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ABSTRACT A study pointed out that the delay time of the driver’s nervous system has a significant effect
on the roll stability of the vehicle. However, the existing researches on vehicle rollover prevention control
rarely consider the influence of driver factors on vehicle roll stability. Aiming at this problem, a vehicle
roll stability and path tracking control strategy considering driver in the loop is proposed to assist different
types of drivers. It includes the supervisory decision layer and execution layer. The supervisory decision
layer selects the corresponding control mode according to the driver’s steering wheel angle change rate, path
tracking deviation and vehicle roll stability information. The execution layer includes three modes: human-
machine shared steering, active braking and integrated chassis control. The human-machine shared steering
and active braking modes assist the driver to improve the roll stability and path tracking accuracy. The
integrated chassis control mode is used for the automatic driving of vehicles under emergency conditions.
Simulation results show that the proposed control strategy can effectively improve the vehicle roll stability
and path tracking accuracy, and reduce the driver’s operating burden.

INDEX TERMS Roll stability, path tracking, human-machine sharing, coordinated control, integrated
control.

I. INTRODUCTION
According to the statistics of the National Highway Traffic
Safety Administration (NHTSA), there were 36560 people
killed in motor vehicle traffic crashes on US roadways during
2018, and the 2018 number of large-truck occupant fatalities
is the highest since 1988 [1]. Passengers in a rollover accident
are 10 times more likely to die than a non-rollover accident
[2]. Vehicles such as trucks and sport utility vehicles (SUV)
are more prone to rollover accidents due to the characteristics
of high centroid position, large mass and narrow wheel base.
Therefore, researchers paymore andmore attention to the roll
stability control of the vehicle.

A variety of control methods have been proposed to the
field of roll stability control, such as differential braking
control [2], [3], active steering control [4], [5], suspension
control [6], integrated chassis control [7], [8]. It can be seen
from the above literature, although the existing anti-rollover
control methods can reduce the risk of rollover, they ignore
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the path tracking problem. Due to the conflict between roll
stability and path tracking [9], and in a word, the better the
control effect, the worse the desired path tracking effect. If
the vehicle deviates from the original path, it may collide with
railings on both sides of the road or other vehicles, and caus-
ing new accidents. Thus, it is necessary to consider path track-
ing performance while improving vehicle roll stability [10].
Qian et al. [11] designed an integrated chassis controller by
considering both anti-rollover and path tracking performance.
The proposed control strategy can guarantee that the vehicle
tracks the desired path well and effectively reduces the risk of
rollover. Li et al. [12] developed an active safety cooperative
control systemwith adaptive cruise control (ACC), rear wheel
steering control (RSC) and rollover brake control (RBC). The
proposed integrated control strategy has good path tracking
performance and roll stability. Tian et al. [13] exploited a
hierarchical adaptive control framework to coordinate the
contradiction between path tracking and roll stability through
steering control.

However, most of the literature on vehicle rollover preven-
tion and path tracking control do not consider the impact of
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driver’s behavior on vehicle rollover dynamics, only regard
the driver’s input as a kind of interference. On the one hand,
experienced drivers can make decisions to prevent rollover
according to their perceived rollover tendency. On the other
hand, the driver cannot correct the vehicle rollover in time due
to the limitation of psychological and physiological limits.
It is necessary to consider the driver’s behavior characteristics
in vehicle roll stability and path tracking control. Jin et al. [14]
established a dynamic model of the driver’s roll response and
analyzed the influence of driver perception, decision and exe-
cution parameters on vehicle roll stability, and the research
results showed that the driver’s nervous system delay time had
a significant impact on roll stability. Cao et al. [15] designed a
rollover prevention collaborative control strategy considering
the features of different driver’s manners. The proposed strat-
egy can provide diverse control effects for different drivers,
and effectively prevent vehicle rollover as well as realize
favorable path tracking performance. However, the driver’s
physical or psychological characteristics are not considered.
Therefore, it is necessary to design a control system suitable
for drivers with different neural response delays to enhance
roll stability while tracking the desired path, thereby reducing
the driver’s operating burden.

In the current research stage, in order to reduce the oper-
ating burden of the driver, the shared control considering
human-machine interaction seems to be an available solu-
tion [16]. Hoc et al. [17] developed a human-machine coop-
eration framework and applied it to the field of vehicle
automation. Sentouh et al. [18] designed a human-machine
shared controller of lane keeping based on Lyapunov method.
Chen et al. [19] presented a human-machine shared control
method based on hybrid system theory to coordinate the
conflict between human and lane departure assistance sys-
tem. Wang et al. [20] considered diverse driving styles and
devised a shared steering control law using an exponential
function to lighten the burden on the driver when turn-
ing. Wang et al. [21] introduced the architecture of human-
machine shared control, driver modeling and interaction
strategy under driver-vehicle shared schemes, and further
discussed the challenges and opportunities in the future. Nev-
ertheless, human-machine shared control is mostly used in
relatively stable scenarios such as lane keeping and does
not consider the roll motion of vehicle [22], and there
is a lack of research on shared control under emergency
scenarios.

