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ABSTRACT Traditional Static Random-Access Memory (SRAM) yield estimation through Monte Carlo
analysis is an extremely time-consuming process since it runs millions of expensive transistor-level simula-
tions to get the yield results with the specified precision, especially for the large-scale circuits. In this paper,
we develop an efficient yield analysis framework by integrating our novel performance metamodel into a
state-of-art importance sampling method. The performance meta-model, named Spline-High Dimensional
Model Representation (SP-HDMR), is used to substitute the expensive transistor-level simulations in yield
estimation. The proposed SP-HDMR model provides a high computationally efficient formula expansion.
It uses spline functions as the kernels to describe the various relations between the process parameters and
SRAM read access delay. And an adaptive sampling method with sparsity analysis is developed to support
SP-HDMRmodeling. The experiments on the 40nm SRAM circuits validate the accuracy and the efficiency
of the proposed yield analysis framework based on our SP-HDMR model with 1.3X∼5X speedup over the
other state-of-art methods within 9% relative error.

INDEX TERMS Yield analysis, SRAM, importance sampling, SP-HDMR model.

I. INTRODUCTION
As semiconductor technology continues to advance, SRAM
cells designed with minimum sizes are more susceptible to
process fluctuations [1]. As a result, yield degeneration has
become a bottleneck for the robust SRAM design [1]–[4].
To guarantee a robust design, traditional corner-based anal-
ysis methods will lead to a too pessimistic result in the
worst-case corner and have to be verified on thousands of
corners if more process parameters are considered. Thus,
statistical methods are required to make yield estimations
reasonably realistic. An SRAM chip typically consists of
millions of SRAM cells. To make sure the acceptable chip
yield, the failure rate of each cell should be extremely low.
For a 1Kbits SRAM chip with 99% yield, the failure rate of
an SRAM cell should be lower than 10−5.
To estimate the failure rate of SRAM accurately, many

statistical methods have been proposed. Among them, Stan-
dard Monte Carlo (MC) analysis is the traditional method
and is remained as the gold standard. It samples the whole
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variation space directly and simulates each sample to get the
corresponding performance at the transistor-level. However,
it is extremely time-consuming to estimate SRAM failure
rates due to the huge number of simulations, e.g. it needs
over 107 simulations to get a 4-sigma yield result. Besides,
in an SRAM array, the dynamic functional failure, such as
read delay failures defined as read operations exceeding a
specified time in our work, depends on not only the state of
the weakest cell but also the state of other cells in the same
column [5]. Hence, we must consider the process variation
of all these cells to estimate the SRAM yield. As a result,
it brings a high dimensional variation space for SRAM yield
estimation and extremely expensive computational overhead
per simulation.

To accelerate the traditional MC method, many statistical
approaches have been proposed, which can be grouped into
two categories:

Importance Sampling (IS): The basic idea of IS is to find
a distorted sampling distribution to sample near the failure
region. The efficiency and accuracy of IS-based methods
heavily depend on the distorted sampling distribution. Most
of the approaches [6]–[17] have been proposed to construct
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such distribution by shifting the mean-vector of the orig-
inal distribution to the boundary or center of the failure
region. Recently, Shi and Liu et al. [6] proposed the Adaptive
Importance Sampling (AIS) which improves the tolerance of
poor initialization by searching the failure boundary dynam-
ically in resampling iterations through a developed unbi-
ased estimator. However, the methods above are infeasible
in high dimensional scenarios because the likelihood ratios
between the original sampling distribution and distort sam-
pling distribution have huge numerical instability [18], [24].
Wu and Gong et al. [9] proposed a kind of High Dimen-
sional Importance Sampling (HDIS) to address this issue
by constructing a new subset to calculate the failure rate
indirectly but it consumes a large number of transistor-level
simulations to converge. Unlike most digital circuits that can
be efficiently analyzed at the gate level, SRAM included
most analog/mixed-signal circuits must be simulated at the
transistor level. Although the IS methods can decrease the
number of simulations, the time for a single simulation is still
large.

Meta-Modeling: To further speed up the yield estimation,
many works [13], [16], [17], [31], [32] try to construct a
metamodel to take place of the expensive transistor-level
simulations by mapping the process variation into the circuit
performance metrics. The works [13], [16], and [13] lever-
age Polynomial Regression, Gaussian Process, Radial Basis
Network respectively, which show good accuracy in the low
dimensional scenario. However, thesemetamodels suffer two
challenges.

