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ABSTRACT The thinning of sapphire wafers is a key process that affects the quality of optoelectronic
devices. In the grinding process for sapphire, a hard and brittle material, the grade and surface conditions
(wearing and chip loading) of the grinding wheel are the key to continuous processing and reduction of
defects. In industry, a common approach is to assume the possible causes of defects by observing the spindle
current during the grinding process and the finished product after processing. Thus far, there has been no
effective method to quantify the grade and no real-time monitoring technology for grinding wheels. This
research proposes a wheel monitoring system that utilizes acoustic emission (AE) signals and radial/axial
vibration signals to extract characteristic parameters via popular machine learning classification algorithms
(k-NN, ANN, and SVM) in order to identify the signal and characteristic parameters of the wheel during
the grinding process. The experimental results show that the AE signal identification accuracy of the grade
is excellent, at 99%. The vibration signal of the wheel surface condition during the grinding process is
significant as well, yielding an identification accuracy of 91%. The extracted signal characteristics in this
research not only quantify the state of the grinding wheel, but also facilitate a wheel monitoring system based
on the identification technology. The proposed method for grinding wheel processing status monitoring can
be used to establish an automated intelligent grinding system.

INDEX TERMS Acoustic emission, feature extraction, grinding wheel grade, machine learning, radial and
axial vibration, wheel loading.

I. INTRODUCTION
The growing integration of electronic components has con-
tributed to the development of surface grinding techniques
that facilitate quick grinding and highly flat finishes, which
have been applied extensively in wafer thinning. The grinding
of hard and brittle materials is the focus of much recent
attention because they tend to resist heat and corrosion, have
high hardness values, and have high melting points. One such
material is sapphire, whose wide optical transmission band
makes it a common material for optoelectronic components.
The machining quality of the surface of a thinned sapphire
wafer has a direct effect on the quality of an LED product.

Grinding involves using the normal and tangential forces
generated through the relative motion between a workpiece
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and a disk-shaped grinding wheel to cause the abrasives of the
wheel to remove materials, thus achieving high dimensional
precision and good surface roughness [1]. A grinding wheel
that uses diamond abrasive and has an appropriate grade,
with a micro feed rate and a negative rake angle, performs
ductile-regime grinding on a hard and brittle material with-
out damaging the surface [2]. Dobrescu and Anghel discuss
the relationship between the angular deviation of grinding
between a wheel and wafer and the surface profile of the
workpiece; the angular deviation of grinding represents the
specific energy of grinding [3]. Machining hard and brittle
materials requires high specific grinding energy [4].

Hard and brittle materials are generally ground on a grind-
ing wheel with diamond abrasive and a metal binder. The size
of the abrasive grain determines the quality of the machined
surface and the material removal rate. The binder holds the
abrasive against the centrifugal and grinding forces generated
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by machining and aids self-sharpening [5], in which worn
abrasive comes off the grinding wheel, allowing new, sharp
grains to emerge. How well the binder holds the abrasive is
referred to as the ‘‘grade’’; this indicates how easy it is for the
grinding wheel to shed the abrasive. A soft grinding wheel is
often used to machine workpieces with low material removal
rates and high hardness, such as sapphire and silicon carbide
wafers. A hard grinding wheel is used on those with high
material removal rates and low hardness, such as metals.

Hard and brittle materials are comparable to the abrasives
of the grinding wheel in terms of hardness; over the course
of the grinding process, grains become dull from wear. When
this happens, the chips produced from cutting fill the pores
of the wheel surface, flattening the surface and rendering
the wheel incapable of cutting [6]. If a flattened grinding
wheel continues to operate, however, the normal force (FN )
overtakes the tangential force (Ft), resulting in damage to
the workpiece and ruptures in the wheel. Therefore, whether
a grinding wheel can machine a hard and brittle material
continuously depends onwhether the wheel can sharpen itself
in a timely manner. Diamond grinding wheels are expensive,
and usually have poor self-sharpening capabilities, resulting
in rapid consumption; despite the industrial emphasis on such
capabilities, this translates to a high wear ratio and high
machining costs, making such soft wheels undesirable for
typical commercial uses.

Abrasives wear during grinding because of the rubbing
between the wheel and the workpiece and because of the
compression of the abrasives under high temperature and
pressure. In addition, the cutting chips from the workpiece
surface fill the pores of the wheel surface, leading to wheel
loading. After the abrasives are worn and the pores filled, the
wheel surface becomes dull. The contact area with the work-
piece increases, the rubbing increases between the surfaces,
the wheel’s grindingweakens, and it gradually loses its ability
to remove chips.

As the wheel loses the ability to grind, its rubbing with
the workpiece intensifies, driving up the S1 current load [7].
When the rubbing exceeds the wheel grade, the wheel con-
tinues to self-sharpen to maintain its grinding capability,
in which case the S1 current load remains constant.
Usually, an operator can determine the grinding condition
on the basis of the S1 current load, which however provides
no comprehensive understanding of the respective condition
of the grinder, wheel, and workpiece because the load is a
result of the interactions between the three. In this study, other
signals are leveraged to enable a more accurate real-time
identification of wheel states.

In this study, an intelligent monitoring grinding system is
developed for application to the processing test development
stage of a new grinding process (a workpiece of new material
or a new grinding wheel), which provides intelligent judg-
ment of the grinding status and helps optimize the process.

