN) that reflected the spatial information of the
image and overcame the limitations of the existing methods.
Unlike other fully connected neural network models, CNNs
can effectively recognize the relationship between pixels
while maintaining the spatial information of the input image.
In the ImageNet Large Scale Visual Recognition Challenge,
Alexnet [17], which used a CNN-based architecture, was
ranked the first in 2012, showing exemplary performance
compared with conventional computer-vision techniques.

This effectiveness is achieved by using a convolution layer
with multiple filters and intensifying the extracted features
after convolution layer stacked using a pooling layer [17].
The filter parameters used for feature extraction are shared
for all the input data; thus, fewer parameters are required
and the learning time is shortened, as compared with the
number of parameters and learning time of a regular neural
network [18]. In a CNN model, the convolutional layer and
pooling layer used to extract features are freely configurable.
Finally, the extracted features are fed to a fully connected
layer, following which the input data are classified.

Therefore, one can use machine-learning techniques such
as RF and CNN that perform excellent image recognition
and classification, to develop a novel validation system that
can discriminate the pollen performance. This approach can
be achieved by training both the models with germination
images, which extracted from pollens with different germina-
tion rate, and then performing classification on germination
images into distinct classes according to germination rates.

Over the past few years, several studies using machine-
learning algorithms have been conducted to monitoring of the
airborne pollen or to develop automatic classification system
of pollen grains [19]–[21]. There are also many studies that
have utilized CNN models to classify various pollen species
[19]–[24]. However, our research is focused on establishing a
reliable method for assessing pollen viability using germina-
tion images rather than identifying the pollen species covered
in the palynology fields.

The purpose of this study is to determine whether the
input images are classified into two categories of NG and
60G by RF and CNN models that have learned germination
images extracted from two pollen groups with different ger-
mination rates. To achieve the goal, 1) the raw input data
were transformed into matrix and vector formats for machine
learning. 2) The transformed data was trained in RF and
CNN models. 3) Classification was performed on the input
images into two class labels through the classifier of both
models trained. 4) The extracted features were visualized to
ensure which part(s) of the pollen germination image were
considered in the final classification decision in each model.
Thus, the results obtained here may provide a framework for
establishing a reliable method to assess pollen performance
from germination images. Classification on pollen germina-
tion images into multiple labels according to germination
rates can be achieved through a classifier that has learned
features reflecting the difference in germination images.

II. MATERIALS AND METHODS
A. POLLEN COLLECTION
Unopened, balloon-stage flowerswere collected inApril 2019
(5 days before full bloom) from the pear trees of the ‘‘Won-
whang’’ cultivar, which is grown in commercial orchards
(Gongsan, Naju, Korea). The anthers from the pear flowers
that were not completely open were harvested. Subsequently,
to dry and release their pollen within 24 to 36 h, we laid
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FIGURE 1. Refining process for classification of pollen germination image.

out the anthers on a black kentpaper in the anther dehiscence
room at 20 ◦C with the relative humidity of 50%. When more
than 80% of the anthers were dehiscent, they were transferred
from the kentpaper to a stainless-steel bowl equipped with
a 100-mesh sieve (aperture: 0.149 mm). Acetone was then
poured into the bowl, and the pollens were gently sifted
through the 100-mesh sieve. Subsequently, the acetone super-
natant was carefully discarded from the bowl, and the residual
solvent was volatilized. The pollen samples, each weighing
10 g, were placed in tightly sealed containers and frozen at
–60 ◦C, until further use.