To solve these problems, this paper aims to assist the
stability needs of drivers with different physiological or psy-
chological states and introduces the human-machine shared
control into roll stability and path tracking control. A roll
stability control strategy considering the driver in the loop is
proposed, so as to reduce the risk of vehicle rollover and track
the desired path at the same time.

The rest of this article is arranged as follows: section II
introduces the system model. The human-machine shared
control rules and roll stability control strategy are designed
in section III. The simulation results of control strategy are

FIGURE 1. 2 DOF vehicle model.

conducted in section IV and conclusions as well as future
work are finally given in section V.

II. SYSTEM MODEL
A. VEHICLE MODEL
As shown in Figure 1, the linear two degree-of-freedom
(DOF) model is selected as the vehicle dynamics model,
the state equation is given as follows:

[
β̇

ṙ

]
=

[
a11 a12
a21 a22

] [
β

r

]
+


2Cf
mvx

0

2aCf
Iz

1
Iz

[ δfMz

]
(1)

where

a11 = −
2(Cf + Cr )

mvx
, a12 = −1−

2(aCf − bCr )
mv2x

a21 = −
2(aCf − bCr )

Iz
, a22 = −

2(a2Cf + b2Cr )
Izvx

β is the centroid side slip angle; r is the yaw rate; Cf and Cr
are the cornering stiffness constants of the front and rear tires,
respectively;m is the total vehicle mass; vx is the longitudinal
speed; a and b are distances from the gravity center to the
front and rear axles, respectively; Iz is the moment of inertia
of yaw; δf is the front wheel steering angle; Mz is the yaw
moment.

B. VEHICLE-ROAD MODEL
Assuming that vehicle is a rigid body, the longitudinal and
lateral positions as well as the yaw angle of the vehicle are
shown in Figure 2, more details can be seen in reference [23].

The speed of the vehicle’s center of mass in the X axis and
the Y axis direction of the ground coordinate system are as
follows: {

Ẋ = vx cosψ − vy sinψ
Ẏ = vx sinψ + vy cosψ

(2)

Assuming that vehicle yaw angle is small and tire force is
in the linear region, so vy is much smaller than vx . It can be
obtained equation (3) by replacing the X axis and the Y axis
in the ground coordinate system with the x axis and the y axis
in the vehicle coordinate system:{

ẋ = vx
ẏ = vxψ + vy

(3)
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FIGURE 2. Vehicle kinematic relation.

 r = ψ̇

β =
vy
vx

(4)

where ψ is the yaw angle; vy is the lateral velocity.
Combining equation (1) with equations (3)-(4), the state

equation of vehicle-road model is obtained as follows:

ẋ = Ax + Bδf (5)

where

x =
[
vy r y ψ

]T

A =


−
2(Cf + Cr )

mvx
−vx −

2(aCf − bCr )
mvx

0 0

−
2(aCf − bCr )

Izvx
−
2(a2Cf + b2Cr )

Izvx
0 0

0 0 0 vx
0 1 0 0


B =

[
2Cf
m

2aCf
Iz

0 0
]T

C. DRIVER MODEL
It is very important to establish a reasonable and effective
driver model for ‘‘driver-vehicle-road’’ closed-loop simula-
tions. The driver model established in this paper assumes that
the expected path is known, and a driver model based on
trajectory prediction is established [24].

Assuming that the vehicle maintains a constant yaw rate
for a period of time in the future, the vehicle will make a
uniform circular motion. Figure 3 describes the predicted
vehicle trajectory. Point G is the centroid position of the
vehicle for the current time, point C is the centroid position
of the vehicle after time tp, and the trajectory between the
two points is a circle of radius R. Point M is the center of the
vehicle trajectory, θ is the center angle of the trajectory, P is
the preview point on the desired path, and ψ is the heading
angle of the vehicle for the current time. 1f is the lateral

FIGURE 3. Vehicle trajectory prediction under the assumption of constant
yaw rate.

deviation at the vehicle preview point, GB is tangent to the
vehicle trajectory at point G.