This paper first reviews the literature on grinding mon-
itoring technology and explains the issues to be solved in
this study. Then, two kinds of experiments are conducted to

observe the characteristics (wheel grade and surface condi-
tions) of the grinding wheel, and signal analysis is utilized
to extract the characteristic signals of grinding processing.
Finally, the identification effects of the characteristic signal
and the three classifiers with respect to the status of the
grinding wheel are compared.

II. MONITORING GRINDING PROCESSES
Grinding is a highly complex process that takes into
account the wheel’s composition, the workpiece materials,
the machining method, the feed direction, the quantity of
grinding coolant, and the machining parameters. Together,
these factors determine the machining outcome. However,
it is difficult to identify whether mishaps are occurring during
machining because a number of conditions (such as grinding
noise, wheel vibration during operation, and the spraying
of coolant) arise during the process, and machining takes
considerable time [8]. Any change during machining must be
deduced from the machined workpiece. Accordingly, many
have focused on techniques that monitor the grinding process
in real time.

Acoustic emission (AE) is a high-frequency stress wave
that occurs when a material undergoes plastic deformation,
specifically due to the material’s dislocation slip, phase tran-
sition, rubbing, and micro fracture formation. The wave
is free from almost all disturbances from machines and
the environment because its frequency spans from 10 to
2,000 kHz [9]. Because of these properties, AE is widely used
in systems that monitor grinding. Hundt et al. demonstrate
the feasibility of using AE signals to monitor the grinding
wheel’s state while it is working [10]. Webster and Dong
investigate performance differences in the raw AE signal in
time and frequency domains in internal, external, centerless,
and surface grinding processes; in their experiments, they
employ a hydrophone-type AE sensor, which integrates an
AE sensor with cooling water, splashing the cooling water
onto grinding areas and sending the AE signals back to the
sensor. Thus, its application is not limited by the direction
in which the grinding wheel moves [11]. Susič and Grabec
use AE signals to evaluate the surface conditions (newly-
dressed, slightly-worn, and worn-out) of aluminum oxide
grinding wheels used to grind hardened steel materials. They
conclude that the characteristics of the AE signal frequency
spectrum are more effective than the time-domain root mean
square value in determining the wheel condition, although
the evaluation results are inaccurate at the beginning of
grinding, when the AE signal exhibits little difference [12].
Aguiar et al. employ band-pass filters to eliminate the noise
of the cutting fluid in the raw AE signal and establish a
dressing monitoring system [13]. Liao et al. adopt a dia-
mond wheel to perform creep feed grinding on alumina oxide
specimens, analyze AE signals through wavelet transforms
to explore each signal segment’s wavelet-based energy fea-
tures formed by dull and sharp grains, and apply an adaptive
genetic clustering algorithm to distinguish wheel conditions.
Their method achieves 97% accuracy under high material
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removal rate conditions, 86.7% under low material removal
rate conditions, and 76.7% under combined grinding con-
ditions; they mention that the extracted features apply only
to certain grinding conditions [14]. Lee et al. use AE sig-
nals to depict a wheel surface; this visualization approach
can aid in dressing and in other evaluation procedures for
grinding wheels [15]. Aguiar et al. acquire AE signals while
an aluminum oxide grinding wheel grinds medium carbon
steel. They use different statistical approaches to extract the
features and to determine which statistic is most effective
in detecting grinding burn; the authors prove that constant
false alarm (CFAR), the ratio of power (ROP), kurtosis, and
correlation of the AE are all more sensitive than the root mean
square (RMS) [16].

In addition to monitoring the grinding condition through
AE signals, researchers have used other sensor signals to
monitor the grinding process [17]. Hwang et al. employ
an AE sensor, a power meter, and a force dynamometer to
monitor the grinding process, suggesting that the wear of
the wheel intensifies as the AE signal amplitude, grinding
force, and energy increase. They conclude that the ratio of
the AE signal energy to the grinding force can be used
to evaluate how worn the wheel is and when it should be
replaced [18]. Liu and Li analyze the relationships between
load and the AE value across different grinding feed amounts
to ascertain whether the AE signal can act as an early warning
for grinding load and thus help to improve grinding quality.
The authors argue that the AE signal is merely one of the
factors that predicts grinding load. They argue that more data
and factors should be taken into account to facilitate a more
accurate prediction of grinding load when the AE signal is
used to monitor instantaneous changes in grinding load [19].
Chang et al. diagnose and predict the machining state on
the basis of the main spindle vibration signals of the hori-
zontal grinder, and extract the time-domain and frequency-
domain features of the vibration signals as well as the quality
of the machined parts, incorporating them into a statistical
machining control graph to visually monitor changes in the
parameters during machining; they determine the machining
quality accordingly [20]. Badger et al. use AE intensity and a
dynamometer to establish the relationship between dressing
energy and AE, to investigate how different grinding contact
modes affect the AE amplitude, and to quantify dressing
efficiency, wheel sharpness, and wheel dullness [21].