B. FLOW CYTOMETRY
Unless otherwise stated, an assay was conducted by removing
the pollen container from a deep-freezer and thawing the
pollen overnight at 4 ◦C in a desiccator. Subsequently, pollen
at a concentration of 2.5 mg·mL–1 was suspended in a liquid
medium that contained 10% sucrose (w/v), 0.4 mM boric
acid, and 1 mM calcium nitrate, and the mixture was then
incubated at 25 ◦C for 3 h. Data were acquired by analyzing
1 mL of the pollen culture per sample every hour by using
the Accuri C6 flow cytometer (Becton Dickinson, USA),
according to the instructions provided by the manufacturer.
The Accuri C6 flow cytometer was generously provided for
this study by Damyang Agricultural Technology Center. The
germinated pollens were plotted using the FSC and SSC
parameters and visualized as dots on a dot plot by analyzing
50,000 pollen grains per hour. The CSV data of the germi-
nated pollen obtained here were used as raw data for perform-
ing machine-learning analysis; they contained the coordinate
values of the FSC and SSC parameters for 50,000 pollen
grains.

C. DATA REFINING
To reduce the range of data, the raw data were
log-transformed prior to applying them to the classification
model. A grid was established to convert the CSV data, which
contained the coordinates of the FSC and SSC parameters,
into matrix form. Notably, the spatial features of an image are
reflected increasingly well with an increase in the grid size.
However, larger grid sizes often result in increased processing

time. Thus, we loaded the CSV data within grids with a size
of 30 × 30 pixels. This is because the grid size of 30 × 30 is
sufficient to represent the density distribution on the dot plots
reflecting whether the pollen has germinated. The number of
pollen grains that belong to the set grid range was computed
and then divided by the maximum value in the matrix to
normalize all the pixel values to lie between 0 and 1 before
using the pixel values as the value of the corresponding
row and column. The matrix-form data were either used to
train the CNN model to extract the spatial features of the
image, or applied to the RF model after converting the data
into vector form to identify the influence of pixels on the
classification decision. The process of image transformations
required for machine learning is illustrated in Fig. 1.

The entire data set was randomly divided into training
and testing sets in the ratio of 70:30. The images of the
pollen samples analyzed on the dot plot immediately after
suspension in the germination medium were used as image
data of non-germinated pollen (NG). Additionally, the images
of the samples analyzed after incubation for 1 h were used
as image data of pollen that had germinated to the extent of
over 60% (60G). The average germination rate of the pollen
samples used in this study was calculated as approximately
60% after the incubation for 1 h (data not shown). For the
training set, 168 images for 60G and 104 for NG were used.
For the testing set, 72 images for 60G and 45 for NG were
used.

III. RESULTS AND DISCUSSION
To fit the RF model, the input images were vectorized with
the size of 30 × 30 pixels and the model was fitted using
272 images and 900 pixel variables. The optimal parame-
ters were obtained via hyperparameter tuning with three-fold
cross validation. The final parameters used in the RF model
are as follows: bootstrap = True; n-estimators (i.e., the num-
ber of trees used) is 1,000; the maximum number of leaf
nodes is 64; criterion is entropy. The heat map in Fig. 2a indi-
cates the relative importance of individual pixels that affect
the classification decision. The variables that significantly
affect the classification between NG and 60G were mostly
located in the center and top-right regions of the images.
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FIGURE 2. Variable importance plot (VIP).

A variable importance plot (VIP) shows the top 10 pixels
that contributed the most to the prediction among the input
variables applied to the RFmodel (see Fig. 2b). From the plot,
pixel_316 seems to be the most significant variable, followed
by pixel_345, pixel_317, pixel_344, and so on. These results
show the information that the RF model has learned to distin-
guish NG and 60G, and they may provide additional insight
into the major contributing pixels that indicate whether the
pollen has germinated.

The CNN architecture used and its training process are
illustrated in Fig. 3. It comprises convolution layers to extract
features and a global average pooling (GAP) layer to clas-
sify the input data into two distinct classes, i.e., NG and
60G. The input data were transformed into the output after
stacking several convolution and pooling layers. For CNN
analysis, 272 images (i.e., 168 images for 60G and 104 for
NG), which were transformed into matrix form, were pro-
cessed through 3 convolution layers. The features maps,
which ranged from low to high level, were extracted upon
passing the input through each convolutional layer. Generally,
high-level features extracted from the last convolution layer
were used for the classification task after transferring them
to the fully connected layer. The feature maps generated
from each convolution layer were represented in an increas-
ingly abstract manner as they passed through each layer.
Therefore, it is typically difficult to know which part(s) of
the input image influenced the final classification decision.

