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ABSTRACT Flatness of cold rolled strip is an extremely important indicator of quality, and flatness control is
the key technology of the modern high-accuracy rolling mill. The establishment of an efficient and accurate
flatness prediction model is conducive to improving the flatness accuracy and realizing the effective control
of flatness. Inspired by the error minimization principle, error minimized extreme learning machine with
two hidden layers (EM-TELM) used to automatically determine the optimum hidden nodes is proposed in
the paper, which is applied to establish the flatness prediction model of cold rolled strip. EM-TELM uses
the block matrices to solve the output matrix of the second hidden layer. EM-TELM randomly adds one or
a group of hidden nodes to the current network every time. During the increasing process of the network
structure, the weights matrix connecting the hidden layer and the output layer are updated incrementally.
Since EM-TELM is a no analytic method, it can be used in a kind of prediction problem for complex and
difficult modeling systems. The experimental results indicated that the accuracy of EM-TELM is higher
than that of EM-ELM, and EM-TELM reduces the computational complexity and training time compared
to TELM which recalculates the parameters between different hidden layers when the network structure
changes.

INDEX TERMS Block matrices, cold rolled strip, error minimization, extreme learning machine, flatness
prediction, two-hidden-layer.

I. INTRODUCTION
As the most important steel product in the world, Plate and
strip are applied to the most extensive rolling products in the
national economic departments and are used in all aspects
of the national economy. Such as food packaging, house-
hold appliances, precision instruments, automobile manufac-
turing, aviation, shipbuilding, civil construction, and other
industries. It plays an important role in the modernization
of national defense and the construction of the national
economy. Its production level is an important indicator to
measure the development level of a country’s steel industry.
With the rapid development of the economies of the world,
the demand for the strip is increasing. At the same time,
the rapid development of the iron and steel industry has led to
more and more fierce competition in the strip market. Driven
by the market, the requirements of customers on the quality,
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type, and performance of strip materials have been gradually
improved. To meet the requirements of users, improve the
competitiveness of enterprises, transform and improve the
equipment and technology of each strip rolling production
line, and increase the investment in new technology and new
process has become an important task. Therefore, the strip
rolling technology canmove toward a rapid development path
of high precision, high speed, and automation [1]–[3].

Flatness [4], [5] refers to the degree of buckling of the
plate belt, including the dimension indexes of longitudinal
and transverse dimensions of the plate belt. Transverse aspect
refers to the section flatness (thickness distribution in the
width direction of the plate), that is, the convexity of the plate.
In the longitudinal direction, it refers to the flatness of the
length of the strip, that is, the straightness, commonly known
as the wave shape. Flatness control is the core part of the strip
cold rolling production process. In the process of strip rolling
deformation, the setting and calculation of flatness are closely
related to rolling force and roll bending force. By studying the
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factors influencing the shape of the exit plate and using the
existing data to establish a model, the shape of the exit plate
can be effectively controlled. With the progressing of com-
puter application technology, the strip production process has
been equipped with a complete sensor measurement device,
which can obtain a large amount of process data online, such
as bending force, rolling force, tension, and other measured
values. These process data contain useful information about
the running state of the production process, which can be
used to predict the quality of the final flatness. However,
due to the lack of effective data processing and information
extraction methods, the traditional flatness prediction meth-
ods do not effectively use a large amount of readily available
measurement data. In recent years, big data and machine
learning technologies have emerged, and in many fields such
as agriculture, medicine, science, and industry [6], there are
many cases in which neural networks are modeled by a large
amount of data, and both have achieved high accuracy. The
neural network can also be introduced into the steel industry,
and the existing data can be used for modeling to achieve the
prediction effect, which is conducive to decision-making.

Therefore, the paper combines a large number of flatness
data in the cold rolling process with neural network tech-
nology, and explores the influence of the variation of the
bending force of the work rolls and the intermediate rolls
on the final exit flatness during the cold rolling process,
and establishes a prediction model to effectively predict the
flatness. The neural network model established by a large
amount of data can hide the whole process in the hidden unit
in the model. The established neural network model can learn
autonomously through data, learn many hidden and complex
knowledge and patterns. At the same time, the value of the
large amount of data accumulated on the production line is
utilized, and data is used to drive production. Do a good job
of forecasting before the start of the production process, and
adjust the value of each control means in advance according
to the target flatness. That is, by controlling the input and
changing the input, the output flatness can be close to or reach
the target flatness, which also reduces the adjustment in the
production process and saves costs. In recent years, many
scholars have established a flatness prediction model based
on intelligent methods. However, in the actual test process,
it is found that the traditional back propagation (BP) network
flatness prediction model has a long training process and is
easy to fall into the local minimum problem. The radial basis
function (RBF) flatness prediction model often fails to work
when the data is insufficient.