(I) High Dimensionality: Most of works [8], [10], [16]
only consider the effect of threshold voltage Vth0, while
other process variations also have significant effects on the
SRAM performance, such as offset voltage Voff 1 and electron
mobility u0. These parameters increase the unknown coeffi-
cients in the model construction. Fig. 1 shows the simulation
results of SRAM read access delay with different variations
near the failure region. 1000 samples are sorted by their
corresponding read performance. There is a huge difference
between the simulation results of samples that only consider
Vth0 and the ones that consider all parameters. Furthermore,
the number of transistor-level simulations required by the
meta models [13], [16], [17] grows exponentially with the
total number of process parameters to obtain acceptable accu-
racy. For example, there are total 4608 process parameters in a
256-depth 6T SRAM column only considering the variations
of Vth0,Voff , u0 for each transistor. Other state-of-art works,
such as [31] and [32], construct the computational efficient
meta models by utilizing the sparsity of the underly problem.
However, the result of yield estimation is very sensitive to the
accuracy of the metamodel, which still needs an extremely
large number of training sets to make the model converge.

(II) Discontinuity: For the SRAM yield estimation,
the model should guarantee the accuracy of the high sigma

1compensate threshold voltage shifting in BSIM model. Ids = uCox ∗
exp (Vgs−vth−voffn ) ∗ exp(Vds/n)

FIGURE 1. The effects of different variation on 0.6 V SRAM read access
delay.

region of SRAM performance. Thus, a wide range of process
parameter variation needs to be considered in the perfor-
mance meta-model modeling. However, the variations in a
certain direction (e.g. positively increased Voff ) will increase
the read access delay and even make the simulation failed
which means the simulator can’t read a value in these cases.
In Fig. 1, the 1000 samples are sorted by their read access
delay. And we found the simulation failed at about the
900th sample due to the too large process variation. Notice the
maximum continuous result is 5.8 × 10−8. And to facilitate
our statistics, we set the results of these simulation failed sam-
ples as a constant, such as ‘‘1×10−7’’ in Fig. 1. The constant
can be set to other values larger than themaximum continuous
result. This phenomenon comes from two reasons. First, the
reliability of bit cells is no longer guaranteed in low supply
voltages, resulting in extreme cases where the data stored in
cells cannot be read out correctly due to the large process
variation. Second, the transient analysis time is limited in the.
TRAN statement. It is unrealistic to set too large analysis
time in the expensive simulation. Oppositely, the time limit
is set to the Wordline enable time in the practical SRAM
design. The discontinuity region brings a huge challenge in
performance modeling. Most previous works [30]–[32] try to
construct a high dimensional model to approximate the circuit
performance metric by decomposing f (x) into a combination
of N orthonormal basis functions. Once the basic functions
are determined, the modeling problem is transferred to solve
the model coefficients. The termination of such algorithms
is to find a set of coefficients to minimize the loss function,
typically the Mean Square Error (MSE). However, these
regression-based models can only fit the continuous perfor-
mance because of their nature of approaching all training
samples to minimize MSE. It is infeasible to apply these
models in the high dimensional and discontinuous scenario
simultaneously in SRAM read performance modeling.

In this paper, a statistical SRAM performance meta model
is constructed and applied to the SRAM yield estimation. Our
paper contributions are summarized as follows:
• We developed a Spline-High Dimensional Model
Representation (SP-HDMR) to replace expensive
transistor-level simulations in yield estimation. The
model is based on Sobol’s theory [21] which can
decompose a high dimensional problem into multiple
low dimensional ones. Meanwhile, a strategy of adap-
tive modeling with sparsity analysis is developed to
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further minimize the number of unknown coefficients
of SP-HDMR in high dimensional scenarios. The spline
function is chosen as the kernel of SP-HDMR and
properly trained to address the discontinuity problem
caused by the large variations of process parameters
within limited analysis time.

• A yield analysis framework is developed by integrat-
ing our SP-HDMR model into a state-of-art importance
sampling method to replace expensive transistor-level
simulations. It aggressively improves the yield estima-
tion overhead compared to both the traditional MC
method and the pure IS-based method. The accuracy can
be guaranteed by the technique of re-simulation.

The rest of this paper is organized as follows. In Section II,
the rare event analysis problem and related works are revis-
ited. The yield analysis framework based on SP-HDMR is
introduced in Section III. Section IV provides details about
the construction of SP-HDMR. The accuracy and efficiency
of our method will be demonstrated by several experiments
in Section V. In Section 6, we will give our conclusion finally.