It can be seen from Figure 3 that 6 CGA = 6 CGB + β,
6 CGB is the chord tangent angle of the vehicle’s circle tra-
jectory, we can get 6 CGA = θ/2+ β, then

yGC = tan
(
θ

2
+ β

)
xGC (6)

After time tp, the ideal position of the vehicle centroid
should be point P, that is 6 PGA = 6 CGA, yGC = 1f . Since
it is assumed that the vehicle moves in a uniform circular
motion, by θ = rtp. And because vy � vx , by xGC ≈ vx tp.
The expected steering wheel angle is:

δdsw =
rd
Gr
=

2
[
arctan

(
1f
vx tp

)
− β

]
tpGr

(7)

where Gr =
vx

iL(1+Kv2x)
; K = m(bCr−aCf )

2Cf CrL2
; i is the steering

ratio; L = a+ b.
There is a deviation between the current yaw rate and the

expected yaw rate 1r = rd − r , and the driver applies an
additional steering wheel angle 1δsw to compensate for yaw
rate deviation, that is 1r = Kr1δsw.
The ideal steering wheel angle is:

δ∗sw = δ
d
sw +1δsw (8)

where Kr is the feedback coefficient, Kr = Gr .
The driver’s physiological limitation mainly comes from

the reaction lag and action response lag. Neural response lag
is usually a pure lag, which can be represented by the transfer
function e(−td s) and a physical limitation, which is a first-
order lag 1/ (1+ ths). The actual steering angle is defined
as:

δsw =
e−td s

1+ ths
δ∗sw (9)

where td is neural response lag time constant, th is action
response lag time constant.
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FIGURE 4. General architecture.

III. DESIGN OF CONTROL FRAMEWORK
According to the established system model and roll stability
evaluation index, the roll stability and path tracking con-
trollers adapted to different types of drivers are designed. The
diagram of general architecture is shown in Figure 4. It is
assumed that the vehicle studied in this work is equipped
with a steer-by-wire and active braking system, and has an
automatic driving function. Vehicle state parameters and road
information (such as side slip angle, body roll angle, road cur-
vature, roll angle acceleration) required for controller design
can be measured, the specific structure of steering and brake
system as well as the observation of state parameters are not
involved in this work.

A. EVALUATION INDEX OF ROLL STABILITY
The supervisory decision layer is responsible for detecting
steering wheel angle signal and vehicle status signal. Then,
the input signal is compared with the set safety threshold and
the corresponding control mode is selected.

The challenge of rollover prevention is that it is difficult
to predict the moment when roll occurs, especially when
there are time-varying road curvature and lateral slope angle.
This section adopts the roll stability criterion based on zero
moment point represented by literature [25].

As shown in Figure 5, the analysis of vehicle roll stability
mainly focuses on the lateral offset of zero moment point.

The following equations can be obtained according to the
roll moment balance relative to zero moment point.

mg cos(φ)ȳZMP = [may + mg sin(φ)]h− Ix φ̈ (10)

FIGURE 5. Rigid vehicle model on banked surface.

ay = v̇y + rvx (11)

Considering that φ is small, it can be assumed that
cos(φ) ≈ 1 and sin(φ) ≈ φ, the following equation can be
derived from equations (10) and (11):

ȳZMP = hφ +
h
g
(v̇y + rvx)−

Ix
mg
φ̈ (12)

The lateral offset of zero moment point is normalized to
half of the track width:

yZMP =
2
D
[hφ +

h
g
(v̇y + rvx)−

Ix
mg
φ̈] (13)

where φ and φt are the roll angle of vehicle and road, respec-
tively. ay is lateral acceleration; Ix is the moment of inertia of
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TABLE 1. Mode selection.

vehicle body around the x axis; h is the height of centroid;D is
the equivalent wheelbase of the vehicle. The range of yZMP is
[−1, 1], yZMP = 0 means the vehicle has no roll, yZMP = ±1
means one side of vehicle lift off road. Similar to the threshold
values set in [26], the threshold value is set as 0.6 and 0.7.

The mode selection method proposed in this work is as
follows: According to the change rate of the steering wheel
angle over a period of time, the vehicle’s roll stability and path
tracking deviation, it is compared with the safety threshold.
When the change rate of steering wheel angle over a period
of time is less than Th, it is considered that the driver’s
physiological and psychological state is in the normal range
and the driver has the ability to continue to manipulate the
vehicle, where Th = 500 deg /s. If the difference between the
actual lateral position and the ideal lateral position is greater
than 0.4 m, it is considered that the vehicle deviates from
the desired path, and the human-machine shared controller is
turned on. Otherwise, the human-machine shared controller is
turned off. If |yZMP| ≥ 0.6, it is considered that roll stability is
poor, and active braking controller is turned on to improve roll
stability. Otherwise, active braking controller is turned off.
When the change rate of steering wheel angle is greater than
Th, it is considered that the driver is in a state of tension and
panic, and the ability to continue driving the vehicle is poor.
If |yZMP| ≥ 0.7, the vehicle enters an autonomous driving
state, and the safety system completely takes over the vehicle.
Table 1 shows the switching strategy of the control mode in
the supervisory decision layer.

