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ABSTRACT This paper develops an optimal condition-based maintenance (CBM) strategy for a single-unit
system during two-stage failure, a process that includes a normal stage and delay-time stage. Both stages are
divided into the in-control state and out-of-control state. In the in-control state, the items are always produced
with 100% quality, whereas in the out-of-control state, the item quality deteriorates, and minor repairs are
arranged accordingly to fix this problem. This causes the optimal CBM strategy for system production to
exhibit four different scenarios, where different calculations are carried out using renewal reward theory to
determine the system profit. Then, the system profit is optimized by an availability-cost hybrid factor that
balances the ‘‘cost per unit time’’ and ‘‘availability’’. Finally, to investigate the effects of different decision
objectives on the optimization results, a sensitivity study of the cost parameter and availability-cost weight
factor is conducted on the optimized results through numerical simulations. According to the simulation
results, this availability-cost hybrid factor, as well as the ‘‘cost per unit time’’ and ‘‘availability’’ factors,
become less sensitive when it exceeds 0.6.

INDEX TERMS Condition-based maintenance, delay time, hybrid evolution factor, inspection, two-stage
failure process.

I. INTRODUCTION
Preventive maintenance (PM) is an efficient and effective
maintenance activity used to achieve high product quality
and reliability for manufacturing firms [1]–[3]. Depending
on the complexity of the product system, PM activities are
applied with different modeling policies. For single-unit sys-
tems, time-based maintenance (TBM) models are usually
established based on age-dependent PM policies or periodic
PM policies [4]. These traditional TBM methods are usu-
ally implemented by simply replacing the system units at
fixed time intervals, therefore causing excessive waste and
increasing maintenance burden. To tackle this problem, some
extensions are further applied to modify TBM models. For
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instance, the delay-time method is commonly used to divide
the system failure process into two stages, the pristine stage
and the stage at which a defect is identified, and afterward,
final system failure occurs if the defect is not addressed [5].
With respect to this two-stage process, the system can be
inspected periodically, and corrective replacement can be
performed upon system failure. In this way, the system is
eventually preventively replaced either at every N th inspec-
tion or the moment at which an obvious defect is identified,
whichever occurs first [6].

However, although modified TBM models exhibit good
effectiveness in preventing unexpected failures, their mainte-
nance costs are still too high for a system running long-term.
This problem is due to the high frequency of mainte-
nance intervention during periodic inspections [7]. Thus,
to reduce the maintenance times and cost, condition-based
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maintenance (CBM) models are gaining popularity due to
the fast development of sensing techniques. Compared to
TBM models, CBM models can better describe the actual
state of systems, especially those using condition monitoring
technologies, with low degrees of degradation and minimal
repairs [8]–[10]. Currently, there are multifarious CBMmod-
els depending on different maintenance restoration degrees,
maintenance cost structures, and optimal maintenance poli-
cies [4]. Regarding maintenance restoration degrees, three
types of maintenance performances are considered: perfect,
imperfect, and minimal. For instance, a proactive CBM
model for a deteriorating single-unit system was proposed
by considering perfect maintenance and imperfect mainte-
nance. With this model, an adaptive maintenance policy is
discussed for the determination of an optimal maintenance
action and time interval in between two neighboring inspec-
tion points [11]. Another example is from an imperfect CBM
model developed by the determination of an optimal monitor-
ing interval and degradation level after imperfect preventive
repairs. It concluded that the optimal monitoring interval
length is directly related to the monitoring cost [12]. An obvi-
ous difference between these two models is the optimality
criterion, which is determined based on different cost struc-
tures, i.e., the total cost andmaintenance cost rate. In addition,
multilevel CBM models were developed to achieve optimal
maintenance strategies for railway infrastructures [13], [14].
Model predictive control (MPC) [15] is used in two models
in references [13] and [14] and is different from the CBM
strategies mentioned above since it can take control actions
according to future events anticipated from dynamic models
of the process.