Regarding grinding conditions, scholars have analyzed AE
signals, extracted features, and incorporated them into super-
vised or unsupervisedmachine learning algorithms to formal-
ize models for monitoring grinding conditions. Liao et al. use
minimum distance classifiers to construct an online system
for detecting dull grinding wheels [22]. Marec et al. extract
AE features through wavelet transforms and perform fuzzy
C-means clustering (an unsupervised classification method)
to cluster the damage characteristics of glass fiber reinforced
polymers [23]. Others have used neural networks to identify
grinding conditions. Wang et al. use a neural network to
identify grinding burn after comparing different algorithms

for extracting AE features [17]. In [24] and [25], neural
network algorithms are used to identify AE features, deter-
mining different grinding conditions: normal, burning, and
chatter vibration. Martins et al. extract the AE signal from
a worn grinding wheel, compare the accuracy between the
RMS and ROP through neural network models, and conclude
that the ROP is more accurate than the RMS [26]. Lin et al.
furnish a metal grinder with multiple sensors; they extract
eight features using an AE sensor, a vibration meter, and a
force measuring unit. Then they apply a neural network and
fuzzy-logic-based system to identify wheel conditions [27].

These studies do not touch upon the monitoring of the
grinding wheel’s grade. Studies related to grinding wheel
monitoring predominantly focus on the grinding of metal
materials and fail to incorporate wheel grade as a factor
affecting machining conditions. Diamond wheels are differ-
ent from traditional wheels because there is no wheel grade
classification such as from A (soft) to Z (hard) for diamond
wheels. However, wheel grade is a critical factor in the
grinding of hard and brittle materials because it affects the
self-sharpening capacity of the wheel. On a typical grinder,
only the change in the electric current load of the grinding
spindle can be observed; the wheel’s grade cannot be deter-
mined or quantified through the current of the main spindle
during grinding. However, as sapphire wafers are designed
with increasingly large diameters, they become increasingly
difficult to machine; numerous manufacturers of grinding
wheels and grinders strive to improve the wheel’s quality and
machining efficiency through onlinemonitoring and quantifi-
cation of the wheel’s grade [28].

Table 1 compares wafer defects across different grinding
wheel states. Unlike ground metal materials, the defects of
machined hard and brittle materials are identifiable only
via offline measurements. Experienced engineers directly
observe defects on machined wafers to infer the causes of
defects; doing so entails considerable labor and cost.

TABLE 1. Grinding defects and wheel states.

In this work, an AE sensor, a two-axis (radial/axial)
accelerometers, and a three-phase current transducer are used
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to capture signals of various wheel states throughout the
grinding process and to extract features to determine the
wheel’s grade and state. These results constitute a reference
for operators to predict potential wafer defects in current or
subsequent stages of the grinding process given their assess-
ment of the wheel state and thus address issues before defects
occur.

III. TEST BENCH SETUP AND DIAMOND GRINDING
WHEELS
The grinder used in this study is a vertical grinder that per-
forms vertical grinding by rotation of its upper and lower
spindles, as shown in Figure 1 (a). This setup, which allows
for favorable flatness and thickness precision, is applied
extensively in the thinning of silicon or compound wafers,
which are to be made highly flat. The upper spindle is a
grinding spindle with the grinding wheel installed; it rotates
at a high rate during operation. In the present study this is
referred to as ‘‘S1’’. The lower spindle holds the workpiece.
Using wax, a wafer is attached onto a ceramic disk before
being machined and the disk is then secured through vac-
uum to the platform for the lower spindle, which rotates
slowly. In this study the lower spindle is referred to as ‘‘S2’’.
During grinding, S1 descends slowly to thin the wafer on
S2. The grinder contains a feed system with high precision,
stability, and stiffness that conducts micrometer feeding; its

FIGURE 1. (a) Precision vertical grinder and monitoring system for
grinding process. (b) Configuration of headstock and accelerometers.

direction of motion is along the Z-axis. The angular devi-
ation of the grinding wheel to the workpiece is referred to
as the angular deviation of grinding, which improves the
grinding force as it increases. However, excessive grinding
force may result in damage to the wafer and the grinding
wheel.

In these experiments, a 12-inch diamond abrasive grinding
wheel with 36 tooth-shaped abrasives was adopted; these
specifications are often used to grind sapphire wafers in
industrial contexts.

As the vertical grinder operates, S1 and S2 rotate simul-
taneously (S1 rotates clockwise and S2 counter-clockwise,
viewed from the top), making it impossible to attach a
wired AE sensor to the grinding wheel or workpiece. Thus,
a hydrophone AE fluid sensor made by Balance Systems was
used in the experiments. This sensor stabilizes cooling water
to enable noncontact transmission of signals and operates at
frequencies from 10 k to 1 MHz. The raw AE signal was
sampled at a frequency of 5 M/s using a PCI-6111 data
acquisition card. Clean cooling water was discharged onto
the aluminum ring of the grinding wheel to transmit signals,
because stress waves propagate through a medium. Industrial
vibration sensors supplied by Wilcoxon Research were used
for accelerometers 1 and 2; themodel number was 786A, with
a sensitivity of 100mV/g NOM. The sensors were installed on
the headstock of the S1 bearing using magnets, as shown in
Figure 1 (b). Accelerometer 1 measured the radial vibration
signals, and accelerometer 2 evaluated the axial vibration sig-
nals. Signals were sampled through the NI-9234 card (made
by National Instruments) at a frequency of 10,240 s/ch. The
current transducer was made by LEM (model: HTR 100-SB)
and was mounted on the U, V, and W lines of the fre-
quency converter for the S1 motor to measure changes in the
motor load during grinding. The signal extraction module,
which shared a chassis (CompactDAQ) with the accelerom-
eter module, captured signals through the NI-9234 card
(National Instrument) at a frequency of 10,240 s/ch. When
the signal extraction system was on, it synchronized
the signal data of the AE, vibration, and current
sensors.