B. DESIGN OF STEER-BY-WIRE CONTROLLER
A steer-by-wire controller is designed to track the desired
path by adjusting the front wheel angle when the vehicle
deviates from the desired path. Model predictive control
(MPC) can calculate the dynamics state of the vehicle for
the future, and it has preponderance in handling constrained
control targets. Through rolling optimization strategy, it can
recompense the non-determinacy caused by model destabi-
lization and discrepancy, so as to acquire better dynamic
control function and guarantee the vehicle’s stability. Hence,
MPC is utilized to design the steer-by-wire controller in this
section.

1) MPC CONTROLLER DESIGN
The vehicle-road model in section II B is adopted as the
predictivemodel ofMPC.When the vehicle runs into the non-

linear region, the modeling inaccuracy will expand. However,
the goal of steering control is to ensure that the vehicle runs
in a linear region, which can be satisfied by the constraints of
MPC optimization. Therefore, the assumptions in section II B
are appropriate. Then, by discretizing (5) at the sample time
Ts using a zero-order hold method; the discrete-time model
can be obtained as follows:

x(k + 1) = Adx(k)+ Bdδf (k) (14)

Defining lateral displacement and yaw angle as output, by:

z(k) = Cdx(k) (15)

where Ad = eATs ; Bd =
∫ Ts
0 eAτdτ ·B and Cd are the discrete

matrices.

z(k) =
[
y(k)
ψ(k)

]
; Cd =

[
0 0 1 0
0 0 0 1

]
Assuming that the prediction predictive horizon is Np, the

control predictive horizon is Nu, and Nu ≤ Np. In this case,
the future vehicle states could be predicted as follows:

x(k + 1) = Adx(k)+ Bdδf (k)
x(k + 2) = A2dx(k)+ AdBdδf (k)+ Bdδf (k + 1)
...

x(k + Nu) = ANud x(k)+ ANu−1d Bdδf (k)
+ANu−2d Bdδf (k + 1)+ · · ·Bdδf (k + Nu − 1)
...

x(k + Np) = A
Np
d x(k)+ A

Np−1
d Bdδf (k)

+A
Np−2
d Bdδf (k + 1)+ · · ·+

Np−Nu+1∑
i=1

Ai−1d Bdδf (k + Nu + 1)

(16)

In the case Nu < Np, it is assumed that the control input is
invariant from Nu step to Np step, that is u(k + Nu) = u(k +
Nu+1) = · · · = u(k+Np−1), the output could be predicted
as follows:

z(k + 1) = CdAdx(k)+ CdBdδf (k)
z(k + 2) = CdA2dx(k)+ CdAdBdδf (k)
+CdBdδf (k + 1)
...

z(k + Nu) = CdA
Nu
d x(k)+ CdA

Nu−1
d Bdδf (k)

+ · · · + CdBdδf (k + Nu − 1)
...

z(k + Np) = CdA
Np
d x(k)+ CdA

Np−1
d Bdδf (k)

+ · · · +

Np−Nu+1∑
i=1

CdA
i−1
d Bdδf (k + Np − 1)

(17)

The Np step output prediction of system can be expressed
as:

Z (k) = 9X (k)+2U (k) (18)
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where

Z (k) =


z(k + 1)
z(k + 2)

...

z(k + Np)

 ; X (k) =


x(k + 1)
x(k + 2)

...

x(k + Np)

 ;

U (k) =


δf (k)

δf (k + 1)
...

δf (k + Nu − 1)

 ; 9 =


CdAd
CdA2d
...

CdA
Np
d

 ;

2 =


CdBd 0 · · · 0
CdAdBd CdBd · · · 0

...
...

. . .
...

CdA
Np−1
d Bd CdA

Np−2
d Bd · · ·

Np−Nu+1∑
i=1

CdA
i−1
d Bd


The weighted objective functions of lateral displacement,

yaw angle and steering angle are defined as follows:

J (k) =
Np∑
i=1

‖z (k + i)− r (k + i)‖2Q

+

Nu∑
i=1

∥∥δf (k + i− 1)
∥∥2
R (19)

where r(k + i) = [y(k + i), ψ(k + i)]T ,Q = diag(Q1,Q2
· · ·QNp ) is the weighting matrix and R is the weighting coef-
ficient.