The abovementioned PM models focused on different
inspection and maintenance optimization strategies but did
not consider product quality. On the other hand, with ever-
increasing attention on cost performance from the public,
the importance of product quality has become an essential
factor in PM activities [16]. Considering both maintenance
and quality, the system profit can be determined by the
synthetic optimization of several factors, from selling price,
quality control, maintenance and reworking costs to produc-
tion plan, etc., through perfect and imperfect PM polices.
For instance, an integrated model was proposed to jointly
optimize the imperfect CBM model, quality control and lot
sizing byminimizing the total cost per unit time [17]. Another
study on the CBM optimization of deteriorating produc-
tion systems was carried out by jointly considering produc-
tion, sampling quality control and maintenance factors [18].
Moreover, there are many studies that consider a similar
combination of the abovemultifold factors in different system
degradationmodels, such as the stochastic processmodel [19]
and proportional hazard model [20]. Recently, considering
the quality loss of nonconforming products, an economical
optimization model was developed by integrating statistical
process control and CBM under deteriorating manufac-
turing system conditions [21]. The lowest expected cost
per unit time was produced with superior reliability.

Moreover, a dynamic CBM model based on partially observ-
able Markov decision processes was developed to investigate
the effect of adjusting condition monitoring quality on the
total cost for a stochastic continuous degradation process of
a single-unit system [22]. Another example of the joint CBM
model considering the production of nonconforming items
was proposed for both serial production systems and serial-
parallel multistage production systems to reduce the total cost
and improve the system output at the same time [23], [24].

Regarding the degradation process, there exists a failure
delay time, which is defined as the time elapsed from the
occurrence of a hidden defect to failure. It offers the possi-
bility of performing PM and removing the identified defect
before failure [25]. Based on the delay-time concept, studies
considering different PM strategies are being carried out.
A two-state process was considered to be subject to the
delay time model. The process of the system was in the in-
control state in the beginning. The system may shift to the
out-of-control state later, where the percentage of acceptable
good-quality items produced might be low. These PM actions
can be conducted by TBM strategies, but this will definitely
cause excessive maintenance costs [26]. In contrast, by using
the CBM strategy, the current optimization plan is mostly
achieved by a single objective of purely minimizing the total
cost or maximizing the product profit. However, the product
process is affected by multifold aspects, such as cost, avail-
ability, and reliability. Therefore, it cannot synchronously
visualize all important aspects of the product process in real-
ity. Recently, a review of CBM models was presented, show-
ing that multicriteria methods might be more appropriate and
efficient for obtaining the optimal systemmaintenance policy.
Some indicators are in conflict, such as cost, availability, and
reliability [27].

Few multicriteria or multi-objective approaches have been
investigated for joint models of quality control and preventive
maintenance. By considering a multi-objective optimization
problem, a multicriteria decision approach was established
by using a delay-time model considering the cost and down-
time preferences of decision makers, which simultaneously
determined inspection intervals and features of maintainabil-
ity [28]. An integrated model for a single machine was devel-
oped by considering schedule, availability, repair time and
detection time as constraints to optimize the maintenance and
quality plan [29]. Based on previous reviews on the objectives
of PM models used in service and manufacturing [30]–[32],
cost, reliability and availability were considered the most
important factors.

The aim of this study is to propose a CBM strategy via
the optimization of an availability-cost hybrid factor and
consideration of quality control for a single-unit system
during a two-stage failure process. The remainder of this
paper is organized as follows. Section II outlines the sys-
tem and maintenance strategy and shows the PM process
of a single-unit system in two-stage production. Section III
presents a numerical case study to demonstrate the applica-
bility of the proposed method and a sensitivity analysis of
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FIGURE 1. Flow chart of the CBM strategy.

the cost parameter and availability-cost hybrid factor per-
formed on the optimized results, and Section IV draws major
conclusions.

II. PREVENTIVE MAINTENANCE STRATEGY FOR A
SINGLE-UNIT SYSTEM
A. SINGLE-UNIT SYSTEM
The single-unit system investigated in this study is a contin-
uous production line that follows a two-stage failure process,
including a normal stage and delay-time stage. In the normal
stage, the system remains perfect until a major defect is
initiated. The time of defect occurrence is a random variable
that follows a Weibull distribution. In the delay-time stage,
this defect gradually grows until failure. As soon as failure
occurs, the system shuts down immediately. Only deteriora-
tion failure is considered in this model, which is relevant to
the major defect.