Five grindingwheels with #400 diamond abrasives and var-
ious grades were used in grinding experiments, as described
in Table 2. The wheel surface images were obtained using a
digital microscope (500X). The diamond wheels were grind-
ing wheels with artificial diamonds bonded to the periphery;
as these are non-traditional abrasives, the wheel grades are
not clearly defined. In the industry, this is typically deter-
mined using the ratio of wear (ROW), which represents the
ratio of the removal of the workpiece to that of the wheel
after grinding. The five wheels are ordered from left to right
according to the ROW: from the hardest wheel (row0001),
which barely self-sharpens, to the softest (row3). The ROW
value of each wheel is defined by its manufacturer through
tests; in the industry, row005 wheels are often used to grind
sapphire wafers.
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TABLE 2. Diamond grinding wheel specifications.

IV. EXPERIMENTAL METHOD
A. GRINDING WITH DIFFERENT GRADES OF GRINDING
WHEEL
Table 3 lists the experimental grinding recipe for the vertical
grinder. This recipe consists of speed parameters for S1 and
S2 and feed rate parameter Z for sapphire wafer processing
using row005 grindingwheels. The S1 speed generally ranges
from 600 to 1,400 rpm, whereas that for S2 ranges from 50 to
120 rpm. Speeds in excess of these ranges tend to result in
abrasive teeth fractures in the grinding wheel. The grinding
feed rate is based on the characteristics of the grinding wheel,
for example, wheel grade, grain size, etc. Excessive feed rates
cause the wheel to fracture and the wafer to break, and rates
that are too slow reduce grinding efficiency.

TABLE 3. Grinder recipe.

The five grinding wheels were used to perform grinding
three times at a feed quantity of 0.2 mm along the Z-axis; the
grinding process was completed when the grinder shut down
after it reached the feed height or the main spindle became
overloaded. Before each experiment trial, the wheel surface
was dressed for 0.05 mm to ensure a consistent contact-area
angle between the grinding surface of the wheel and the
workpiece disk and a consistent wheel state. Five 4-inch
sapphire wafers were used as workpieces and glued on to a
12-inch ceramic disk with wax in a circular pattern at 10-mm
intervals. The flatness of each wafer was under 10 µm after
being glued.

B. CHANGE THE SURFACE CONDITION OF GRINDING
WHEEL DURING GRINDING
In the experiments, as it had the most suitable hardness,
the row005 wheel was observed, in particular, the change
of the grinding wheel surface during the grinding process.
The grinder recipe mirrored the previous experiment shown
in Table 3. In this experiment six grinding cycles were per-
formed using only the row005 wheel and a 0.2 mm grinding
thickness. Before each grinding cycle, the grindingwheel was
dressed for 0.05 mm to ensure a consistent wheel surface
state. To aid in the transition of abrasives from sharp to dull
and in the transition of pores from empty to filled, five 4-inch
sapphire wafers were glued onto a 12-inch ceramic disk,
adjoining one another (generally, the experimental setup was
the same as that of the earlier experiment: the five 4-inch
sapphire wafers were glued onto a 12-inch ceramic disk at
10-mm intervals). This procedure increased the wheel’s area
of contact with the workpiece within each unit of time, under-
mining the wheel’s ability to remove chips, allowing rubbing
to increase, and prompting the wheel to apply greater cutting
force. In addition, this procedure accelerated the dulling of
the abrasives and the filling of surface pores.

V. EXPERIMENTAL RESULTS AND DISCUSSION
A. THE PERFORMANCE OF DIFFERENT GRADES OF
GRINDING WHEEL
Throughout each grinding experiment, the raw AE signal,
the axial vibration signal, the radial vibration signal, and
the S1 current were recorded, as was the state signal
of the wheel undergoing a dry run. During the experi-
ment, in which each wheel performed grinding three times,
the row0001 wheel failed to complete any of the three trials
of grinding at a feed quantity of 0.2 mm because a current
overload protection mechanism for the S1 motor was acti-
vated by default when the grinder was operating.What caused
the current load of S1 to continue increasing was that the
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row0001 wheel had such a high grade that the wheel hardly
self-sharpened at all while it was grinding, and that rubbing
intensified between the wheel and the workpiece after the
wheel lost its cutting force while the feeding continued along
the Z-axis [29]. This protection mechanism prevented the
excessive normal force from fracturing the wheel. The current
load for the main spindle in a dry run was 37%; warnings
were issued when the load reached 40% during grinding, and
the grinding wheel stopped working when the load increased
to 41%.

Figure 2 depicts the level of wear sustained by
the five grinding wheels in the experiments. Notably,
the row0001 wheel, which had the hardest grade and
should have the least wear, was experimentally shown to
have had more material removed than did the row005 and
row01 wheels. Drawing on our experience, we assumed
that because the grade of row0001 was approximately 41%
spindle loading, the abrasives became detached when the
wheel stopped working. Additionally, because the abrasives
were held tightly together, they detached in large lumps when
the wheel was self-sharpening. The row3 wheel had the most
wear because it continued self-sharpening during grinding.

FIGURE 2. Amount of wear in grinding wheel after 3 experiments for
each of 5 wheels. For each grinding wheel, 3 teeth were selected to
measure the abrasive height; these values were then averaged
to produce the graph data.