II. PRELIMINARIES
A. RARE EVENT ANALYSIS
For the n process variables: P = [p1, p2, . . . , pn], these
variables are modeled as a vector of independent Gaussian
variables: x = [x1, x2, . . . , xm] by the Principle Compo-
nent Analysis (PCA) [26] in commercial Process Design
Kit (PDK). For generalization, each variable is normalized
to standard Normal. And H (x) is joint probability density
function (PDF) of x. Let f (x) be the interest performance
metric which is measured through expensive transistor-level
simulation, such as SRAM read access delay in our work.

For the failure rate evaluation of SRAM, we denote S as
the tiny failure region. We define the circuit performance
doesn’t meet the specification when f (x) ∈ S. And we further
introduce indicator function I (x) to identify pass/fail of f (x):

I (x) =

{
0, if f (x) /∈ S
1, if f (x) ∈ S

(1)

Therefore, the probability can be calculated as:

Pfail = P(f (x) ∈ S) =
∫
I (x) · H (x)dx (2)

Unfortunately, formulation (2) is difficult to calculate ana-
lytically because we don’t know what distribution I (x) satis-
fies exactly. Traditionally, Monte Carlo is used to estimating
the failure probability by sampling from H (x) directly, and
the unbiased estimate of Pfail :

P̂fail= P̂(Y ∈ S)=
1
N

∑N

i=1
I (xi)

N→+∞
−→ P(f (x) ∈ S) (3)

B. HIGH DIMENSIONAL IMPORTANCE SAMPLING
For SRAM failure rate estimation, Y ∈ S is a rare event.
Standard MC needs hundred millions of expensive circuit
simulations to capture such a ‘‘rare event’’. AlthoughMC can
be run at paralleled mode, it is still a time-consuming process.

The IS methods are proposed to reduce the number of sim-
ulations by constructing a ‘‘distorted’’ PDF G(x) to generate
the samples near the failure region. And the failure probability
can be expressed as (5):

Pfail = P (f (x) ∈ S) =
∫
I (x) ·

H (x)
G (x)

· G (x) dx (4)

=

∫
I (x) · w(x) · G(x)dx (5)

where the w(x) denotes the likelihood ratio between original
PDF H (x) and the distort PDF G(x) which compensates for
the discrepancy between H (x) and G(x). And an unbiased
IS estimator P̂IS,fail can be calculated as (6):

P̂IS,fail = P̂IS (f (x) ∈ S)

=
1
M

∑M

k=1
w(xk )I (xk ) ———–—-−→

a.s.
M →+∞ P(f (x) ∈ S)

(6)

With a proper G(x), P̂IS,fail can be approximately equal to
MC results. However, the likelihood ratio w(xk ) shows huge
numerical instability in the high dimensional scenario [18],
where some w(xk ) become dominant and even infinite so that
the estimation in equation (6) becomes unreliable.

Wu, etc [9] proposed a provably bounded failure analysis
method, High Dimensional Importance Sampling (HDIS).
The basic idea of HDIS is to set a new threshold t , where
t > tc. And f (x) > t is not a ‘‘rare’’ event but dominates the
‘‘rare event’’ f (x) > tc. Hence the failure rate of SRAM can
be estimated as follows:

Pfail (f (x) > tc) = P (f (x) > t) · P (f (x) > tc|f (x) > t) (7)

The P (f (x) > t) can be calculated by MC. While the
P (f (x) > tc|f (x) > t) is less than 1 according to conditional
probability theory [37], which avoid the huge numerical
instability of P (f (x) > tc) in the high dimension. However,
it still needs large number of expensive transistor-level simu-
lations to converge a stable result.

C. META-MODELING
Although IS methods reduce the number of sampling to a
certain degree, it is still time-consuming for the expensive
simulation overhead, especially the circuit size is large. Just
using IS is not enough to decrease the estimation cost drasti-
cally compared to parallel MC.
Sobol [21] proposed the High Dimensional Model Repre-

sentation (HDMR) by decomposing an integrable function
into the sum of low dimensional ones, which improves the
computational efficiency greatly. It can be formulated as:

f (x) = f0 +
∑n

i=1
fi (xi)+

∑
1≤i<j≤n

fij
(
xi, xj

)
+ . . .+

∑
1≤k1<...<kl≤n

fk1...kl
(
xk1 , xk2 , . . . , xkl

)
+ . . .+ f1...n (x1, x2, . . . , xn) (8)
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where f0 is a constant used to measure the zeroth-order effect
of variable vector x on the circuit response f (x) and fi (xi)
represents the first-order effect of a single variable xi acting
independently upon f (x). Similarly, fij