Extreme learning machine (ELM) [7] is proposed by
Huang et al. for a single hidden layer feed forward neural
network to overcome the disadvantages of gradient-based
algorithms. ELM randomly generates the connection weights
matrix between the input layer and the hidden layer and
the bias vector of the hidden layer, and no adjustment is
needed in the training process [8], [9]. ELM has been favored
by many scholars because of its fast learning speed, good
generalization performance, and other advantages [10]–[12],

and it has been applied to the rolling field in recent years.
Wang et al. [13] applied it to the rolling force prediction of
hot rolled sheets, and the experimental results show that ELM
has a significant improvement on the modeling accuracy and
the generalization ability of the model compared with the tra-
ditional modeling methods such as BP and RBF. Li et al. [14]
applied ELM to flatness prediction, and the results show that
ELM has higher prediction accuracy regardless of sample
size and also solves the problem that traditional artificial
neural network is easy to fall into a local optimal solution.
Although ELM has shown its superior performance in many
aspects, how to determine the number of hidden nodes and
further improve the prediction accuracy of themodel is still an
urgent problem to be solved. Feng et al. [15] proposed error
minimized extreme learning machine (EM-ELM) to dynam-
ically determine the number of hidden nodes, and update the
output weights incrementally. A large number of simulation
results show that the algorithm can reduce the computational
complexity of ELM. In order to further improve the predic-
tion accuracy of the model, Qu et al. [16] proposed a two-
hidden-layer extreme learning machine (TELM) and Xiao
et al. [17] proposed a multiple hidden layers extreme learning
machine (MELM). The experimental results show that the
average accuracy and generalization performance of TELM
and MELM are greatly improved compared with ELM.

Based on the above problems, the paper will establish a
cold rolling flatness prediction model based on error min-
imized extreme learning machine with two hidden layers
(EM-TELM). EM-TELM uses the block matrices to solve the
output matrix of the second hidden layer, which is different
from the way that TELM uses the generalized inverse to solve
the output matrix of the second hidden layer. Then, EM-
TELM adds a hidden layer than EM-ELM, which improves
calculation accuracy. EM-TELM adds hidden layer nodes
one by one or group by group while keeping the structural
parameters of the original hidden layer nodes unchanged,
and updates the connection weights between the first hidden
layer and the second hidden layer and the bias vector of
the second hidden layer incrementally. Finally, EM-TELM is
validated by the strip steel production data of the cold rolling
mill. The experimental results show that EM-TELM has a
higher accuracy of flatness prediction than EM-ELM, and
EM-TELM reduces computational complexity and reduces
training time compared with TELM.

II. BRIEF REVIEW OF ELM AND TELM
A. ELM
Extreme learning machine (ELM) randomly generates the
weights between the input layer and the hidden layer and
the bias of the hidden nodes. And ELM only needs to set
the number of nodes in the hidden layer during the training
process to obtain the unique optimal solution. The advantage
of ELM is that it improves the generalization performance
of the network and avoids time-consuming iterative training
steps and Local minimum.
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Suppose there are N independent samples (xi, ti)(i =
1, 2, . . . ,N ) consisting of the input X = [x1, x2, . . . , xN ]T

and the expected output T = [t1, t2, . . . , tN ]T , where xi =
[xi1, xi2, . . . , xin]T ∈ Rn, ti = [ti1, ti2, . . . , tim]T ∈ Rm. And
transpose of vector or matrix represented by superscript T in
the paper. Assuming that the number of nodes in the hidden
layer is L and the activation function of the hidden layer is
g(x). And ELM randomly selects the weight matrix W =

[W1,W2, . . . ,WL]T ∈ RL×n connecting the input layer and
the hidden layer and the bias vector B = [b1, b2, . . . , bL]T ∈
RL×N of the hidden nodes. After determiningW and B, their
values will not be changed in the training stage. The next steps
make the nonlinear system to be transformed into the linear
system whose mathematical description is

Hβ = T (1)

where β = [β1, β2, . . . , βL]T ∈ RL×m is the weights matrix
connecting the hidden layer and the output layer and its
vector element βj = [βj1, βj2, . . . , βjm]T (j = 1, 2, . . . ,L)
represents the connection weights between the jth hidden
node and themth output nodes, andH = g(WX+B) ∈ RN×L

is the output matrix of the hidden layer and its expression is

H (w1, . . . ,wL , b1, . . . , bL , x1, . . . , xN )

=

 g(w1, b1, x1) · · · g(wL , bL , x1)
... · · ·

...

g(w1, b1, xN ) · · · g(wL , bL , xN )


N×L

(2)

where hij = g(Wjxi + bj)(i = 1, 2, · · · ,N , j = 1, 2, · · · ,L)
represents the output of the jth node corresponding to xi,
Wj = [Wj1,Wj2, · · · ,Wjn]T represents the connection weight
between nth input node and jth hidden node, bj is the bias
of jth hidden node, and Wjxi represents the inner product
between Wj and xi.
Then ELM uses the least square method to obtain the

output matrix β.