Additionally, it remains difficult to explain the predictions
of the CNN owing to the lack of interpretability. Therefore,
the visualization of the activated features is necessary to ver-
ify that the resulting classifier makes decisions on the basis of
appropriate features present in the training data, although the
CNN makes accurate predictions. Gradient-weighted class
activation mapping (Grad-CAM) was used to visualize the
effect of each input image on the classification decision [25].
For feature visualization, the gradient and output information
of the last convolution layer was used. The heat map is a class
activation map. It indicates the importance of each region of
the image with regard to the classification decision by high-
lighting the image regions responsible for a particular pre-
diction, as illustrated in Fig. 4. The bottom-left region of the
activation map was activated in the image that corresponded
to NG. However, in the image that corresponded to 60G,
not only the bottom-left region but also the top-right region
was activated. This helps understand the manner in which
the network produced the output more intuitively because
class prediction mainly depends on the activation of the last
convolution layer.

For both the models used in this study, almost all of
the pollen germination images in the testing set were clas-
sified into NG and 60G with high accuracy by using the
above-mentioned parameters and classification rules. The
RF model yielded a classification accuracy of 100.0% for
272 training images, and the CNN model obtained a classi-
fication accuracy of 99.6% owing to one misclassification.
For 117 testing images, the RF model achieved the classi-
fication accuracy of 99.1% except for one misclassification,
whereas the CNNmodel exhibited the classification accuracy
of 100.0% for all the samples (Table 1, 2).

This indicates that both the models could appropriately
classify the input data into distinct classes. Additionally,
both the models may be used to learn multiple categories
to classify the pollen germination images with various ger-
mination rates in a future study. By visualizing the acti-
vated features, one overcomes the limitation of CNNs that
they function as black-box models whose results are dif-
ficult to interpret [26]. Additionally, one can know what
the model has learned to classify an image. The RF model
performs learning by converting input variables into the
vector form. The RF analysis revealed that the RF model
classified the input data into NG and 60G categories with
high accuracy, although the characteristics of adjacent pixel
variables could not be reflected. In data processing using
machine learning, the image data are susceptible to distor-
tions such as rotation or movement. Additionally, when the
number of samples or the number of classification cate-
gories increases, classification errors may occur in the RF
model where uses pixels as a parameter, owing to the lack
of spatial information. However, important CNN concepts,
including sparse connectivity, parameter sharing, subsam-
pling, and local receptive field, ensure that the CNN is not
affected by the movement, scaling, and distortion of the input
data [16], [17], [27].
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FIGURE 3. CNN model architecture.

FIGURE 4. Grad-CAM.

TABLE 1. CNN model classification result in test set.

TABLE 2. RF model classification result in test set.

The VIP provides the list of the most important variables
in descending order with decrease in average entropy. The
importance of variables is assessed on the basis of the part

TABLE 3. Accuracy of distorted images.

that represents the difference on each variable throughout
the entire data set. The center and top-right regions of the
pixel images, which show the difference between NG and
60G, significantly affected the classification (see Fig. 2a).
This shows that the decision rules applied entirely to the
input data, indicating that the algorithm used in the model
was globally interpretable. Notably, global interpretability
helps understand the entire relationship between the input and
output; however, it may be approximate or based on average
values [28]. Meanwhile, the result of Grad-CAM (see Fig. 4),
which shows the features activated in each sample, has a
meaning of local interpretation unlike VIP has shown.

The local interpretation focuses on the details in each
image that might be overlooked in the global interpreta-
tion [29]. Thus, comparedwith the RFmodel, the CNNmodel
which extracts features from each image and uses them for
classification is considered more appropriate for classifying
the pollen germination images with various germination rates
into distinct classes.