(
xi, xj

)
represents the

second-order effect of variables xi and xj on f (x). And the
latter terms show the high-order effects of the variables.
The HDMR expansion aims to represent multivariate func-
tions arising in physical contexts rather than for arbitrary
function interpolation [19]. It gives us space to carefully
analyze the effects of different variables and train the proper
basic functions to characterize these effects. The accuracy
and convergence speed of HDMR is determined by its basic
functions and corresponding modeling method. Commonly
used basic functions, such as Polynomial [24] and Gaussian
Process [36], are not accurate enough to handle the disconti-
nuity characterization of SRAM read access delay.

III. YIELD ESTIMATION BASED ON SP-HDMR MODEL
The framework of the proposed yield analysis method, named
HDMRIS, is summed as Algorithm 1. We integrate our
SP-HDMR model into HDIS [9] to further speedup the yield
estimation. The initialization step and the failure calculation
ways are the content of HDIS [9] mentioned in the back-
ground. The pre-training samples generated by the distorted
probability distribution in procedure 2.1 are used to deter-
mine the cut point x0 and the training scope of variables in
Algorithm 1. After the construction of SP-HDMR, most sam-
ples in step 3 are predicted by the model.

Algorithm 1 HDMRIS Overview
Input: Random variables x with its original distribution H (x)
and the failure specification f (x) > tc
Output: The SRAM failure rate P̂fail
1 Initialization

1.1 Determine the threshold t and calculate the cor-
responding yield PMC (f (x) > t) by standard MC
method.

1.2 Construct the distorted probability distribution
G(x) by shifting the mean of original distribution
H (x) and changing the standard deviation ofH (x).

2 Model Construction
2.1 Generate the pre-training samples from G(x) to

determine the training scope of variables and
cut-point of SP-HDMR.

2.2 Construct SP-HDMR by adaptive modeling
method.

3 Failure Rate Calculation
3.1 Generate samples from G(x) and evaluate these

samples using SP-HDMR.
Re-simulate

3.2 the samples whose predictions are in the prede-
fined range of the failure specification.

3.3 Evaluate the conditional probability
P (f (x) > tc|f (x) > t)

3.4 Calculate the failure rate as equation (7)

Notice that transistor-level simulations are only used to
evaluate the samples whose predictions are in the predefined
range of the failure specification in step 3.2. It is because
IS has strict accuracy requirements on the boundary of the
failure region. To illustrate it, we review the failure rate
calculation in importance sampling shown in (6). As long
as the model prediction is wrongly greater than the failure
specification, I (x) will be incorrectly judged as 1. It makes an
unnecessary likelihood w (xi) in (6) accumulating in P̂IS,fail ,
resulting in a large error in the final estimation.

As the black and red lines are shown in Fig. 2, the conver-
gence results of yield estimation using transistor-level simu-
lations (HSPICE results) and SP-HDMR only are completely
different. As the blue and green lines are shown in Fig. 2,
the estimation with the re-simulation technique can greatly
reduce the prediction error. Re-simulation within a 7% range
of failure specification performs best in this comparison.
In our experiment, there are only 532 reevaluated samples in
total, which is a small fraction of the whole sample set.

FIGURE 2. Read time failure rate estimation in different modes on
the 0.6 v 128 bits SRAM column.

The range of re-simulation depends on the accuracy
requirement of the SP-HDMR. The more accurate the
meta-model is, the smaller range can be set to satisfy the
requirement of importance sampling.

IV. SPLINE HIGH DIMENSIONAL MODEL
REPRESENTATION
A. ALGORITHM OVERVIEW
In most well-defined physical systems, only relatively low-
order correlations among input variables have significant
impacts on the output [19]. Besides, the process variation
variables x = [x1, x2, . . . , xn] has been modeled as inde-
pendent ones by principal component analysis (PCA) [26] in
PDK. Hence, we reserve the top two order terms in (8) to
achieve the balance between the complexity and the accuracy.
As shown in Table 1, there is almost no difference between the
results predicted by the top two order terms and the top three
order terms. However, the training cost grows drastically with
the exponentially increased second-order interacting terms.