β = H+T (3)

where H+ is the Moore-Penrose generalized inverse [18] of
the matrix H , which can be calculated by the orthogonal
projection method. In other words H+ = (HTH )−1HT if
HTH is nonsingular, and H+ = HT (HHT )−1 if HHT is
nonsingular.

B. TELM
Tamura and Tateishi [19] pointed out that the advantage
of the two-hidden-layer feedforward networks (TLFNs) is
that fewer hidden nodes can be used to achieve the desired
performance, and it can achieve arbitrarily small errors by
using TLFNs with (N/2 + 3) hidden layer nodes to learn N
samples. Huang [20] further proved that the number of nodes
in the hidden layer can be 2

√
(m+ 3)N . Therefore, Qu et al.

proposed TELM [16] to bring superiority of double-layer
structure into conventional ELM algorithm. The work flow
chart and the network structure of TELM are shown in Fig-
ures 1 to 2 respectively.

FIGURE 1. The work flow chart of TELM. The parameters of the first
hidden layer are B and W and the output is H , and the parameters of
the second hidden layer are B1 and WH and the output is H1. The actual
output of TELM is f (x).

FIGURE 2. The network structure of TELM. The actual output of TELM is
Y = f (x) and the actual output of the second hidden layer is H2 = H2.
TELM contains two hidden layers with the same activation function (g(x))
and the same number of nodes (L).

Suppose there are N samples (xi, ti). First, the weights
matrix connecting the input layer and the first hidden layer
and the bias vector of the first hidden layer are initialized by
using the randomly generated values. Then the two hidden
layers are regarded as one hidden layer, and the connection
matrix β between the second hidden layer and the output layer
is calculated according to formula (3). In this way, we can
obtain the expected output of the second hidden layer as
follows:

H∗1 = Tβ+ (4)

where β+ is the Moore-Penrose generalized inverse of the
matrix β, the definition and its calculation method of β+ are
the same as that of H+. In other words β+ = (βTβ)−1βT

if βTβ is nonsingular, and β+ = βT (ββT )−1 if ββT is
nonsingular.

The theoretical output of the second hidden layer is

H1 = g(WHH + B1) (5)

where WH is the connection matrix during the first and
second hidden layers, B1 is the bias vector of the second
hidden layer, and H is the output of the first hidden layer.

Let WHE = [B1 WH ],

WHE = g−1(H∗1 )H
+

E (6)

whereH+E is the Moore-Penrose generalized inverse ofHE =
[ 1 H ]T , and g−1(x) is the inverse function of g(x). Therefore,
the paper also get the actual output of the second hidden layer.

H2 = g(WHEHE ) (7)
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Finally, the output weight of the network is updated and

βnew = H+2 T (8)

where H+2 is the Moore-Penrose generalized inverse of H2.
Then the output of TELM is

f (x) = H2βnew (9)

III. PROPOSED LEARNING ALGORITHM
The number of nodes in the hidden layer of ELM has always
been an important research issue. It has been proved in [15]
and [21] that the prediction error of ELM will be smaller
and smaller as the number of hidden nodes increases. And
EM-ELM [15] dynamically determines the network structure
based on the principle of error minimization and allows the
nodes of the hidden layer to be added to the network one by
one or a group of groups. EM-ELM solves the generalized
inverse in the calculation process by block matrices. There-
fore, the paper proposes error minimized extreme learning
machine with two hidden layers (EM-TELM) after integrat-
ing the advantages of EM-ELM and TELM. And EM-TELM
uses the block matrices method to determine the parameter of
the second hidden layer.