Figure 3 shows the removal level of the sapphire wafers
in the grinding experiments. To successfully grind hard and
brittle materials, a grinding wheel must apply an adequate
normal force on the material, which results in bending stress
because of the non-collinearity of the normal force between
the wheel and the workpiece [30]. As this changes the alu-
minum frame of the wheel in feeding, a 1:1 ratio between the
amount of removal and feeding is unattainable, complicating
the estimation of the grinding thickness of such materials.
Although row0001 did not complete its feeding procedure,
its cutting force was so high that it achieved considerable
material removal; nevertheless, the wheel and the workpieces
were all prone to damage. The lowest grinding efficiency was

FIGURE 3. Removal rate from sapphire wafer after grinding. Five 4-inch
wafers were ground at the same time in each experiment. The removal
amount was measured as the 3-point average of a single piece; the
average thickness of the 5 pieces was then averaged again.

found in row3, which had such a soft grade that the wheel
shed abrasive as soon as it touched the wafer.

B. DISTINGUISHING GRINDING WHEEL SURFACE
CONDITIONS
Table 4 presents images of the row005 surface obtained using
a digital microscope (500X) after the wheel was dressed, after
continuous grinding experiments, and after losing the ability
to grind.

TABLE 4. Surface condition of grinding wheel.

Initially, the surface of the dressed row005 wheel is clean,
with conspicuous diamond abrasives and pores. The surface
after continuous grinding experiments is relatively smooth,
with most of the pores filled by chips. The wheel’s dia-
mond abrasives are mostly conspicuous. The surface of the
row005 wheel that has lost the ability to grind, whose image
was captured after S1 was overloaded during grinding, shows
hardly any pores. Moreover, comet-like traces are observed
along the grinding direction on the diamond abrasives; this
indicates that few diamonds are exposed on the surface and
that other abrasives are covered by chips [31].

However, the five sapphire wafers, which were attached
with each adjoining one another onto the disk, were more
difficult to grind. As a result, when S1 became overloaded
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during grinding, the wheel continued self-sharpening at the
edge of overload and thus recovered its grinding capability.
This allowed the researchers to chart how the wheel’s state
changed throughout the grinding process.

Figure 4 shows the changes in the AE root mean square
and the S1 current in the third grinding cycle. Both sig-
nals increased gradually when the wheel was worn and its
surface filled. However, they picked up in different slopes,
suggesting that they differed in physical quantity. Both sig-
nals decreased after approximately 200 sec, when the wheel
began self-sharpening to recover its grinding capability.
Figure 5 presents the root mean square of the radial/axial
vibration and the S1 current in the third grinding cycle. These
results suggest that the two vibration signals reveal grinding
information that is different from AE.

FIGURE 4. Root mean square of AE signal and S1 current from grinding
process of adjoining wafers.

FIGURE 5. Root mean square of radial/axial vibration signal and S1
current from grinding process of adjoining wafers.

VI. CHARACTERISTIC SIGNALS ANALYSIS AND
FEATURES SELECTION AND EXTRACTION
Because a hard and brittle workpiece is as hard as the abra-
sives of the grinding wheel, the wheel sustains considerable
wear when it grinds the workpiece. Thus, self-sharpening is
seen as a critical factor in enabling continuous grinding using
such a wheel. This is why manufacturers of grinding wheels
develop multiple abrasive formulas for different workpieces
and grinders. Evenwhen amanufacturer puts its own grinding

wheel into service for the first time, they must test the wheel
to determine its grade. Thus, this study utilizes characteristic
signals to quantify the grindingwheel grades so that operators
can assess the wheel states [32].

A time-frequency analysis was performed on the AE sig-
nals obtained during grinding. The set of raw AE signals had
5 million data points for each second of grinding. Due to the
large amount of data, to retain the details, this was divided
into segments of 1 million data points for analysis, which
was equivalent to 0.2 s of grinding, during which the wheel
completed 3.3 turns.

A. ROOT MEAN SQUARE (RMS) OF TIME DOMAIN
ANALYSIS
As the raw AE signal is a time-variable voltage value,
the RMS, as expressed by (1), is often used to estimate the
mean deviation of the signal. Many studies use the RMS
of the AE signal to characterize time-domain features. For
the relatively hard grinding wheels, row0001 and row005,
AERMS values increased slowly with grinding time and then
stabilized. The three softer wheels had relatively constant
AERMS values regardless of grinding time.

xRMS =

√√√√ 1
N

N∑
n=1

|xn|2, (1)

where xn is the signal voltage and N is the number of
root mean square calculations. Here, the vibration RMS is
vibrationRMS and the spindle current RMS is currentRMS.
The power spectrum of the AE signals suggests that while

the sharp wheel surface became dull and then self-sharpened
throughout grinding, the feature band in the spectrum did
not shift, but the power value changed. The power increased
gradually and then stabilized as thewheel surface became dull
and had its chips loaded in grinding.