And the proposed SP-HDMR can be formulated as:

f (x) = f0 +
∑n

i=1
fi (xi)

s.t. x ∈ (x̄− 8σ, x̄+ 8σ ) (9)

VOLUME 9, 2021 47323



L. Pang et al.: SP-HDMR for SRAM Yield Estimation in High Sigma and High Dimensional Scenarios

FIGURE 3. The effects of different process variables on Read access delay under 0.7 v 40 nm SRAM cell. Here, 1
(
Read access delay

)
=

f (xi , x i
0)− f0 represents the effects of different variables and ‘‘HSPICE results’’ represents the circuit simulations. a) The effect of ‘‘Voff .’’

b) The effect of ‘‘Vth0.’’ c) The effect of ‘‘u0.’’

TABLE 1. Relative error v.s. training cost with different orders on the
0.6 V SRAM cell read access delay.

where the x̄ is the mean of variables and f (x) denotes SRAM
read access delay. The variation range of x is set to±8σ which
has the probability of 10−15, which means the samples out of
this range are infeasible.

There is no unique expansion for equation (9) [19]. How-
ever, the modeling cost heavily depends on its expansion.
Cut-HDMR expansion [19] provides an exact representa-
tion of equation (9) along a hyperplane passing through the
‘‘cut’’ point or the reference point. Then f (x) is represented
by superposing the value of f (x) on the lines, planes, and
hyper-planes passing through the cut point. As a result, each
term of (9) can be modeled as:{

f0 = f (x0)
fi (xi) = f

(
xi, xi0

)
− f0

(10)

where x0= [x10, x20, . . . , xn0]T is the cut point, the
xi0 = [x10, x20, . . . , x(i−1)0, x(i+1)0, . . . , xn0]T represents the
variable vector x0 without the element xi0.
The cut-HDMR expansion only involves simple arithmetic

computation, which provides us the flexibility of selecting
basic functions. In this work, spline basic functions and adap-
tive training method with sparsity analysis are developed to
minimize cost, which is discussed in the next subsection.

B. IMPLEMENTATION DETAILS
1) BASIC FUNCTION SELECTION
The key to constructing an accurate HDMR is to obtain the
proper basic functions for measuring each order effect accu-
rately. Due to the too large process variations in the failure
region, the simulations often failed to get numerical values.
Here, we define SRAM read access failure as that the read
access delay exceeds the 4.8× 10−8 seconds (4.5σ ) at 0.7V.
The word ‘‘failed’’ will be written into the final data file. For
our modeling convenience, these discontinuous responses are
represented by a constant. However, it brings a ‘‘jump’’ in
the trend of performance metric, which is a stepping point as
marked in Fig. 3 a). The characteristic of regression functions,
such as Polynomial [24] and Gaussian process [32], is to

reach all data points as close as possible for minimizing some
cost (e.g., the square of error), which make them failed to fit
the discontinuous curves.

To address this issue, we notice that the interpolation
method can pass through all samples. It can model the discon-
tinuous functions with proper intervals. And among the dif-
ferent interpolation functions, the spline function p (x) , x ∈
[a, b] is the most widely used interpolant in the spline
interpolation for its smoothness and robustness (High order
interpolation will lead to the ‘‘Runge phenomenon’’ [38]).
It is defined by piecewise third-order polynomials defined as
follows:

p (xi) =



p1 (xi1) a < xi1 < x(1)i

p2 (xi2) x
(1)
i < xi2 < x(2)i

...

pk (xik) x
(k−1)
i < xik < x(k)i

pk+1 (xik+1) x
(k)
i < xik+1 < x(k−dis)i

...

pn (xin) x
(n−1)
i < xin < b

s.t. i = 1, . . .m; k = 1, . . . , n (11)

where p (xi) is the spline basic function of ith variable, xi.
The x(k)i is the split point and x(k−dis)i is the first split point
in the discontinuous region. And pk (xik) is the third-order
polynomials for the k-th interval. The p (x) can model dis-
continuous functions as long as there is one split point fallen
in the discontinuous region. Notice that the first split point
‘‘x(dis−k)i ’’ in equation (11) affects the shape of p (x). The
x(dis−k)i should be close to the step point. If the ‘‘x(dis−k)i ’’ is
away from the step point, the p (xi)will have a relatively large
error near the step point. Hence the training samples must be
carefully generated in our adaptive modeling method, which
is discussed in the next subsection.