In addition, two states (i.e., the in-control state and out-of-
control state) related to product quality are considered during

each stage of the failure process. At the start of the production
line, the system is in the in-control state, which means that the
product items are high quality. Once the production process
enters the out-of-control state, the system still runs, but non-
conforming items are produced, yielding a lower profit. Note
that the time elapsed between these two states is a random
variable in both normal and delay-time stages and follows
exponential distributions.

B. MAINTENANCE STRATEGY
Figure 1 shows the flow chart of the CBM strategy proposed
for the single-unit system during a two-stage failure process.
Minor inspections are carried out periodically to promptly
identify the state of the system. Once an out-of-control state
is detected, a minor repair is carried out immediately to
bring the system back to its in-control state. Furthermore, the
single-unit system is monitored every N minor inspections
by performing a perfect major inspection to determine if
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the state of the system is beyond a predetermined reliability
threshold,R0. If the system reliability drops belowR0, a major
repair will be performed to replace the system; otherwise,
no major repair is performed. In addition, whenever a failure
occurs, a failure repair will be performed to renew the system.
This That is, the system will be renewed either by a major
repair or by a failure repair. In summary, the number of minor
inspections N and minor inspection interval T are decision
variables. In addition, minor repairs, major repairs and failure
repairs will usually take some time to rectify the system.
However, for the sake of simplicity, the duration of bothminor
inspections and major inspections are ignored, as they are
short compared to the whole production process.

FIGURE 2. Illustration of system renewal by failure repair.

C. SYSTEM RENEWAL DUE TO FAILURE REPAIRS
This part provides the calculation approach used in the case
that the single-unit system is renewed until a failure occurs,
as illustrated in Figure 2. The occurrence of failure x is in
the range from (i − 1)NT to iNT, where i = 1, 2, 3 . . . and
N and T are the number of periodic minor inspections and
the time interval between two neighboring minor inspections,
respectively. In this study, we let X1 denote the random period
of a new cycle in which a major defect is detected, and
x1 denotes the occurrence time of the major defect, where
x1 ∈ [(j − 1)NT , jNT ] and j = 1, 2, . . . , i. Similarly, we let
X2 denote the random period of the major defect in which a
physical failure is detected. Further, X1s and X2s are denoted
the random periods of the in-control state in the normal stage
and delay-time stage, respectively.

Then, the system reliability at arbitrary time xt can be
formulated as

R(xt ) =
1− F2(xt + x0 − x1)
1− F2(x0 − x1)

,

x0 = jNT , (j+ 1)NT , . . . , (i− 1)NT (1)

where xt denotes the time point before which the system does
not fail and F2(xt ) = P(X2 < xt ) denotes the cumulative dis-
tribution function of X2. The reliability calculated by Eq. (1)
is only determined by the data collected from the delay-time
stage of the system. This is because no failure occurred in
the normal stage. Therefore, the reliability of the system in
that stage is much higher than the predetermined reliability
threshold of condition PM (i.e., R0).

Next, we define L1 as the total cycle length, which consists
of X1 and X2, as shown in Figure 2, together with the repair
time and corrective maintenance time. Then, the expectation
of L1 is calculated:

E(L1;N ,T ) =
∞∑
i=1

i∑
j=1

[
∫ iNT

(i−1)NT

∫ jNT

(j−1)NT
(x + Trf )

× f1(x1)f2(x − x1)1(min(R(jNT ), . . . ,

×R(i− 1)NT ) ≥ R0)dx1dx] (2)

where f1(x1) and f2(x − x1) denote the probability density
functions of x1 and the remaining time to failure in the
delay-time stage, respectively, and l(∗) denotes the indicator
function, which is given by

1(min(R(jNT ), . . . ,R(i− 1)NT ) ≥ R0)