B. RATIO OF POWER (ROP) OF FREQUENCY DOMAIN
ANALYSIS
Figure 6 presents the power spectra of the AE signals for
the five grinding wheels, where feature bands are observed
in the segments of (ii) 200 to 500 kHz and (i) 550 to 950 kHz.
Wheel of different grades have different power spectrum
densities [33]. The ROP, as expressed by (2), is a statistical
method used to estimate the band power density ratios in
the power spectrum. It can be used to determine the ratio of
a given frequency band to the full spectrum. In this study,
the segment from 100 to 999 kHz was divided into 9 bands at
a 100-kHz interval on the basis of the AE sensor’s frequency
range.

xROP =

n2∑
k=n1
|xk |2

N−1∑
k=0
|xk |2

, (2)

where the denominator is the entire power spectrum, N is
the number of frequency data points in the spectrum, the
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FIGURE 6. Power spectrum density of AE signal at 100th second in
grinding process of each of 5 grinding wheels. Note that the characteristic
frequency band of the frequency spectrum does not move significantly
during the grinding process.

numerator is the spectral power for the observed band, and
n1 and n2 are the limits of the band.

C. SLOPE OF POWER SPECTRUM (SOPS)
As the grinding time increased, the wheel surface became
smoother, and the power spectrum density (PSD) of the
band segment (i) increased gradually to a stable level. This
change was most prominent for row0001 and row005. The
PSD difference on a given band was quantified by estimat-
ing the SOPS. The SOPS estimation covered the band from
600 to 700 kHz.

D. CHARACTERISTICS OF DISCRETE WAVELET
TRANSFORM (DWT)
Several feature bands were identified on the power spectrum
of the AE signals. The characteristic signals were extracted
from the frequency bands via a discrete wavelet transform
per functions (3) and (4) and then statistically analyzed [34]:

xp,L[n] =
K∑
k=0

xp−1,L[2n− k]LPF[k], (3)

xp,H [n] =
K∑
k=0

xp−1,H [2n− k]HPF[k], (4)

where the input signal x[n] length is N , while the coefficient
length of xp,L[n] and xp,H [n] at the p-th level is N/2p. In this
work, the mother wavelet is Daubechies 10 (Db10).

The wavelet packets are represented by the stage
structure (p, q). where p is the number of levels of wavelet
packets, q is the coefficient of the levels of the wavelet pack-
ets, and q is 2p. Figure 7 shows the 4-level filter bank used in
this study. The packet (3, 1) coefficients were high-frequency
data that contained most of the energy of spectral power. The
packet (4, 1) coefficients were low-frequency data that con-
tained limited energy of spectral power but exhibited feature

changes that differed from the packet (3, 1) coefficients in the
power spectrum throughout the grinding process.

Statistical methods were employed to calculate two groups
of coefficient features [35]: standard deviation (STD),
L2 norm, entropy, mean absolute, and median absolute
deviation. In particular, entropy is a measure of randomness
that represents the disorderliness of the data. Entropy calcu-
lation was utilized as in image data entropy algorithms, con-
verting data to 8-bit unsigned integers for histogram-based
counting. The data were then normalized and substituted into
the equation for information entropy, as expressed by (5):

H (x) = −
n∑
i=1

p(xi) log2 p(xi), (5)

where p is the probability mass function of random
variable x and H (x) is information entropy, whose unit ‘‘bit’’
denotes the amount of data.

The aforementioned statistical methods were used to reveal
the trends of feature data throughout grinding. The entropy
trends are mostly similar between the (3, 1) and (4, 1) coef-
ficients, but the entropy feature trends for row0001 and
row005 indicate how the wheel surface state changed. Indeed,
as the grinding time increased, the entropy of the two grind-
ing wheels in light of the (3, 1) coefficients decreases and
becomes increasingly stable (Figure 8). This suggests that the
disorderliness of the coefficients declined slowly, reflecting
how the wheel surface became smooth as its pores were
filled and the surface was worn. By contrast, the entropy of
the (4, 1) coefficients surges and then reaches a stable state.
However, the entropy of the (3, 1) and (4, 1) coefficients for
the soft grinding wheels—row01, row1, and row3—exhibits
no significant changes because they were constantly self-
sharpening during grinding. In Figure 8, the entropy for
row0001 stops at 174 s because S1 became overloaded dur-
ing grinding, interrupting the grinding process. Given these
results, the entropy of the (3, 1) coefficients had a strong
connection with the wheel state.

E. DATA SCALING
This is a form of data preprocessing. This study uses a mini-
mum and maximum scaler (min-max scaler) to move all data
to the range between 0 and 1 in order to observe the data
distribution.

The raw AE signal was converted into 21 features:
rms, rop1, rop2, rop3, rop4, rop5, rop6, rop7, rop8,
rop9, dwt31_std, dwt31_norm, dwt31_entropy, dwt31_mean,
dwt 31_med, dwt41_std, dwt41_norm, dwt41_entropy,
dwt41_mean, dwt41_med, and SOPS. Figure 9 is a box-
plot depicting the 21 features for the five grinding wheels
undergoing the dry run and the three experimental trials.
To determine how the wheel differed in terms of each feature,
all the features were scaled via a min-max scaler to the
range between 0 and 1. It was found that the RMS differed
substantially between the dry run and grinding process. The
ROP variance was noticeably different across different grades
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FIGURE 7. Four-level signal decomposition into packet coefficients.

FIGURE 8. Entropy of wavelet packet (3, 1) and (4, 1) coefficients from five grinding wheels in second grinding experiment.

of the grinding wheels; the most prominent differences in
variance were observed among rop6, rop7, and rop8 for
row01 and row1, which were soft wheels that were alter-
nately compressing and self-sharpening throughout grinding.
However, the three band segments for rop6, rop6, and rop8
best represent the wheel state. Of the five dwt31 features,
the distribution of features for the hard row0001 and row005
wheels appears opposite to that of features for the soft
row01, row1, and row3 wheels; those parameters exhibit no
prominent features during the dry run. The variances of the
five dwt41 features are higher for the hard row0001 and
row005 wheels than for the soft wheels. The median and
variance of SOPS are the highest for row005, a grinding
wheel of a type commonly used in industrial applications.