According to the system constraints, the following opti-
mization problem can be solved in each time step

min
U (k)

J (k) (20)

Subject to :

umin(k + i) ≤ u(k + i) ≤ umax(k + i)

i = 0, 1, · · · ,Nu − 1 (21)

−1umin(k + i) ≤ 1u(k + i) ≤ 1umax(k + i)

i = 0, 1, · · · ,Nu − 1 (22)

ymin(k + i) ≤ y(k + i) ≤ ymax(k + i)

i = 0, 1 · · · ,Np − 1 (23)

where the inequalities (21) limit the control inputs, (22)
constrain the changes of the control input, while (23) are
constraint on system output variables.

Obviously, this is a constrained optimization problem,
which can be transformed into a quadratic programming
problem. The specific implementation process will not be
detailed here, more details can be seen in reference [13].

2) HUMAN-MACHINE SHARED CONTROL STRATEGY
In order to assist the driver to track the desired path while
reducing the risk of rollover, a shared control strategy based
on fuzzy control method is designed by considering the road
hazard level and the driver steering operation hazard, which
is enlightened by [27].

FIGURE 6. Membership function of road hazard.

FIGURE 7. Membership function of human steering operation hazard.

The road hazard is employed to recount the vehicle position
dangerous as follows:

Proad =
∣∣yp(k)− yc(k)∣∣ (24)

where yp(k) is the lateral position of driver’s preview point,
yc(k) is the lateral position of road centerline at the driver’s
preview point.

Considering the driver’s current state and behavior, the fol-
lowing parameters are selected to describe the driver steering
operation hazard based on the information available from the
current scheme, expressed by:

Pdriver = σ
∣∣δmpc − δdriver ∣∣ (25)

where σ > 0 is a regulating factor, δmpc is the front wheel
angle output by MPC controller, δdriver is the front wheel
angle output by driver, δdriver = δsw/i.
The form of the shared control strategy in this work is

enlightened by Anderson et al. [28]. The final steering com-
mand is the linear weighted sum of the driver’s input and the
controller’s input, denoted as:

Us = 0Umpc + (1− 0)Udri (26)

where Us, Umpc and Udri refer to the shared steering input,
MPC controller’s input, and a driver’s input, respectively; 0
is the shared coefficient.

Since the shared coefficient is difficult to describe with an
accurate formula, and the fuzzy control method is selected
and it could be more smooth and effective. Consequently,
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FIGURE 8. Membership function of shared coefficient.

FIGURE 9. Fuzzy regular surfaces.

the basic ideas of the fuzzy control strategy based on expert
experience are given as follows:

When Proad is relatively small, it indicates that the current
road risk is low, and the intensity of machine intervention
should also be small. When Proad is relatively large, it indi-
cates that the deviation of current path tracking is relatively
large. If Pdriver is small, it means that the driver’s manipula-
tion behavior is normal, and the shared coefficient 0 should
also be relatively small. Otherwise, the shared coefficient 0
increases with the increase of Pdriver .
1. Fuzzy variables: Proad has five associated linguistic

values: safe (S), medium safe (MS), medium (M), medium
dangerous (MD), dangerous (D). Its membership function
shape is shown in Figure 6.

Pdriver has five associated linguistic values: safe (S),
medium safe (MS), medium (M), medium dangerous (MD),
dangerous (D). Its membership function shape is shown
in Figure 7.
0 has five associated linguistic values: small (S), medium

small (MS), medium (M), medium big (MB), big (B). Its
membership function shape is shown in Figure 8.

2. Fuzzy rules: The fuzzy rules are produced based on
expert knowledge, and these rules are generated from the
simulation experience in our study. All rules can be seen
in Table 2 and Figure 9 shows the fuzzy regular surfaces.

3. Defuzzification: The center-of area defuzzification
method is utilized in our work.

TABLE 2. Fuzzy control rule base.

FIGURE 10. Path tracking error dynamics model.

C. DESIGN OF ACTIVE BRAKING SYSTEM
The active braking controller is designed to reduce the current
risk of vehicle rollover under emergency conditions. The
active braking system is only activated according to the roll
stability evaluation index because the braking system directly
affects the longitudinal movement of the vehicle. Since lateral
acceleration is the dominant factor of rollover, much research
on anti-rollover has pointed out that the lateral acceleration
can be reduced by controlling the yaw motion.

1) PATH TRACKING MODEL
The path tracking error dynamics model is shown in Fig-
ure 10.