=

{
1, if min R(jNT ), . . . ,R(i− 1)NT ) ≥ R0 is true
0, otherwise

Furthermore, the total cost of system renewal is jointly
affected by the cost of minor inspections and profit, both
of which are also influenced by product quality. In this
way, the expected total cost of failure repair renewal can be
calculated:

E(C1;N ,T )=
∞∑
i=1

i∑
j=1

{

∫ iNT

(i−1)NT

∫ jNT

(j−1)NT
[(i− 1)(Cc + NCi)

+ int[
x − (i− 1)NT

T
]Ci + Crf + E(Cijf )]

× f1(x1)f2(x − x1)1(min(R(jNT ), . . . ,

×R(i− 1)NT ) ≥ R0)dx1dx} (3)

where C1 denotes the total cost of system renewal due to a
failure repair,Cc denotes the average cost of system condition
monitoring,Ci denotes the average cost of aminor inspection,
Crf denotes the average cost of a failure repair, Cijf denotes
the modified system profit of system renewal due to a failure
repair, which refers to the expected minor repair cost minus
the expected profit of system renewal due to a failure repair,
and int [∗] denotes the integer function.
Assuming that the major defect occurred between the n-

1th and nth minor inspections, the range of x1 (i.e., the initial
point of the major defect) is then narrowed down to [(j − 1)
NT + (n − 1)T , (j − 1)NT + nT ]. Likewise, the range of x
(i.e. point of failure) is narrowed down to [(i − 1)NT +
(m − 1)T , (i − 1)NT + mT ], where m > n. To simplify the
expression of the following formulas, we adopt the following
abbreviations:{

a1 = (j− 1)NT + (n− 1)T , a2 = (j− 1)NT + nT
b1 = (i− 1)NT + (m− 1)T , b2 = (i− 1)NT + mT
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FIGURE 3. Five scenarios of system renewal due to failure repairs, with
different minor inspection intervals.

Then, as shown in Figure 3, the entire production process of
system renewal due to a failure repair is naturally divided
into five scenarios, in which the Cijf parameter should be
calculated in different ways.

In the first scenario, calculations of the profit depend on
whether or not a shift from the in-control state to the out-of-
control state happens. In the case that the shift does not occur,
the system profit is calculated as

Poc = PinT [1− F1s(T )] (4)

where Poc denotes the system profit, Pin denotes the profit
of the process in the in-control state per unit time, and [1 −
F1s(T )] denotes the probability that no shift occurs. On the
contrary, as soon as the shift occurs, the system profit is then
calculated as

Poc = Pin

∫ T

0
x1sf1s(x1s)dx1s

+Pout (T −

∫ T
0 x1sf1s(x1s)dx1s

F1s(T )
)]F1s(T ) (5)

where Pout denotes the profit of the process in the out-of-
control state per unit time, and the first and second terms on
the right side of Eq. (5) denote the system profit in the in-
control state and out-of-control state, respectively. Further-
more, the expected total cost of minor repairs in the first
scenario (denoted E1 (C)) is given by

E1(C) = [(j− 1)N + n− 1]F1s(T )Cmr (6)

To perform a summation of Equations (4)-(6), the expected
modified system profits Cijf for a given interval, 9, can be
derived as

E(Cijf |ψ ∈ (0, a1])

= [(j− 1)N + n− 1]

× [F1s(T )Cmr −
∫ T

0
x1sf1s(x1s)dx1s(Pin − Pout )

−F1s(T )(Pout − Pin)T − PinT ] (7)

Similarly, the expectations of the modified system profits
for the second to fifth scenarios are sequentially calculated,

as shown in the following equations.