Radial and axial vibration signals were analyzed to identify
wheel states. Time-series features were extracted from the
raw vibration signals. In this study we used the following
time-domain statistics: RMS (1), mean value, standard
deviation, variance, and the one-step autocorrelation func-
tion [36]. The one-step autocorrelation function, as expressed
by (6), denotes the correlation between a data point and the

subsequent data point and thus better reflects the periodic
change of a signal. The signals were calculated based on
the time series to reveal feature changes along the grinding
process.

ρτ =
1

N − 1

N−1∑
i=1

xixi−τ , (6)

Frequency-domain features for the vibration signals were
calculated based on a time-frequency spectrogram acquired
via a short-time Fourier transform (STFT). A time-frequency
spectrogram depicts the change of a signal in a given time
point within a 3-dimensional matrix of time × frequency ×
amplitude [37].

Figure 10 shows the changes in the three characteristic
signals during the experiment to distinguish the grinding
wheel surface conditions. From the spindle current loading
on the bottom, the spindle current load is seen to grad-
ually increase due to the dulling of the grinding wheel;
AERMS similarly increases. The red dotted line is the spindle
current (A) converted to the drive loading ratio (%).
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FIGURE 9. Distributions of 21 features of various grinding wheels (dry run + five grades) during grinding experiment. The
boxplot features have been scaled.

VOLUME 9, 2021 46357



Y.-K. Lin, B.-F. Wu: Machine Learning-Based Wheel Monitoring

FIGURE 10. Time sequences of AERMS and S1 current loading (below) and spectrogram of AE, axial, and radial
vibration at selected points during grinding experiment (above).

The loading ratio is 37% during the spindle dry run, and the
grinder warns and then ceases operation when the loading
ratio reaches 41%; the blue line is AERMS. The spectrograms
on top for the various time points are the AE signal and axial
and radial vibration signals: the vibration signals vary greatly
in the sharp and dull conditions.

In this study, the spectrogram was used to determine the
full-time mean value of segmented spectra, in which all
elements in the selected band were summed and averaged
along the time axis to obtain the full-time mean for the
particular frequency band (7) [38]. In (7), µss(k) is the full-
time mean value of the k-th band, N is the number of band
matrix elements, flk and fuk are respectively the upper and
lower limits for the k-th band, S is the matrix following
the STFT, m is a frequency vector, and n is a vector of a time
instant. Given the full-timemean value, nmeans full columns.

µss(k) =
1
N

fuk∑
m=flk

|S(m, n)|, (7)

The sampling frequency of the vibration signals was 10,
240. The length of the STFT window function was 256, and
the window overlap was 50%. Processing the segmented sig-
nals through the STFT yielded 129 frequency-band vectors,
whichwere then divided into 13 segments; therefore, k ranges
from 1 to 13.

Given the aforementioned time-series and spectrogram
features, 18 features were extracted from the raw vibration
signals. Thus, each vibration signal had 18 radial and axial
features [39].

VII. MACHINE LEARNING-BASED IDENTIFICATION
OF GRINDING WHEEL
A. IDENTIFICATION OF GRINDING WHEELS WITH
DIFFERENT GRADES
Machine learning algorithms were used to identify six
classes: the dry run, and the five grinding wheels with differ-
ent grades. Table 5 presents the six classes and their respective
data matrix shapes.

The six grinding classes were identified through three
popular supervised machine learning algorithms: k-nearest
neighbors (k-NN), artificial neural network (ANN), and sup-
port vector machine (SVM). A k-NN is a simple algorithm
that entails little calculation, time, and storage cost; it is
often used to perform quick classifications [40]. The ANN is
arguably the most popular type of machine learning algo-
rithm because of its breakthroughs in deep learning and
computer science. Nevertheless, because in this study we
sought to implement a real-time monitoring system, and
the raw AE signals had already been characterized, a rela-
tively simple multilayer perceptron with a low calculation
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FIGURE 11. Confusion matrix of 3 models for 6 classes.

TABLE 5. Data shape from 6 classes.

load and a simple model was used as an ANN [41], [42].
After testing, the ANN showed higher prediction accuracy
under five layers. An SVM is a decision machine that mini-
mizes the statistical risk to estimate the hyperplane of a class,
to locate a decision boundary, and to maximize the margin
(the smallest distance between the decision boundary and any
sample) between two classes. An SVM uses only a part of
the support vectors to make hyperplane decisions, without
relying on massive data; it yields high classification accuracy
and delivers high generalization performance [43].

Data were scaled via the min-max scaler, and princi-
pal component analysis (PCA) was used to compress the
21 features into 6. All the features were shuffled after they
had been connected with their respective classes, with 80%
of the total data used for training and the remaining 20% used
for testing.