A. CONVERGENCE ANALYSIS OF TELM
Before introducing EM-TELM formally, let’s briefly intro-
duce a lemma to prove the convergence of TELM. The deriva-
tion process of the convergence of TELM is similar to that of
the convergence of ELM.
Lemma 1(Convergence Lemma): A TELM network is

given. Let H1,1 = H (a1, · · · , aL0 , b1, · · · , bL0 , x1, · · · , xN )
and H1,2 denote the output matrix of the first hidden layer
and the output matrix of the second hidden layer, respec-
tively. Each hidden layer of TELM contains L0 nodes
{(ai, bi)}

L0
i=1. If each hidden layer of TELM adds L1 − L0

new nodes {(ai, bi)}
L0
i=L0+1

, the new output matrix of the
first hidden layer and the second hidden layer becomes
H2,1 = H (a1, · · · , aL1 , b1, · · · , bL1 , x1, · · · , xN ) and H2,2,
separately. Then

E(H2,2) = min
∥∥H2,2β2,2 − T

∥∥ ≤ E(H1,2)

= min
∥∥H1,2β1,2 − T

∥∥ .
Proof: Since H1,1 and H2,1 are the output of the hidden

layer before and after adding δL0 = L1 − L0 new nodes
respectively and HE1 = [ 1 H1,1 ]T ,

HE2= [ 1 H2,1 ]T = [ 1 H1,1 δH1,1 ]T = [HT
E1 δH1,1 ]T

(10)

where the output corresponding to the new node in the first
hidden layer is

δH1,1 =

 g(aL0+1, bL0+1, x1) · · · g(aL1 , bL1 , x1)
... · · ·

...

g(aL0+1, bL0+1, xN ) · · · g(aL1 , bL1 , xN )


(11)

Since β2,2 is the least square solution of min
∥∥H2,2β − T

∥∥,
according to formula (7),

E(H1,2) = min
∥∥H1,2β1,2 − T

∥∥
= min

∥∥g(WHE1HE1)β1,2 − T
∥∥

= min
∥∥∥g(g−1(Tβ+1,1)H+E1HE1)β1,2 − T∥∥∥

= min
∥∥∥g(g−1(Tβ+1,1)(HT

E1HE1)
−1HT

E1HE1)

×β1,2 − T
∥∥∥

= min
∥∥∥T (βT1,1β1,1)−1βT1,1β1,2 − T∥∥∥

(12)

E(H2,2) = min
∥∥H2,2β2,2 − T

∥∥
= min

∥∥g(WHE2H1E2)β2,2 − T
∥∥

= min
∥∥∥g(g−1(Tβ+1,2)H+E2HE2)β2,2 − T∥∥∥

= min

∥∥∥∥g(g−1(Tβ+1,2)([HT
E1 δH1,1 ]

[
HE1
δHT

1,1

]
)−1

× [HT
E1 δH1,1 ]

[
HE1
δHT

1,1

]
)β2,2 − T

∥∥∥∥
≤ min

∥∥∥∥g(g−1(T ([ βT1,1 0T ]
[
β1,1
0

]
)−1[ βT1,1 0T ]))

×

[
β1,2
0

]
− T

∥∥∥∥
= min

∥∥∥∥T [ (βT1,1β1,1)−1 βT1,1 0
] [ β1,2

0

]
− T

∥∥∥∥
= min

∥∥∥T (βT1,1β1,1)−1βT1,1β1,2 − T∥∥∥
= min

∥∥H1,2β1,2 − T
∥∥

= E(H1,2) (13)

B. EM-ELM
The paper first introduces EM-ELM [15] and then extends
to EM-TELM. First, the paper gives the initial number
L0 and the maximum number Lmax of hidden nodes in
each hidden layer, the expected prediction error is ε, and
H1 = H (w1, · · · ,wL0 , b1, · · · , bL0 , x1, · · · , xN ) is the
output of the hidden layer with L0 hidden nodes. Sup-
pose the paper adds δL0 = L1 − L0 hidden nodes
{(wi, bi)}

L1
i=L0+1

to the network, a new output is H2 =

H (w1, · · · ,wL1 , b1, · · · , bL1 , x1, · · · , xN ). According to for-
mula (2), H2 = [H1 δH1 ], where the output corresponding
to the new node in the hidden layer is

δH1=

g(wL0+1, bL0+1, x1) · · · g(wL1 , bL1 , x1)... · · ·
...

g(wL0+1, bL0+1, xN ) · · · g(wL1 , bL1 , xN )


N×(L1−L0)

(14)

Let E(H ) = min ‖Hβ − T‖, and E(H ) is the prediction
error of the network. If E(H1) = min ‖H1β1 − T‖ < ε,
it is no need to add hidden nodes to the network, and the
training step is completed. According to the introduction of
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the extreme learning machine,

H+2 = (HT
2 H2)−1HT

2

= (
[
HT
1

δHT
1

]
[H1 δH1 ])−1

[
HT
1

δHT
1

]
(15)

Let

A =
[
A11 A12
A21 A22

]
= (

[
HT
1

δHT
1

]
[H1 δH1 ])−1 (16)

Then

H+2 =
[
U
D

]
=

[
A11HT

1 + A12δH
T
1

A21HT
1 + A22δH

T
1

]
(17)

As described in [5], H1 is a full rank matrix when N ≥
L1. Then the Schur complement M of HT

1 H1 is necessarily
invertible. And M = δHT

1 δH1 − δHT
1 H1(HT

1 H1)−1HT
1 δH1.

The matrix A is invertible when HT
1 H1 is nonsingular matrix.