E(Cijf ) =



F1s(x1 − a1)Cmr − F1s(x1 − a1)Pout (x1 − a1)
−(1− F1s(x1 − a1))
×Pin(x1−a1)−

∫ x1−a1
0 x1sf1s(x1s)dx1s

×(Pin − Pout ),
ψ ∈ (a1, x1]

[1− F2s(a2 − x1)][Pin(a2 − x1)
+(Pin − Pout )

∫ a2−x1
0 x2sf2s(x2s)dx2s

+F2s(a2 − x1)(a2 − x1)(Pout − Pin)],
ψ ∈ (x1, a2]

[(i− j)N+(m− n− 1)][F2s(T )Cmr−F2s(T )
×(Pout − Pin)T − PinT

−
∫ T
0 x2sf2s(x2s)dx2s(Pin − Pout )],

ψ ∈ (a2, b1]

F2s(x−b1)Cmr−
∫ x−b1
0 x2sf2s(x2s)dx2s

×(Pin − Pout )− Pin(x − b1)
−F2s(x − b1)(Pout − Pin)(x − b1),

ψ ∈ (b1, x]
(8)

D. SYSTEM RENEWAL DUE TO MAJOR REPAIRS
This part provides the calculation approach of system renewal
due to major repairs when the single-unit system is renewed
by condition-based preventive replacement at time point iNT,
as illustrated in Figure 4.

FIGURE 4. Illustration of system renewal by a major repair.

By defining L2 as the cycle length of major repair renewal,
the expectation of L2 can be then calculated as

E(L2;N ,T ) =
∞∑
i=1

i∑
j=1

∫ jNT

(j−1)NT
(iNT + Trp)f1(x1)

× [1−F2(iNT−x1)]dx11(min(R(jNT ), . . . ,

×R(i− 1)NT ) ≥ R0)1(R(iNT ) < R0) (9)

where [1 − F2(iNT − x1)] denotes the survival probability
of no major failure during the period [x1, iNT]. The indicator
function 1(∗) shows that the reliability of the system is larger
than R0 during the period [x1, iNT) but smaller than R0 at
point iNT, which means that the system is renewed at iNT.

The calculation of the expected total cost formula derived
for major repair renewal is similar to that derived for failure
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repair renewal, as given by

E(C2;N ,T )

=

∞∑
i=1

i∑
j=1

{

∫ jNT

(j−1)NT
[i(Cc + NCi)+ Crp + E(Cijp)]

×f1(x1)(1− F2(iNT − x1))1(min(R(jNT ), . . . ,

×R(i− 1)NT ) ≥ R0)1(R(iNT ) < R0)dx1} (10)

whereCrp denotes the average costs of a major repair andCijp
denotes the modified system profit of major repair renewal,
which refers to the expected minor repair cost minus the
expected profit of major repair renewal.

FIGURE 5. Four scenarios of system renewal by a major repair with
different minor inspection intervals.

As shown in Figure 5, the entire production process of
major repair renewal is divided into four scenarios for the sys-
tem. The calculations of the expectations of Cijp for to these
four scenarios are similar to those derived in the preceding
subsection, as given by

E(Cijp) =



[(j− 1)N + n− 1][F1s(T )Cmr−(Pin−Pout )

×
∫ T
0 x1sf1s(x1s)dx1s

−F1s(T )(Pout−Pin)T−PinT ],
ψ ∈ (0, a1]

F1s(x1 − a1)Cmr − (Pin − Pout )
∫ x1−a1
0

×x1sf1s(x1s)dx1s − Pin(x1 − a1)
−F1s(x1 − a1)(Pout − Pin)(x1 − a1),

ψ ∈ (a1, x1]
F2s(a2 − x1)Cmr − (Pin − Pout )

∫ a2−x1
0

×x2sf2s(x2s)dx2s − Pin(a2 − x1)
−F2s(a2−x1)(Pout − Pin)(a2 − x1),

ψ ∈ (x1, a2]
[(i− j+ 1)N − n][F2s(T )Cmr − (Pin − Pout )

×
∫ T
0 x2sf2s(x2s)dx2s

−F2s(T )(Pout − Pin)T − PinT ],
ψ ∈ (a2, iNT ]

(11)

E. EXPECTED TOTAL COST
Based on expectation calculations with respect to system
renewal due to failure repairs and major repairs, the expected
cost per unit time can be further calculated according to the
renewal reward theorem [33], as given by

E(C3) =
E(C)
E(L)