Robustness is important because image data has sensitive
characteristics even with small distortion. To compare the
robustness, classification task was performed with two mod-
els following the germination image corresponding 60G was
shifted up, down, and right by 3 and 6 spaces, respectively.
The CNN model showed robust classification performance
even in distorted images, whereas misclassification occurred
in RF into NG in case of D6, U3, and U6 (Table 3). Therefore
if there is distortion in input image, the performance of RF is
not suitable for classification on pollen germination images
because it does not reflect spatial information.
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FIGURE 5. Distorted image using shifting.

Classification of pollen germination images using CNN
model revealed to be suitable for establishing a reliable
method to assess pollen performance. In this study, image
classification was performed on raw data with difference in
pollen germination rates by using both RF and CNN models.
The results of VIP and Grad-CAM showed which region of
the image affected the final classification decision in each
model. Both RF and CNN models showed high classification
accuracy in training and testing data. While the RF shows the
general relationship between the input and the output learned
by a model, the CNN focuses on how individual predictions
are made by a model. Considering the spatial characteristics
of the image, the CNN model is therefore more suitable for
classifying pollen germination images with multiple cate-
gories into distinct classes in future study. However, for a
detailed prediction of the germination rate, further studies are
required to develop a classification and prediction model that
reliably validates the pollen performance.

REFERENCES
[1] G. D. Powney, C. Carvell, M. Edwards, R. K. A. Morris, H. E. Roy,

B. A. Woodcock, and N. J. B. Isaac, ‘‘Widespread losses of pollinating
insects in britain,’’ Nature Commun., vol. 10, no. 1, pp. 1–6, Dec. 2019.

[2] P. Soroye, T. Newbold, and J. Kerr, ‘‘Climate change contributes to
widespread declines among bumble bees across continents,’’ Science,
vol. 367, no. 6478, pp. 685–688, Feb. 2020.

[3] S. G. Potts, J. C. Biesmeijer, C. Kremen, P. Neumann, O. Schweiger, and
W. E. Kunin, ‘‘Global pollinator declines: Trends, impacts and drivers,’’
Trends Ecol. Evol., vol. 25, no. 6, pp. 345–353, Jun. 2010.

[4] M. Y. Benoit Geslin, M. A. Aizen, N. Garcia, A. J. Pereira, B. E. E. Vaissi
re, and L. A. Garibaldi, ‘‘The impact of honey bee colony quality on crop
yield and farmers’ profit in apples and pears,’’ vol. 248, pp. 153–161,
Oct. 2017.

[5] M. T. Fountain, Z. Mateos-Fierro, B. Shaw, P. Brain, and A. Delgado,
‘‘Insect pollinators of conference pear (Pyrus communis L.) and their con-
tribution to fruit quality,’’ J. Pollination Ecol., vol. 25, no. 10, pp. 103–114,
2019.

[6] V. Pinillos and J. Cuevas, ‘‘Artificial pollination in tree crop production,’’
in Horticultural Reviews. Hoboken, NJ, USA: Wiley, 2008, pp. 239–276,
doi: 10.1002/9780470380147.ch4.

[7] Y.-S. Song, S.-H. Lee, J.-A. Jo, S.-H. Choi, D.-J. Seo, Y.-K. Lee, U. Yang,
and W.-J. Jung, ‘‘Changes in activity and isozyme patterns of peroxidase
and chitinase in kiwifruit pollen,’’ J. Appl. Botany Food Qual., vol. 92,
pp. 313–319, Jan. 2019.

[8] A. Dafni and D. Firmage, ‘‘Pollen viability and longevity: Practical, eco-
logical and evolutionary implications,’’ Plant Systematics Evol., vol. 222,
nos. 1–4, pp. 113–132, 2000.

[9] U. Yang, S. G. Wi, H. Kim, J.-H. Moon, S. Oh, M. S. Kim, and S.-H. Lee,
‘‘Evaluation of pear pollen germination through colorimetric and cyto-
metric analyses,’’ Horticultural Sci. Technol., vol. 37, no. 4, pp. 427–436,
2019.