The path tracking error dynamics based on the Serret-
Frenet equations are given by:{

ψ̇r = ψ̇ − ψ̇d = r − ρvx
ė = vx sinψr + vy cosψr

(27)

where ψd is the tangential direction of the desired path; e is
the vertical distance from vehicle centroid to the desired path;
ρ represents the curvature of the desired path; ψr is called
heading error. Generally, the control objective for the path
tracking problem is to design a controller to globally asymp-
totically stabilize e and ψr , and ensure the lateral stability at
the same time.
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2) DESIRED YAW RATE CALCULATION
Generally, the desired side slip angle is chosen as βd = 0.
Regarding the calculation of the desired yaw rate, reference
[7] used the 2-DOF steady-state yaw rate as the tracking
target for anti-rollover control and designed a correspond-
ing integrated controller. Simulation results show that it can
effectively improve roll stability. However, calculation of the
desired yaw rate based on steering wheel angle information,
which is assumed that driver’s driving behavior is normal.
When the driver is in a state of tension and panic, whose
behavior will be abnormal, and the steering wheel angle
is extremely unreasonable. Therefore, the desired yaw rate
calculated by the 2-DOF steady-state yaw rate will be invalid,
and the vehicle will lose path following ability, deviate from
the centerline of the road and may hit the road railing.

The traditional path tracking control algorithm based on
position deviation often ignores the lateral stability of the
vehicle. This section focuses on the design of path tracking
controller considering the stability and safety of the vehicle.
The path tracking model is established, and the desired yaw
rate is generated by using hyperbolic projection based feed-
back dominance backstepping (HFDB).

Projecting e to a new variable z1 by hyperbolic sine func-
tion z1 = sin κe, where κ is a positive regulating parameter.
The Lyapunov function is defined as:

V1h =
1
2
z21 (28)

Differentiating equation (28) yields:

V̇1h = κz1 cosh κe
[
vx

sinψr
ψr

(ψr − α1h

+ α1h)+ vxβ cosψr

]
(29)

By choosing a virtual variable ψr and denoting α1h =
−c1z1 and z2h = ψr − α1h, equation (29) can be rewritten
as:

V̇1h = −κc1z21 cosh κe · vx
sinψr
ψr

+ κz1 cosh κe · vx
sinψr
ψr

z2h

+ κz1 cosh κe · vxβ cosψr (30)

which means that if z2h = 0

|z1(∞)| ≤ z̄1(t) =

∣∣∣∣ βψr

c1 tanψr

∣∣∣∣ (31)

so z1→ 0, e→ 0, as β → 0
The second Lyapunov function is defined as:

V2h = V1h +
z22h
2c21

(32)

Derivation equation (32) and feedback linearization is
instead by utilizing feedback dominance to simplify the
deduction yields:

V̇2h = −κc1z21 cosh κe · vx
sinψr
ψr
+ κz1 cosh κe · vxβ cosψr

−
c2
c1
κ cosh κe · z22h

[
1−

c1vx
c2

sinψr
ψr

]
+

1

c21
κz2h [r − ρvx + c1 cosh κe · vxβ cosψr − α2h]

(33)

where α2h = −c2z2h cosh κe, c2 is a constant and c2 ≥ c1vx ,
we choose z3h = r −ρvx −α2h. Thus, if z3h = 0, (33) can be
simplified as:

V̇2h = −κc1z21 cosh κe · vx
sinψr
ψr
+ κz1 cosh κe · vxβ cosψr

−
c2
c1
κ cosh κe · z22h

[
1−

c1vx
c2

sinψr
ψr

]
+

1
c1
κz2h cosh κe · vxβ cosψr (34)

which implies:

|z2h(∞)| ≤ z̄2h(t) =
c1vx |β cosψr |

c2
(
1− c1vx

c2
sinψr
ψr

) (35)

and z2h → 0 as β → 0. By making z3h = 0, the desired yaw
rate can be obtained:

rαh = ρvx + α2h (36)

where α2h = −c2z2h cosh κe, z2h = ψr − α1h and α1h =
−c1z1. If z1 → 0 and z2h → 0, since z1 = sinh κe, we can
conclude that e → 0 and ψr → 0, and the path following
target is realized if the real yaw rate tracks the desired value
rαh.

By assuming a small angle for ψr and the lateral offset e
can be generally assumed very small. Therefore, (36) can be
rewritten as:

rαh = ρvx − c2c1κ(e+
1
c1κ

ψr ) (37)

The selection rules of parameters in (37) are as follows:
c1 is inversely proportional to vx , and c1 > 0, c2 ≥ c1vx ,
we choose c1 = 2/vx , c2 = 30c1, that is c1 = 0.1029, c2 =
3.087, κ = 0.5.
More details about controller design can be seen in litera-

ture [29].