According to the method for computing the inverses of 2× 2
block matrices,

A11= (HT
1 H1)−1 + (HT

1 H1)−1HT
1 δH1R−1

δHT
1 H1(HT

1 H1)−1

A12=−(HT
1 H1)−1HT

1 δH1R−1

A21=−R−1δH1H1(HT
1 H1)−1

A22=R−1

(18)

where R = δHT
1 δH1 − δHT

1 H1(HT
1 H1)−1HT

1 δH
T
1 .

Since H+1 = (HT
1 H1)−1HT

1 ,R = δHT
1 δH1 −

δHT
1 H1H

+

1 δH
T
1 . Then the paper calculates D from formu-

las (17) and (18).

D = R−1δHT
1 − R

−1δHT
1 H1H

+

1

= (δHT
1 δH1 − δHT

1 H1H
+

1 δH1)−1δHT
1 (I − H1H

+

1 )

= (δHT
1 (I − H1H

+

1 )δH1)−1δHT
1 (I − H1H

+

1 ) (19)

Because I−H1H
+

1 has the characteristics of symmetry and
orthogonal projection,

D = ((I − H1H
+

1 )δH1)+ (20)

In the same way,

U = H+1 − H
+

1 δH
T
1 D (21)

So far, theH2 of EM-ELMcan be obtained. Then EM-ELM
solves the parameter β in the same way as ELM.

C. EM-TELM
EM-ELM can be transformed into EM-TELM by adding a
new hidden layer. And EM-TELM uses the block matrices to
solve the output matrix of the second hidden layer, which is
similar to the process of EM-ELM solving the output matrix
of the hidden layer. Unlike TELM using generalized inverse
to solve the output matrix of the hidden layer, EM-TELM can
solve this problem by using the block matrices. In addition,
EM-TELM gradually increases the nodes of the hidden layer,
and the other settings are the same as TELM. Specifically,
EM-TELM uses the error minimized theory and successively

increases the number of nodes in the hidden layer, which can
make the error between the actual output and the expected
output of the model smaller and smaller. And EM-TELM
uses the block matrices to replace the generalized inverse but
does not include the generalized inverse of β, which reduces
the computational complexity and improves the operating
efficiency of the model. It is worth noting that the param-
eters between the original nodes are unchanged during the
process of adding nodes, which reduces the computational
complexity. All in all, the biggest feature of EM-TELM is
that it uses the block matrices to solve the output matrix of
the second hidden layer, and the network updates faster and
the computational complexity is low after adding hidden layer
nodes.
The parameter settings of EM-TELM and EM-ELM in Part

B are the same. And the derivation process of EM-TELM is
the same as TELM, but the difference lies in the way of solv-
ing the output matrix of the hidden layer. When EM-TELM
has a single hidden layer, the derivation process of EM-TELM
is the same as EM-ELM. After finding the output H2 of the
first hidden layer, then

β1,1 = H+2 T (22)

Then, the expected output of the second hidden layer is
H∗1,2 = Tβ+1,1. According to formula (5), the actual output of
the second hidden layer is H1,2 = g(WHH2+B1). According
to formula (6), the parameters of the second hidden layer are
WHE2 = g−1(H∗1,2)H

+

E1, where

HE1= [ 1 H2 ]T = [ 1 H1 δH1 ]T = [HT
E0 δH1 ]T =RT

(23)

According to the introduction of the extreme learning
machine,

R+ = (RTR)−1RT (24)

Let

B =
[
B11 B12
B21 B22

]
= (

[
HE0
δHT

1

]
[HT

E0 δH1 ])−1 (25)

Then the paper uses the block matrices method to obtain

R+ =
[
U1
D1

]
=

[
(HT

E0)
+(I − δH1D1)

((I − HT
E0(H

T
E0)
+)δH1)+

]
(26)

Then

HT
E1 = [UT

1 DT1 ] (27)

Therefore, WHE2 and H1,2 can be obtained, and βnew can
be obtained by formulas (8) and (9).
The specific steps of the proposed EM-TELM algorithm

are as follows.
1) The parameters of the first hidden layer in EM-TELM

with 2L0 hidden nodes are randomly initialized and each
hidden layer has L0 hidden nodes. And L0 is a small positive
integer given by a person. At the same time, let k = 0.
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2) The two hidden layers are regarded as one hidden layer,
and the connection weight matrix β between the second hid-
den layer and the output layer is obtained from formula (3).