Fig. 3 compares the fitting effects of different basic
functions for three process parameter variables, offset volt-
age Voff , threshold voltage Vth0, and electron mobility u0,
by using 50 training samples near the failure boundary. The
‘‘f (xi, xi0) −f0’’ in y-axis means the first-order effects on
SRAM read access delay of these three variables. 100 sample
predictions are sorted by the normalized variable. As shown
in Fig. 3 (a), the SRAM read access time failed to be evaluated
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by transistor-level simulation in the tail of Voff . The variable
Voff affects the drain-source current of MOSFET [27]. Too
large variation on Voff may make the low gate-source voltage
and cannot open the channel between drain and source so
that Ids ≈ 0. It is the reason that why the simulation failed
to get an exact SRAM read access delay. As the result, all
basic functions failed to predict the correct effects except for
the spline function. Notice that, the trend of two functions,
Gaussian Process and Polynomial, is like a ‘‘balance’’ pro-
cess. However, the discontinuous results make these regres-
sion functions ‘‘balance’’ wrongly to average out the overall
error. Oppositely, the spline function is a kind of interpo-
lation and jumps to discontinuous value ‘‘1 × 10−7’’ suc-
cessfully because it must pass through all training samples.
As shown in Fig. 3 b), the spline function also outperforms
other methods in measuring the effect of Vth0 on the perfor-
mance within 50 training samples, although there is strong
nonlinearity between Vth and SRAM read access delay. All
functions can fit the linear effects of u0 perfectly as shown
in Fig. 3 c).

Notice that the weighted regression is also useful to fit the
curve by penalizingmore the deviation near the discontinuous
region. The goal of weighted regression is to ensure that
each data point has an appropriate level of influence on the
parameter estimates. It requires that we know exactlywhat the
weights are. However, the optimal weights, which are based
on the true variances of each data point, are never known.
Estimated weights have to be used instead. The effect of using
estimated weights is difficult to access. When the weights are
estimated from a small number of training samples, the results
of an analysis can be very badly and unpredictably affected.
As shown in Fig. 4, the weight regression with 200 training
samples can fit the discontinuous region accurately. Whereas
the spline just takes 50 training samples. Notice that there is
no need to consider the model sensitivity to noise because we
only estimate the deterministic effects of process parameters
on the circuit responses without injecting any noise in this
work.

FIGURE 4. Fitting curve of Weighted Regression on Voff with different
training cost.

2) ADAPTIVE MODELING METHOD
In order to reduce the training cost, we developed an adaptive
sampling strategy with sparsity analysis to support the pro-
posed model. Compared with the traditional method of col-
lecting a large number or even all of the required samples at

a time by a certain algorithm, the proposed sampling strategy
collects only one or several samples at a time with respect
to the different impacts of variables on the performance
metric. It can be viewed as the local sensitivity analysis for
these variables before constructing basic functions for them.
SP-HDMR’s training method is as follows:

Algorithm 2 Adaptive Modeling Method
/∗Cut point selection∗/
1: Choose a proper ‘‘cut’’ center x0 = [x10 ,x20, . . . ,xn0]T

and get the corresponding response f 0 by running simulation.
/∗Basic functions training with sparsity analysis∗/
2: Modeling the first-order basic function f (xi) by linear
interpolation at the two points collected in the close range
of the lower bound and upper bound of xi.
3: Check the linearity of f i (xi). If f (xi) goes through x0,
f (xi) is considered as linear and the construction of f (xi)
terminates. Otherwise, f (xi) should be reconstructed by a
spline function in step 4.
4: Use the Latin Hypercube sampling to construct f (xi)

4.1 Set the initial interval as 10.
4.2 Construct the spline function to measure this effect.
4.3 Compare the simulation results with the function pre-

dictions. If the average error is large than the thresh-
old, increase the interval and generate new samples.
Then, go to step 4.2 to reconstruct f (xi).

/∗Complete the SP-DHRM∗/
5: Repeat steps 2 ∼ 4 until all the first-order component
functions are obtained.

In step 1, the choice of the ‘‘cut’’ point x0 =

[x10, x20, . . . , xn0]T can be random if the equation (10) is
taken out to convergence. Given that it is important to fit
the tail of the delay distribution for estimating SRAM failure
rate accurately. The cut point can be chosen as the mean of
samples near the failure region.

We find that the majority of variables only have weak
effects on SRAM read access delay, which can be viewed
as a sparsity constraint on SRAM performance modeling.
To facility this sparsity, we execute the sparsity analysis for
each variable in step 2 and step 3. If the slope of f (xi) in
step 3 is zero, it means the variable xi does not affect SRAM
read access delay and can be filtered out in the modeling.
In another scenario, if f (xi) goes through x0, it means a
linear function is sufficient to model the relationship between
variable xi and the target performance metric. Otherwise,
f (xi) will be reconstructed by the spline basic function.
To characterize the discontinuous effects of variables,

the training samples must cover a relatively wide range to
cross continuous and discontinuous regions. Hence, we adopt
the Latin-hypercube sampling [35] to generate the initial sam-
ples across different intervals of the cumulative probability
density for each variable in step 4. For the algorithm effi-
ciency, we start sampling from 10 intervals empirically and
increase the intervals until finding the split point ‘‘x(k−dis)i ’’
closest the step point.
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FIGURE 5. The schematic of SRAM column. Inset: Schematic of 6T SRAM
cell.