3) DESIGN OF YAW MOMENT CONTROLLER
A proportional integral differential (PID) controller is
adopted to obtain the additional yaw moment according to
the error between the expected yaw rate and the actual yaw
rate.

Mz = KP1r + KI

∫
1rdt + KD

d1r
dt

(38)

where 1r = rαh − r , KP is the proportional gain, KI is the
integral gain, KD is the differential gain. Here, KP = 1400,
KI = 500, KD = 10.
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FIGURE 11. Path tracking comparison results.

FIGURE 12. Lateral deviation comparison results.

TABLE 3. Braking torque distribution strategy.

4) BRAKING TORQUE DISTRIBUTION
The additional yaw moment calculated by PID requires to
be allocated to specific wheels, and the yaw stability control
of the vehicle is realized by braking only one wheel. Since
front wheels are utilized as the driver’s steering input, only
rear wheels are involved in the control law. Table 3 indicates
the allocation principles of wheel selection on the basis of
steering wheel angle and the evaluation index of roll.

D. DESIGN OF INTEGRATED CHASSIS CONTROLLER
An integrated chassis controller based on steer-by-wire and
active braking is designed for anti-rollover and path track-
ing control of the autonomous vehicle under critical scenar-
ios. The integrated chassis controller is only turned on at∫ ∣∣δ̇∣∣dt ≥ Th and |yZMP| ≥ 0.7, when the driver’s steering
wheel angle changes too much within a period of time and the
risk of rollover is high. Due to the limitation of the driver’s
physiology, psychology and driving skills, it is considered
that the driver has no ability to continue driving, so the
auxiliary system takes over the vehicle.

The integrated controller is designed by MPC, and the
predictive model is select the 2-DOF model in section IIA.
The state equation is as follows:{

ẋ = A0x + B0u
y = C0x

(39)

where x = [β r]T , u = [δf Mz]T , A0 =
[
a11 a12
a21 a22

]
.

B0 =

[ 2Cf
mvx

0
2aCf
Iz

1
Iz

]
, C0 =

[
1 0
0 1

]
.

In this section, the desired side slip angle is βd = 0, and
the desired yaw rate is rd = rαh.

IV. SIMULATION RESULTS AND ANALYSIS
A CarSim and MATLAB/Simulink co-simulation is adopted
in our work, and the vehicle parameters used in the simu-
lation process are shown in Table 4. In order to verify the
effectiveness of the proposed control strategy, the double lane
change maneuver and the fishhook maneuver are selected as
simulation conditions.

A. DOUBLE LANE CHANGE MANEUVER
When the vehicle is driving at high speed, the vehicle’s roll
stability is poor due to the dry road surface and the excessive
input of the steering wheel angle. In order to test the effective-
ness of the control strategy, the double lane change maneuver
is selected as the simulation condition. The speed of the
vehicle is set as 70 Km/h and the road adhesion coefficient is
set as 0.9. The neural response lag time constant is usually set
as td = 0.2− 0.4 s. This work chooses td = 0.2 s to simulate
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FIGURE 13. Roll stability comparison results.

FIGURE 14. Yaw rate comparison results.

FIGURE 15. Human-machine shared coefficient.

TABLE 4. Main simulation parameters.

an excited driver; td = 0.3 s is selected to simulate a normal
type of driver; we choose td = 0.4 s to simulate a physio-
logically fatigued and distracted driver. Action response lag
time constant is usually set as th = 0.05− 0.2 s, and because

action response lag time has little effect on the roll stability,
the action response lag time of three types of drivers is set as
th = 0.1 s. Driver represents the driver’s individual control,
and Driver + controller represents the collaborative control.
The parameters of MPC controller are: Np = 25, Nu = 10,

Q =
[
10 0
0 300

]
, R = 0.

Figures 11 and 12 show the comparison of path tracking
results. It can be concluded from Figures 11(a)-(b) and Fig-
ures 12(a)-(b) that the collaborative control can improve the
tracking accuracy when the driver’s neural response delay
time is 0.2 s and 0.3 s. Figure 11(c) and Figure 12(c) show that
the collaborative control can significantly improve path track-
ing accuracy and compensate for the tracking error caused by
the driver’s untimely response.

Table 5 illustrates the root mean square (RMS) of track-
ing deviations with the driver’s individual control and the
collaborative control. It is established that compared with
the driver’s individual control with td = 0.2 s, the RMS
of path tracking deviation of the collaborative control is
0.236 m, and the tracking accuracy is improved by 11.94%.
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FIGURE 16. Rear wheel braking torque.

FIGURE 17. Simulation results under fishhook maneuver: (a) road model, (b) path tracking deviation, (c) yZMP, (d) yaw rate,
(e) steering wheel angle, (f) rear wheel braking torque.