3) The connection weight and bias between the second
hidden layer and the first hidden layer can be obtained from
formulas (4) to (6).

4) The output matrix H2 of the second hidden layer is
calculated by formula (7), and the prediction error E(H2) =∥∥H2H

+

2 T − T
∥∥ of the model is calculated.

5) k = k + 1.
6) EM-TELM randomly initialize δLk−1 hidden nodes

newly added to the first hidden layer and both hidden layers
are added with δLk−1 hidden nodes. Thus the number of
nodes for each hidden layer in the existing network is Lk =
Lk−1 − δLk−1. Meanwhile, the output matrix of the first
hidden layer in the (k + 1)th iteration is Hk+1 = [Hk δHk ],
and the increment matrix δHk can be concretely expressed as

δHk=

 g(wLk−1 , bLk−1 , x1) · · · g(wLk , bLk , x1)
... · · ·

...

g(wLk−1 , bLk−1 , xN ) · · · g(wLk , bLk , xN )


N×δLk−1

(28)

7) The two hidden layers are regarded as one hidden layer.
According to formula (3), the output weight matrix between
the second hidden layer and the output layer are updated in a
fast recursive way as

Dk = ((I − HkH
+

k )δHk )+ (29a)

Uk = H+K (I − δHT
k Dk ) (29b)

βk+1 = H+k+1T =
[
Uk
Dk

]
T (29c)

8) According to formula (6), we can get the connection
weight matrix between the second hidden layer and the first
hidden layer and the bias vector of the second hidden layer
recursively, and

HT
E,k+1 = [ 1 Hk+1 ] =

[
1 Hk δHk

]
(30)

Let A = [ 1 Hk ], formula (30) can be simplified to

HT
E,k+1 = [A δHk ] (31)

So EM-TELM get H+E,k+1 in a recursive way

Dk,1 = ((I − AkA
+

k )δHk )
+ (32a)

Uk,1 = A+k (I − δH
T
k Dk ) (32b)

(HT
E,k+1)

+
=

[
Uk,1
Dk,1

]
(32c)

H+E,k+1 = [UT
k,1 DTk,1 ] (32d)

Then the connection matrix WHE,k containing the weights
matrix and bias vector between the first and second hidden
layers can be solved as

WHE,k = g−1(H∗1,k )H
+

E,k+1 (33)

where H∗1,k = H+k+1T .

9) The output matrix H2,k+1 of the second hidden layer is
calculated by formula (7), and then we can get the prediction
error E(H2,k+1) =

∥∥∥H2,k+1H
+

2,k+1T − T
∥∥∥ of the model.

10) If Lk < Lmax and E(H2,k+1) > ε, return to step 5.
Otherwise, the process of training is completed.

Among them, steps 1 to 4 belong to the initialization phase,
and steps 5 to 11 belong to the recursively growing phase.
As a special case, the hidden node is added to the existing
EM-TELM one by one, which is δL0 = δL1 = δL2 = · · · =
δLk = 1. And δHk is a vector and denotes as

δhk= [G(wLk−1 , bLk−1 , x1), · · · ,G(wLk−1 , bLk−1 , xN )]
T (34)

and the calculation formulas of Uk and Dk become

Dk =
δhTk (I − HkH

+

k )

δhTk (I − HkH
+

k )δhk
(35a)

Uk = H+k (I − δhkDk ) (35b)

According to the specific steps of EM-TELM, the pseudo-
code algorithm of EM-TELM can be obtained and shown
below.

Input: The input variable X , and the expected output T .
Output: The structure parameters and the performance
indicators of EM-TELM.

Set the structural parameters of EM-TELM as W ,
B,WH ,B1 and β respectively, the initial number of nodes
in the hidden layer is L0, the maximum number of nodes in
the hidden layer is Lmax, the expected error of EM-TELM
is ε, and k = 0.
The initialization phase:

When the number of nodes in the hidden layer of
EM-TELM is L0, formulas (3) to (7) are used to solve
the initial structural parameters of EM-TELM.