(12)

where C3 denotes the cost per unit time and C and L are the
total cost and cycle length respectively. The expectation of
total cycle length L is given by

E(L) = E(L1;N ,T )+ E(L2;N ,T ) (13)

The expectation of total cost C is given by

E(C) = E(C1;N ,T )+ E(C2;N ,T ) (14)

F. EXPECTED SYSTEM AVAILABILITY
System availability is calculated by the ratio between mean
up time (MUT) and the sum of the MUT and mean down
time (MDT) [34]. By denoting the length of the MUT as LU ,
the expected system availability is written as

E(A) =
E(LU )
E(L)

(15)

where E(LU ) is given by

E(LU ) = E(LU | renewal of failure repairs

∪ renewal of major repairs)

=

∞∑
i=1

i∑
j=1

{[
∫ iNT

(i−1)NT

∫ jNT

(j−1)NT
xf1(x1)f2(x − x1)

× 1(min(R(jNT ), . . . ,R(i− 1)NT )≥R0)dx1dx]

+

∫ jNT

(j−1)NT
(iNT )f1(x1)[1− F2(iNT − x1)]dx1

× 1(min(R(jNT ), . . . ,

×R(i− 1)NT ) ≥ R0)1(R(iNT ) < R0)} (16)

G. AVAILABILITY-COST HYBRID FACTOR
In practical applications, a dual-attribute criterion that consid-
ers effects by both periodic minor inspection intervals and the
number N ∗ is certainly more available than single-attribute
criteria of CBM optimizations for a single-unit system during
a two-stage failure process. Therefore, hybrid factor V, which
combines the contributions of both cost and availability,
is employed simultaneously to determine theminor andmajor
inspection intervals [35], as given by

V = w1
C3
C∗3
− (1− w1)

A
A∗

(17)

where A∗ is the maximum system availability, C∗3 is the
minimum cost, and w1 is the availability-cost weight factor
that reflects the preferences of the decision maker. Then,
the optimized periodic minor inspection interval T ∗ and num-
ber N ∗ can be determined by the minimization of hybrid
evolution factor V with preassigned w1.

III. NUMERICAL CASE STUDY
To show the applicability of the proposed CBM strategy,
a two-stage production process was simulated for a single-
unit system based on the parameters provided in Wang’s
study [26]. Among these input parameters, X1 and X2 follow
two different Weibull distributions, X1s and X2s follow two
exponential distributions, and the weight factor w1 is set
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TABLE 1. Distributions for X1 and X2.

TABLE 2. Parameters for the CBM strategy and costs.

as 0.65. The relevant parameters of these distributions are
presented in Table 1. The other parameters related to the CBM
strategy and costs are shown in Table 2.

The proposed CBM strategy was carried out with a desktop
PC equipped with an Intel i7 8565U CPU and 8GB memory.
It approximately takes 228.4 seconds to complete the opti-
mization of CBM. Optimization of CBM for the numerical
case is implemented through MATLAB scripts with the fol-
lowing steps.

Step 1: Assign initial values for all variables in Eq. (1) to
Eq. (14) by using the parameters in Table 1 and
Table 2.

Step 2: Calculate cycle lengths L1 and L2 according to
Eq. (2) and Eq. (9), the probability of exceeding the
pre-determined threshold and the survival probabil-
ity of the single-unit system to determine whether
the system is renewed by failure repairs or major
repairs.

Step 3: Calculate the total costs according to system renewal
due to failure repairs and major repairs according to
Eq. (3) and Eq. (10) and determine the expected total
cost per unit time by using Eq. (12).

Step 4: Calculate E(LU ) by using Eq. (16) and further cal-
culate the expected system availability by using
Eq. (15).

Step 5: Calculate the maximum availability of the system A∗

and the minimum cost C∗3 to determine availability-
cost hybrid factor V. Then, the optimality of V (indi-
cated by V∗) is obtained from the optimized T and
N values (namely, T∗ and N ∗, respectively) for a
given w1.