It is established that compared with the driver’s individual
control with td = 0.3 s, the RMS of path tracking deviation of
the collaborative control is 0.173m, and the tracking accuracy
is improved by 3.89%. It is established that comparedwith the
driver’s individual control with td = 0.4 s, the RMS of path
tracking deviation of the collaborative control is 0.304 m, and
the tracking accuracy is improved by 49.75%.

As it is understood from Figures 13(a)-(b), the roll stability
evaluation index yZMP of collaborative control is basically
the same as that of individual control. Although there is an
increase at t = 4.2 s, the values are all less than 0.6, which
is within a safe range. When td = 0.4 s, the collaborative
control can effectively improve the vehicle’s roll stability
compared with the individual control. In Figures 14(a)-(b),
the yaw rate of collaborative control increases when t = 4.2 s,
but decreases rapidly and finally tends to be stable. This is
because when roll stability is good, the collaborative control
sacrifices a certain degree of roll stability to improve the
path tracking accuracy. It can be seen from Figure 14(c)
that the collaborative control can effectively improve the yaw
stability of the vehicle compared with the driver’s individual
control with td = 0.4 s. The human-machine shared coef-
ficient is shown in Figure 15, and the shared controller can

TABLE 5. Root mean square of path tracking deviation.

adaptively adjust the weight between human and machine
to assist different types of drivers. Figure 16 shows that
since the human-machine shared steering cannot meet the
additional yaw moment requirement, the braking torque is
added to guarantee the vehicle’s roll stability. Thus, according
to the above simulation analysis, it can be concluded that the
collaborative controller can adapt to different types of drivers,
reduce the operating burden, and obtain good path tracking
ability and roll stability.

B. FISHHOOK MANEUVER
In order to test the roll stability and path tracking performance
of the integrated chassis controller in the automatic driving
state, the fishhookmaneuver is chosen as a test condition. The
speed of the vehicle is set as 80 Km/h and the road adhesion
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coefficient is set as 0.9, the maximum steering wheel angle is
±294◦. The road model is shown in Figure 17(a).

The integrated chassis controller designed in this
work is marked as controller B, and the desired yaw
rate is generated by HFDB. Another integrated chas-
sis controller designed in literature [7] is marked as
controller A, and the desired yaw rate is generated by
the 2-DOF model steady-state yaw rate. The parameters
of two MPC controllers are: Np = 25, Nu = 10,

Q =
[
10 0
0 100

]
, R = 0.

It can be seen from Figure 17(b) that controller A and
without control cannot track the road center line, and the
vehicle deviates from the road. Themaximumdeviation of the
path tracking of controller B is 0.4 m, and it quickly drops to
zero, which indicates that controller B has good path tracking
ability. In Figure 17(c), the roll stability of the vehicle without
control is poor, and the maximum value of yZMP is close
to 1. The value of yZMP under the control of controller A is
stable at 0.6. However, the value of yZMP under the control
of controller B quickly tends to zero, which indicates that
controller B has better roll stability. Figure 17(d) illustrates
that controller B can significantly improve the lateral stability
of the vehicle. Figure 17(e) shows the steering wheel angle.
Figure 17(f) illustrates the rear wheel braking torque under
the two controllers. According to the analysis of the simula-
tion results, the designed controller can improve roll stability
and has good path tracking ability.

V. CONCLUSION
In order to adapt to drivers with different neural response
delay, this paper proposes a roll stability and path tracking
control strategy considering driver in the loop. The human-
machine shared weight allocation strategy and active braking
controller are established. The integrated chassis controller
is designed to take over the vehicle comprehensively and
improve safety. The simulation results show that the proposed
control strategy can effectively improve roll stability and
has good path tracking ability, and possesses the following
characteristics:

1. The human-machine sharing is introduced into the vehi-
cle roll stability control, which improves roll stability and
path tracking ability, adapts to different types of drivers, and
reduces the driver’s operating burden.

2. In the integrated chassis control mode for the
autonomous vehicle, the road information and vehicle driving
state information are comprehensively considered, and the
desired yaw rate is derived by the HFDB method. Hence,
the vehicle can track the desired path and ensure lateral
stability by tracking the generated yaw rate, which has solved
the problem that the traditional anti-rollover control method
usually ignores path tracking.

Due to insufficient test conditions, the hardware-in-the-
loop test will be carried out to verify the effectiveness of the
proposed strategy in the future. Further, the dynamic model
considering the coupling of higher degrees of freedom will

be established and the decoupling problem of the roll stabil-
ity control and yaw stability control will be studied. Then,
the influence of driver misoperation on the safety system will
be further considered.
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