The recursively growing phase:
When Lk < Lmax and E(H2,k+1) > ε

k = k + 1;
EM-TELM adds δLk−1 new hidden layer node.
According to formula (29), the output Hk+1 of
the first hidden layer is calculated using the block
matrices.
According to formula (32), the output HE,k+1
of the first hidden layer is calculated using the
block matrices.
According to formula (33) and step 9, the predic
-tion error E(H2,k+1) =

∥∥∥H2,k+1H
+

2,k+1T − T
∥∥∥

of the model is calculated.
end

D. CONVERGENCE ANALYSIS OF EM-TELM
Knowing that TELM and EM-ELM have convergence [15],
the paper can give and prove that EM-TELM has con-
vergence. The derivation process of the convergence of

VOLUME 9, 2021 51489



J. Liu et al.: Flatness Prediction of Cold Rolled Strip Based on EM-TELM

EM-TELM is similar to that of the convergence of EM-ELM,
so the paper will not repeat the proof.
Theorem 1 (Convergence Theorem): For a given set of dis-

tinct samples ℘ = {(xi, ti)|xi ∈ Rn, ti ∈ Rm, i = 1, · · · ,N }
and a given arbitrary positive value ε, there exists a positive
integer k such that E(H2,k ) = min

∥∥H2,kβ2,k − t
∥∥ ≤ ε.

IV. PERFORMANCE VERIFICATION
A. EXPERIMENT OBJECT: 1740MM PRODUCTION LINE
In this section, we apply the proposed algorithm to the predic-
tion of flatness. The dataset comes from the actual production
data collected by the 1740 mm production line of the steel
mill, and the exit flatness of the fifth frame of the strip steel
is predicted through the proposed algorithm.

The 1740mm production line was completed in 2015. The
pickling and rolling mill in the production line uses the com-
bined pickling and rollingmill. Plate rolls are installed behind
the first and fifth frames, and the fifth frame controls the
shape of the plates by means of roll bending, roll shifting, and
segment cooling. The specification of the rawmaterial is (1.5-
6.0)∗(700-1600)mm, and the specification of the finished
product is (0.2-2.5)∗(700-1600)mm.

The data used are the actual measurement results of sensors
of 5 racks in the first production sequence of the cold rolling
mill production line. By consulting relevant literature and
data, it was determined that the characteristic variables are
5 framework roll bending force, 5 frames intermediate roll
bending force, 5 frames rolling force, 5 frames incoming ten-
sion, outgoing tension, first frame front tension, curl tension,
and exit flatness measured in each sensor area of the first
frame, namely input variables, the exit flatness measured by
each sensor area of the fifth rack is taken as the target variable,
that is, the output variable.

The flatness refers to the degree of warpage of the strip and
is represented by elongation of each fiber [22].

λ =
1L
L

(36)

where λ represents the elongation of the longitudinal strip
in the direction of the length of the strip, 1L represents the
difference between the longitudinal strip and the reference
length in the direction of the length of the strip, and L which
is the average length of each longitudinal strip represents the
reference length of the strip.

Since the elongation calculated according to the for-
mula (36) is a small value, the unit I is used to characterize
the flatness in order to characterize the defects of the flatness
visually. And the relationship between I and λ is

I = 105λ = 105
1L
L

(37)

Therefore, the unit of the industrially measured export flat-
ness data is I . If the data value is greater than 0, the elongation
of the flatness of the measuring point is positive, indicating
that the elongation of the flatness is too long compared with
the reference length and the plate quality is loose. If the data
value is less than 0, the elongation of the flatness of the

measuring point is negative, indicating that the elongation of
the flatness is too short compared with the reference length
and the plate quality is tight. If the data value is close to 0,
it indicates that the flatness is close to the reference length
and the flatness is good.

In the 1740mm production line, 32 sets of sensors are
installed at the exit of the first rack tomeasure the exit flatness
which is divided into 32 areas. The 54 sets of sensors are
installed on the outlet of the fifth rack to measure the exit
flatness which is divided into 54 areas. Through the analysis
of the data, it can be seen that the bending force of the roll
does not change in a certain period, but the flatness continues
to change. Thus time is also an important factor influencing
the prediction of flatness. The sample points in the dataset
are generated sequentially every 0.08 seconds, so the time
column is added to the input variable to reflect the change of
the sample point time. Since the data used in the experiment
were taken from the period from 8:56 to 9:24 on a certain day,
the added time was listed as

time = (0.08, 0.16, · · · , 18762.24)T (38)

In summary, the number of input variables is 27 + 1 +
32 = 60, and the number of output variables is 54. Due to
the flatness data is only close to 0 and not equal to 0, the data
with the flatness of 0 is rejected. Therefore, the exit flatness
measured from area 1 to area 9 of the first rack and the fifth
rack should be excluded, which also applies to area 46 to area
54 of the fifth rack. The final number of output variables is
51, and the final number of output variables is 36.

At the same time, the paper selects 8840 groups as the
training set and the remaining 9614 groups as the test set.
Since the data unit difference between the rolling force and
the frame tension is large, it will affect the prediction accuracy
of the model. Therefore, we have standardized processing of
the input data with a mean of 0 and a variance of 1 before
modeling. And the experimental environment is MATLAB
2016b.