[10] T. Kam Ho, ‘‘Random decision forests,’’ in Proc. 3rd Int. Conf. Document
Anal. Recognit., vol. 1, Aug. 1995, pp. 278–282.

[11] L. Breiman, ‘‘Random forests,’’ Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[12] A. Liaw and M. Wiener, ‘‘Classification and regression by randomforest,’’
R News, vol. 2, no. 3, pp. 18–22, 2002.

[13] P. Boinee, A. De Angelis, and G. L. Foresti, ‘‘Meta random forests,’’ Int.
J. Comput. Intell., vol. 2, no. 3, pp. 138–147, 2005.

[14] W. K. Pratt, Introduction to Digital Image Processing. Boca Raton, FL,
USA: CRC Press, 2013.

[15] G. V. Trunk, ‘‘A problem of dimensionality: A simple example,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. PAMI-1, no. 3, pp. 306–307,
Jul. 1979.

[16] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-
ing applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[17] A. Krizhevsky, I. Sutskever, and G. Hinton, ‘‘ImageNet classification with
deep convolutional neural networks,’’ in Proc. Adv. Neural Inf. Process.
Syst. (NIPS), 2012, pp. 1–9.

[18] S. Haykin, Neural Networks: A Comprehensive Foundation. New York,
NY, USA: IEEE Press, 1994.

[19] V. Sevillano and J. L. Aznarte, ‘‘Improving classification of pollen grain
images of the POLEN23E dataset through three different applications of
deep learning convolutional neural networks,’’ PLoS ONE, vol. 13, no. 9,
Sep. 2018, Art. no. e0201807.

[20] R. Gallardo-Caballero, C. J. García-Orellana, A. García-Manso,
H. M. González-Velasco, R. Tormo-Molina, and M. Macías-Macías,
‘‘Precise pollen grain detection in bright field microscopy using deep
learning techniques,’’ Sensors, vol. 19, no. 16, p. 3583, Aug. 2019.

[21] R. Navares and J. L. Aznarte, ‘‘Geographical imputation of missing
poaceae pollen data via convolutional neural networks,’’ Atmosphere,
vol. 10, no. 11, p. 717, Nov. 2019.

[22] S. Dunker, E. Motivans, D. Rakosy, D. Boho, P. Mäder, T. Hornick, and
T. M. Knight, ‘‘Pollen analysis using multispectral imaging flow cytom-
etry and deep learning,’’ New Phytologist, vol. 229, no. 1, pp. 593–606,
Jan. 2021.

[23] V. Sevillano, K. Holt, and J. L. Aznarte, ‘‘Precise automatic classification
of 46 different pollen types with convolutional neural networks,’’ PLoS
ONE, vol. 15, no. 6, Jun. 2020, Art. no. e0229751.

[24] N. Khanzhina, E. Putin, A. Filchenkov, and E. Zamyatina, ‘‘Pollen grain
recognition using convolutional neural network,’’ in Proc. ESANN, 2018,
pp. 1–6.

[25] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, ‘‘Grad-CAM: Visual explanations from deep networks via
gradient-based localization,’’ in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Oct. 2017, pp. 618–626.

[26] G. Casalicchio, C. Molnar, and B. Bischl, ‘‘Visualizing the feature impor-
tance for black boxmodels,’’ inMachine Learning and Knowledge Discov-
ery in Databases. Cham, Switzerland: Springer, 2019, pp. 655–670, doi:
10.1007/978-3-030-10925-7_40.

[27] Y. Bengio, Learning Deep Architectures for AI. NewYork, NY, USA: Now,
2009.

[28] P. Hall, N. Gill, M. Kurka, and W. Phan. (2017).Machine Learning Inter-
pretability With H2ODriverless Ai. [Online]. Available: http://docs.h2o.ai/
driverless-ai/latest-stable/docs/booklets/MLIBooklet.pdf

45998 VOLUME 9, 2021

http://dx.doi.org/10.1002/9780470380147.ch4
http://dx.doi.org/10.1007/978-3-030-10925-7_40


U. Yang et al.: Classification of Germination Images of Pear Pollen Using RF and CNN Models

[29] M. T. Ribeiro, S. Singh, and C. Guestrin, ‘‘‘Why should i trust you?’:
Explaining the predictions of any classifier,’’ in Proc. 22nd ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, 2016, pp. 1135–1144.