By following the steps above, the expected cost per unit
time, system availability and availability-cost hybrid factor
are obtained and plotted in Figs. 6, 7 and 8, respectively.

As shown in Fig. 6, the minimum expected cost per unit
time is observed for the situation where N = 5 and T = 2.

FIGURE 6. Three-dimensional plot of the expected cost per unit time.

FIGURE 7. Three-dimensional plot of the expected system availability.

A major inspection should be performed after every 5 minor
inspections, with a minor inspection time interval of 2.

Likewise, according to the calculation results shown
in Fig. 7, the minimum expected system availability is
observed for the situation where N = 10 and T = 50. In this
case, a major inspection should be performed after every
10 minor inspections, with a minor inspection time interval
of 50. The selection of either ‘‘cost per unit time’’ or ‘‘avail-
ability’’ as the only decision objective will result in com-
pletely different optimized CBM strategies for the single-unit
system.

To reach a trade-off solution, an availability-cost hybrid
factor is created by Eq. (17), where w1 = 0.65 is selected
as the decision objective. According to the calculation results
shown in Fig. 8, the minimum expected hybrid factor is
observed for the situation where N = 4 and T = 2. This
optimized CBM strategy is quite similar to the one obtained
from Fig. 6 where the ‘‘cost per unit time’’ is considered as
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FIGURE 8. Three-dimensional plot of the expected availability-cost hybrid
factor.

TABLE 3. Sensitivity analysis of costs.

the only decision objective. This implies that ‘‘cost per unit
time’’ plays an important role in the optimization of the CBM
strategy, especially when the availability-cost weight factor is
chosen to be 0.65.

The influence of the predetermined cost parameters on cost
optimization is first discussed by performing a sensitivity
analysis by changing the average cost of a failure repair Crf ,
which is apparently larger than other costs. Table 3 shows the
changing optimal CBM strategies in terms of Crf . We chose
8 different values in a board range spanning from 400 to 3200.
According to Table 3, the optimum C∗3 and N ∗ values show
a positive relationship and negative relationship with Crf ,
respectively. This is because the Crf parameter is directly
related to failure loss. A high failure loss will result in a high
cost value per unit time (i.e., an increase in C∗3) and short
period of major repair (i.e., a decrease in N ∗).
Furthermore, the effects of the availability-cost weight fac-

tor on the optimized CBM strategy are investigated through
a sensitivity analysis by increasi ng the w1 parameter from
0 to 1 with an increment of 0.2. With reference w1 of 0.65,
the sensitivity factor 1V

w1
calculated by Eq. (18) is employed

to quantitatively characterize the sensitivity of the w1 param-
eter according to Ref. [36]. A high absolute value of 1V

w1
indicates that the V ∗ calculation is sensitive to the input w1
parameter.

1V
w1
=
V ∗w1
− V ∗w1=0.65

V ∗w1=0.65
(18)

where V ∗w1
and V ∗w1=0.65

are the optimum V value for
an arbitrary given w1 and w1 = 0.65, respectively.

Likewise, sensitivity factors 1C3
w1 and 1A

w1
for the total cost

per unit time and availability of the single-unit system can be
obtained in the same way, as shown in Eq. (19) and Eq. (20),
respectively.

1C
w1
=
C∗w1
− C∗w1=0.65

C∗w1=0.65
(19)

1A
w1
=
A∗w1
− A∗w1=0.65

A∗w1=0.65
(20)

whereC∗w1
andC∗w1=0.65

are theminimum cost for an arbitrary
given w1 and w1 = 0.65, respectively, and A∗w1

and A∗w1=0.65
are the maximum system availability values for an arbitrary
given w1 and w1 = 0.65, respectively.
Table 4 compares the N ∗, T ∗,1V

w1
,1

C3
w1 and 1A

w1
param-

eters calculated for all w1 parameters spanning from 0 to 1.
Both N ∗ and T ∗ parameters are significantly reduced with
increasing w1 from 0.2 to 0.4, probably because of the ever-
increasing concerns of cost instead of system availability.
In addition, note that w1 = 0.6 also depicts a clear threshold
line for the1V

w1
,1

C3
w1 and1A

w1
calculations. In circumstances

where w1 is no less than 0.6, the ‘‘availability-cost hybrid’’,
‘‘cost per unit time’’ and ‘‘availability’’ factors are not very
sensitive to the selection of w1.