B. ANALYSIS OF ACCURACY
For parameter setting, the EM-TELM algorithm increases the
hidden nodes one by one, the activation function of the hidden
layer is Sigmoid, the starting node of the network is 5 (that is,
each hidden layer has 5 hidden nodes), the maximum number
of hidden nodes for each hidden layer is 30, and the expected
prediction error of the model is 1.0. The parameter setting of
EM-ELM is the same as EM-TELM.

The index for evaluating the accuracy of the model selects
the mean absolute deviation, which is the average for the
absolute values of the deviations between the individual
observation and the arithmetic mean. The mean absolute
deviation can avoid the problem of mutual cancellation of
errors and can accurately reflect the size of the actual forecast
error. Suppose the actual output of the model is Tsim, the
expected output of the model is Ttest , the number of samples
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TABLE 1. The mean absolute deviation of EM-ELM and EM-TELM with
5-30 hidden nodes.

is num, and the mean absolute deviation is Mean, then

Mean =
1
num

num∑
i=1

|Tsimi − Ttesti| (39)

The number of hidden layers of EM-TELM is more than
that of EM-ELM, but it is developed based on EM-ELM.
Through the comparison of the mean absolute deviation
(Table 1 and Figure 3), the accuracy of EM-TELM is better
than that of EM-ELM as the number of hidden layer nodes
increases. Therefore, the increase in the number of hidden
layers improves the accuracy of the model. It should be
pointed out that the mean absolute deviation used in the paper
refers to the mean absolute deviation of the test set.

C. ANALYSIS OF MODEL TRAINING TIME
The parameter settings of TELM in the section are the same
as EM-TELM.When the number of nodes in the hidden layer
of TELM changes, TELM needs to recalculate the structural
parameters of all nodes. When the number of nodes in the
hidden layer of EM-TELM increases, EM-TELM only needs
to solve the structural parameters of the newly added nodes by
using the block matrices, which helps to reduce the training
time. As shown in Table 2 and Figure 4, the training time of
EM-TELM has been much lower than that of TELM with the

FIGURE 3. The mean absolute deviation of EM-ELM and EM-TELM with
different hidden nodes. When the number of nodes in the hidden layer is
less than 16, the mean absolute deviation of EM-TELM is basically the
same as EM-ELM. When the number of nodes in the hidden layer is
greater than 16, the mean absolute deviation of EM-TELM is smaller than
that of EM-ELM.

TABLE 2. The comparison of training time (10−3s) of TELM and EM-TELM
with 5-30 hidden nodes.

increase of hidden layer nodes. Therefore, the training time
of EM-TELM is less than that of TELM because EM-TELM
uses the block matrices to replace the generalized inverse and
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FIGURE 4. The comparison of training time of TELM and EM-TELM with
different hidden nodes. The training time of EM-TELM has been much
lower than that of TELM with the increase of hidden layer nodes. And the
training time is gradually increasing with increase of hidden layer nodes.

FIGURE 5. Three-dimensional distribution map of the exit flatness based
on EM-TELM. The number of samples is 18454 and serves as the X-axis.
The number of sensor areas is 36 and is the output variable of the model,
as well as the Y-axis. The elongation is export flatness, the unit is I , and it
is used as the Z-axis.

does not change the structural parameters of existing nodes,
which also applies to the relationship between EM-ELM and
ELM.

D. THREE-DIMENSIONAL DISTRIBUTION MAP OF THE
EXIT FLATNESS BASED ON EM-TELM
From Figure 3, we can see that the accuracy of the flatness
prediction model based on EM-TELM is higher than that
based on EM-ELM. It can be seen from Figure 4 that as the
number of hidden nodes grows, it is much faster to update
the connection weight matrix and bias vector between hidden
layers by incremental learning than the traditional TELM
method. Finally, the established model is used to forecast the
data collected in the time period from 8:55:32 to 9:26:57, and
a three-dimensional distributionmap of the exit flatness based
on EM-TELM is obtained.

V. CONCLUSION
The paper proposes EM-TELM based on EM-ELM and
TELM, and EM-TELM uses the block matrices to solve
the output matrix of the second hidden layer. At the same
time, EM-TELM can allow hidden nodes to be added to the

network one by one or group by group. It can be seen from the
above experimental results that the accuracy of EM-TELM is
higher than that of EM-ELM. Compared with TELM which
recalculates the parameters between different hidden layers
based on the entire new output matrix of the first hidden layer
whenever the network architecture is changed, EM-TELM
reduces the computation complexity by only updating the
parameters between different hidden layers incrementally
each time.
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