UNG YANG received the B.S., M.S., and
Ph.D. degrees in biological sciences from Chon-
nam National University, Gwangju, South Korea,
in 2004, 2006, and 2013, respectively. He has
been working as a Research Professor with the
Asian Pear Research Institute, Chonnam National
University, since 2018. His research interests
include analysis of pollen germination images
using machine learning, evaluation of pollen ger-
mination through flow cytometry, and exploration

of germination factors affecting pollen performance.

SEUNGWON OH received the B.S. and M.S.
degrees in statistics from Chonnam National Uni-
versity, South Korea, in 2016 and 2018, respec-
tively. He is currently pursuing the Ph.D. degree
with Chonnam National University. His research
interests include machine learning algorithm and
artificial intelligence methodologies.

SEUNG GON WI received the B.S., M.S., and
Ph.D. degrees in wood science and landscape
architecture from Chonnam National University,
Gwangju, South Korea, in 1995, 1999, and 2003,
respectively. From 2004 to 2006, hewas a Postdoc-
toral Fellow with the Advanced Radiation Tech-
nology Institute, Korea Atomic Energy Research
Institute (KAERI). Since 2017, he has been work-
ing as a Research Professor with the Asian Pear
Research Institute, Chonnam National University,

and is currently participating in interdisciplinary research, especially focused
on Korean Pear Export Research. His research interests include pollen
morphology and plant anatomy, fruit safety management control, and
post-harvest quality control of fruits.

BOK-RYE LEE received the Ph.D. degree from
Chonnam National University, South Korea, with
a foucs on physiological changes of metabolic
pathway, stress-induced protein, and biochemical
in white clover under drought stress. During the
Ph.D. degree, she joined Prof. Avice’s Lab, Uni-
versité de Caen Normandie, Caen, France, for one
year. She worked as a Postdoctoral Researcher
with the John Innes Centre, Norwich, U.K., from
2008 to 2010, and with Michigan State Univer-

sity, MI, USA, from 2010 to 2012. Afterwards, she joined as a Research
Professor with the Biotechnology Research Institute, from 2012 to 2018.
Since 2018, she has been with the Asian Pear Research Institute, Chonnam
National University. Her research interests include drought stress responses,
hormonal crosstalk, redox-signaling, autophagy, plant-pathogen interaction,
plant immunity, and fruit growth modelling.

SANG-HYUN LEE received the B.S., M.S., and
Ph.D. degrees in horticultural sciences with Chon-
nam National University, Gwangju, South Korea,
in 1998, 2000, and 2003, respectively. He expe-
rienced as a Postdoctoral Fellow with Tsukuba
University, Japan, andwith the Rural Development
Administration, South Korea. He joined the Fac-
ulty of the Department of Horticulture, Chonnam
National University, in 2016. He has been serving
as the Director for the Asian Pear Research Insti-

tute, since 2017. His research interests include improvement pollen quality
and post-harvest physiology in pear fruit.

MIN-SOO KIM received the B.S., M.S., and
Ph.D. degrees in computer science and statis-
tics with Chonnam National University, Gwangju,
South Korea, in 1994, 1996, and 2000, respec-
tively. From 2003 to 2005, he was a Postdoctoral
Fellow with the Korea Advanced Institute of Sci-
ence and Technology (KAIST). In 2007, he joined
the Faculty of the Department of Statistics, Chon-
nam National University. He is currently serving
as the Chairman for the Big Data Center, Chonnam

National University, since 2015. His research interests include pattern recog-
nition, wavelet, artificial intelligence, and multivariate statistics and analysis
of big data according to climate changes.

VOLUME 9, 2021 45999