V. EXPERIMENTAL RESULT AND COMPARISON
A. EXPERIMENT SETUP
The proposed SRAM performance metamodel will be first
verified on the SRAM column and sense amplifier by com-
paring with SPICE simulations. We also implement other
state-of-art meta-models, such as LRTA [32], and OMP [31]
for accuracy comparison under different operating voltages.
And then the yield analysis based on our model will be
illustrated by comparing with Monte Carlo which runs in
parallel mode on 60 cores server and the other two importance
samplingmethods, HDIS [9] andAIS [6]. All experiments are
performed with 40nm SMIC model on the Server with Intel
Xeon Gold 5118 CPU @ 2.30 GHz.

B. EXPERIMENT ON SRAM COLUMN
1) MODEL ACCURACY VALIDATION
Fig. 5 shows the simplified schematic of the read path of the
128-row SRAM column which has 2306 variables. The read
operation begins by activating word-line (WL) and the pre-
charged bit-lines. One bit-line BL will discharge through the

first accessed cell and enlarges the voltage difference between
BL and BL. The read access delay is defined as the time
required to generate the voltage difference between two bit-
lines that can be sensed by the sense amplifier. Notice that to
generate the worst case for the read operation, the accessed
Bit cell 1 stores ‘‘0’’ and other idle cells store ‘‘1’’, which
maximum the leakage current through idle bits to increase
the read access delay and impede the successful read. For the
SRAM yield estimation, we consider the read access delay
failure that the time of read operation exceeds a specified
time.

To verify the accuracy and efficiency of our model and
modeling method, we trained other state-of-art high dimen-
sional models, LRTA [32] and OMP [31], with 3000 training
samples near the failure region.

As shown in Fig. 6, a hundred samples near the failure
region are predicted by meta-models and transistor-level sim-
ulations, respectively. All samples are sorted by the read
delay measured by transistor-level simulations. Fig. 7 sum-
marized the average error of three models from Fig. 6. In the
Fig. 6 a) and b), the SRAM performance shows strong non-
linearity, all models can fit the relationship with enough
accuracy at 0.8V and 0.9V. The average error of SP-HDMR,
OMP and LRTA at 0.8V is 2.1%, 8.8%, 4.3% respectively.
And the relative error of all models at 0.9V is even lower
than 2%. Fig. 6 c) and Fig. 6 d) show the predicted read
delay at 0.7V and 0.6V, respectively. The SRAM read access
delay shows varying degrees of discontinuity. The predicted
values of SP-HDMR are closest to the results of simulations.
However, as shown in Fig. 6 c) and d), OMP and LRTA have
the deviation from the HSPICE results in the first half and
the second half of the curve. The relative error of OMP and
LRTA at 0.6V has reached 29.6% and 14.8% respectively,

FIGURE 6. The fitting curves of different models under the different voltages on the 128 bits SRAM column.
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TABLE 2. Accuracy and efficiency comparison on 2306 dimensional 40 nm 0.6 v 128 bits SRAM column (the time per simulation on our platform is
0.09 seconds while the time of model prediction is just 0.007 milliseconds).

FIGURE 7. The relative error of different methods corresponding to Fig. 6.

while the SP-HDMR is just 4.6%. The huge error of OMP
and LRTA in modeling read access delay can be attributed
to the natural characteristic of regression of attempting to
be as close to all real values as possible to minimize some
cost, usually the mean of squares of errors. However, the dis-
continuous values break the normal trend of performance,
which brings a larger error for the regression models. If we
set the ‘‘failed’’ result as ‘‘1×10−4’’, the error of predictions
of OMP and LRTA will be enlarged dramatically due to
this characteristic. Notice that the relative error of OMP and
LRTA at 0.7V is much larger than that of those at 0.6V
in Fig. 6. It is because that the too large gap between the
successful simulated results, the magnitude of 10−9, and the
set failed results, the magnitude of 10−7 at 0.7V.

2) YIELD ANALYSIS EFFICIENCY VALIDATION
We compared the accuracy and efficiency of the failure rate
estimated by our method with MC, AIS, and the original
HDIS without modification.