TABLE 4. Sensitivity analysis of weighting factors.

Table 4 shows that the 1A
w1

parameter reaches its highest
value of 17.21% when w1 = 0 and w1 = 0.2, both of
which indicate that the availability of the system achieves its
maximum. The corresponding values of 1C3

w1 also achieve
the highest values, which indicates that the expected costs
per unit time are the highest. Then, continuously increasing

w1 results in an obvious reduction in both 1C3
w1 and 1A

w1
,

which reflects a significant decrease in both the expected cost
per unit time and the availability of the system. Therefore,
the expected cost per unit time achieves its minimum when
w1 = 1. In the case when w1 = 1, hybrid factor V is only
related to C3. As w1 decreases from 1 to 0, cost factor C3
becomes less important while availability factor A becomes
more significant for hybrid factor V . In reality, the determina-
tion of value w1 depends on the preferences of manufacturing
firms. A proper value of w1 will be decided by the decision
makers when the decision objectives of a manufacturing firm
focus on both cost and system availability.

IV. CONCLUSION
This paper proposes a complete CBM strategy for a single-
unit system during a two-stage (i.e., the normal stage and
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delay-time stage) process. In both stages, two states, namely,
the in-control state when production is in a good state and
the out-of-control state when low product quality and produc-
tivity result, are addressed successively for the description of
product quality. The proposed CBM strategy is composed of a
combination of minor inspections and condition-based major
inspections. Once an out-of-control state is detected by the
minor inspection, a minor repair is carried out immediately to
bring the system back to its in-control state. A major inspec-
tion is conducted after every N minor inspections to calculate
the system reliability. When the system reliability reaches
threshold R0, a major repair is carried out with unit replace-
ment. In our work, the system profit is calculated by fully
considering the possible scenarios in the minor and major
inspections. A hybrid evolution factor that synthetically com-
bines system ‘‘availability’’ with ‘‘cost per unit time’’ is
employed for profit optimization with the proposed CBM
strategy. The two key parameters, which are the total number
of minor inspections between two adjacent major inspec-
tions (i.e., N ) and the time interval between two adjacent
minor inspections (i.e., T ) in the PM policy are optimized.
By assumingweight factorw1 to be 0.65, the optimizedN and
T values are 4 and 2, respectively. In the end, the sensitivity
study was performed on the availability-cost hybrid, cost per
unit time and availability factors with an increase in w1. w1
becomes less sensitive when it exceeds 0.6.

APPENDIX
NOTATIONS
X1 the random time to the initial major defect with

probability distribution function f1(x1) and
cumulative distribution function F1(x1)=P(X1<x)

X2 the random time from the initial major defect to
failure with probability distribution function f2(x2)
and cumulative distribution function
F2(x2) = P(X2 < x)

X1s the random time to the shift to the out-of-control
state from the beginning of the in-control state
when the process is in X1 with probability
distribution function f1s(x1s) and cumulative
distribution function F1s(x1s) = P(X1s < x)

X2s the random time to the shift to the out-of-control
state from the beginning of the in-control state
when the process is in X2 with probability
distribution function f2s(x2s) and cumulative
distribution function F2s(x2s) = P(X2s < x)

R0 the predetermined threshold of reliability over
which the system needs to be repaired

T decision variable; the time interval between two
neighboring minor inspections

N decision variable; the condition-based inspection
(major inspection) performed after every N minor
inspections

Td the predesigned operational lifetime of the system
Trf time for a failure repair
Trp time for a major repair

Ci average cost of a minor inspection
Cc average cost of the system condition

monitoring per time
Cmr average cost of a minor repair
Crf average cost of a failure repair
Crp average cost of PM replacement
Pin profit during an in-control state process per

unit time
Pout profit during an out-of-control state process per

unit time
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