We apply Fig of Merit (FOM) ρ to verify our proposed
method, defined in [10]:

ρ =

√
VARP̂fail

p̂fail
(12)

where the VARP̂fail is the variance of P̂fail . And ρ <

ε
√
log(1/δ) means one estimation has reached (1− ε) 100%

accuracy with (1− δ) 100% confidence. Here, we set
ρ = 0.1 which means 90% accuracy with a 90% confidence
level. As shown in Fig. 8, the AIS has failed to converge the
right result when the FOM reaches 0.1. It is because the diver-
sity of samples is decreasing as the iterations of the resam-
pling procedure in the high dimensional scenario. While
HDIS and HDMRIS successfully converge to the required
precision with 3.4% error and 8.9% error respectively.

The efficiency of MC, AIS, HDIS, HDMRIS is shown
in Table 2. In this experiment, 2160 training samples are
included in the importance sampling step of HDMRIS. Both
HDIS and HDMRIS cost over 60000 samples to get stable
results. Although the relative error of HDMRIS is larger than
HDIS, it only consumes 0.67 hours, which is 5.3x faster than
HDIS and 99.9x faster than MC.

Besides, we also present HDMRIS under different sup-
ply voltages, as shown in Fig. 9. Our method can predict
yield accurately for a wide range of supply voltage. The
yield estimation results deviate from the simulations when
VDD is larger than 0.68V. This is because the relative error of
SP-HDMR is enlarged so that the 7% range of re-stimulation

FIGURE 8. Evolution Comparison of Failure Prob. and FoM on 128 bits SRAM column.
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FIGURE 9. The yield prediction of HDMRIS under different voltage on
SRAM read path. The reference is simulated by HSPICE.

FIGURE 10. Schematic of sense amplifier.

is not enough to ensure an extremely accurate result. We can
increase the pre-defined range of re-simulation to reduce the
error at the expense of additional simulations.

C. EXPERIMENT ON SENSE AMPLIFIER
We also make an experiment on Sense Amplifier (SA) which
is one of the most important components in SRAM circuits.
As shown in Fig. 10, it mainly composes of two cross-coupled
inverters. The voltage difference between BL and NBL will
be enlarged to the expected value due to the positive feedback.
We focus on the estimation of offset voltage which is the most
important performance metric of SA. It is the voltage differ-
ence1V between SA inputs (bit-lines) when the inverters of
SA remain at the metastable point. The larger offset the more
time will be needed for SRAM to discharge one of the bit-
lines, which leads to additional read delay. We consider the
failure of SA that the offset voltage exceeds 28 mV due to
process variation.

Fig. 11 shows 100 offset voltage predictions at different
voltages. The predicted results under different operating volt-
ages are less different. It is because the SA has less sensitivity
on process parameters due to its large transistor size. All
models have good accuracy on the SA within the relative
error of 5%. Fig. 12 shows the yield analysis result at 0.6V.
The MC result remains ‘‘golden standard’’ and converges to
3.13e-5 with 26 hours. While the AIS, HDIS, and HDMRIS
take 15 minutes, 36.7 minutes, 10.9 minutes, to converge to
3.21e-5, 3.19e-5, 3.2e-5, respectively. Notice that the time
cost of HDMRIS includes 6957 simulations and 18640model
predictions. NOTICE 960 simulations are used to train the
SP-HDMR model. AIS and HDIS take 9600 simulations and
23400 simulations respectively. All methods have converged
to a reasonable result with less than 4% relative error when

FIGURE 11. The fitting curves of different models under the different
voltages on the sense amplifier.

FIGURE 12. Evolution Comparison of Failure Prob. and FoM on Sense
Amplifier.

their FoMs are lower 0.1. However, our method speedup 1.3X
over AIS and 3.4X over HDIS, which gains 143.1X over MC.

VI. CONCLUSION
In this paper, we developed a yield analysis frameworkHDM-
RIS based on our SP-HDMR model to accelerate yield anal-
ysis by substituting expensive transistor-level simulations.
To construct SP-HDMR model, we facility the cut-HDMR
expansion to provide a computationally efficient model repre-
sentation. Then the spline basic function is carefully analyzed
and trained to address the discontinuous problem brought by
the large variations of process parameters in SRAM. And
the model is implemented efficiently by an adaptive sam-
pling strategy with sparsity analysis. The proposed HDMRIS
achieves great speedup compared to the state-of-the-art yield
estimation methods with enough accuracy.
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