Table 6 shows the respective parameters for the three clas-
sifiers. The classifiers were trained and tested, and a pipeline
program was used by which a model and multiple sets of
parameters were cross-trained and tested, and the prediction
results of each parameter were compared to find the best
model [44]. A pipeline program is a programming technique
that simplifies repeated instructions and series of model train-
ing procedures. It realizes streaming workflows and the man-
agement of model training steps. Table 7 shows the prediction
accuracy of each classifier using the F1 score (8), a way to
calculate accuracy using the confusion matrix. The F1 score
accounts for both precision (9) and recall (10) to reflect accu-
racy of this model in a balanced way [45]. Figure 11 shows

TABLE 6. Classifier model parameters.

the confusion matrix of the testing data for each classifier.

F1 score = 2× (precision× recall)/(precision+ recall),

(8)

precision = TP/(TP+ FP), (9)

recall = TP/(TP+ FN ), (10)

where TP = true positive, FN = false negative, FP = false
positive, and TN = true negative.
The prediction results suggest that the selected fea-

tures were highly discriminative. The prediction accuracy
exceeded 99% among the three classifiers; SVM was the
most accurate. Several pieces of data that belonged to
row0001 were incorrectly assigned to row01, as indicated by
the confusion matrix.

Given that the abrasives of the grinding wheels tend to
fracture during grinding due to human error, two sets of
experimental signals with respect to the fractured teeth of the
row005wheel (2,060 data points in total) were obtained under
the same experimental conditions to determine whether these
signals had any effect on the classification of wheel grades.
Table 8 presents the data shapes for the six grinding-wheel
classes with said signals taken into account; the training
and testing data constituted 80% and 20% of the total data,
respectively. Training and predictionwere performedwith the
same classifiers and parameters.

Table 9 presents the prediction results with the signal data
of grinding wheels holding fractured teeth. The prediction
results were arranged into a confusion matrix (Figure 12).
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FIGURE 12. Confusion matrix of 3 models for 6 classes.

TABLE 7. Prediction results for grinding wheel grade.

TABLE 8. Data shape from 6 classes.

TABLE 9. Prediction results for grade of grinding wheel.

Even after accounting for the data on fractured teeth, the pre-
diction of the three classifiers was the most acc urate. The
row005 features were not classified into other categories in
the confusion matrix. Accordingly, these data did not affect
prediction accuracy, which suggests that fractured teeth had
no effect on the signal features of the wheel grades.

This table compares the identification accuracy using AE
signals and radial/axial vibration signals on grinding wheels
of various grades. Table 10 shows the respective parameters
for the three classifiers. The results in Table 11 show that the
AE signal was more accurate than the two vibration signals,
despite having no substantial difference.

B. IDENTIFYING GRINDING WHEEL STATES
The AE signals extracted from the six grinding cycles were
classified into sharp, mid, and dull conditions given the

TABLE 10. Classifier model parameters.

TABLE 11. Prediction results for grinding wheel grade.

S1 current load and images of the grinding wheel. Fifty-seven
features were extracted from theAE and radial/axial vibration
signals and arranged as shown in Table 12. The data were then
scaled using the min-max scaler and a pipeline was estab-
lished to adjust the model parameters, which were input to the
three classifiers for identification. The classifier parameters
are shown in Table 13.

Table 14 presents the identification results from the AE,
radial vibration, and axial vibration signals. The prediction
accuracy of the three classifiers was higher than 87% for both
the radial and axial vibration signals, and attained 89% for the
axial vibration signal when SVM was used. When the radial
and axial vibration signals were combined, the prediction
accuracy of k-NN and SVM increased to 90%. When the two
signals were combined with the AE signal, SVM, which had
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FIGURE 13. Confusion matrices for 3 wheel surface conditions for AE, radial, and axial vibration features.

TABLE 12. Data shapes from three classes.

TABLE 13. Classifier model parameters.

TABLE 14. Prediction results for wheel surface condition.

the most improvement, increased its accuracy only slightly
to 91.7%. This suggests that the AE features did not constitute
a critical factor in identifying wheel states.

Figure 13 presents the confusion matrices for the pre-
diction results for the three groups of signal features. The
matrices show that prediction errors occurred mostly in the
‘‘mid’’ and ‘‘dull’’ states. These errors were probably transi-
tion signals collected when the wheel surface transitioned to
a different state because these errors occurred in nearby data.
Yet, given that the wheel state underwent various transitions
in a continuous grinding process and that such transition

signals, which contained features of two states, were difficult
to classify, the prediction accuracy of 90% indicates that the
majority of wheel states were correctly identified [46]. These
identification results thus suggest that the vibration signal
features are most effective in characterizing the wheel surface
conditions throughout the grinding process.

VIII. CONCLUSION
In this study we develop an intelligent monitoring system
based on AE and vibration signals for diamond wheel state
monitoring. Empirical evidence shows that for wheels used
to grind hard and brittle wafers, the key factors are the ability
to self-sharpen and the surface wear/loading conditions dur-
ing grinding. While analyzing signals, we originally planned
to use the AE signal to monitor the state of the diamond
grinding wheel. However, classifier prediction results show
that monitoring multiple grinding wheel states necessitates
simultaneous evaluation of multiple signals for improved
discrimination [47]. Signals from other grinding recipes are
collected to create more data as training samples, and the sys-
tem is integrated with the grinder control system to develop a
grinding wheel state assessment system.

The results are summarized as follows:

1) We propose a grinding wheel status identification sys-
tem based on AE and vibration signals, which effec-
tively identifies the grade and loading/wear of diamond
grinding wheels. This system can be applied in the
processing test development stage of a new grinding
process (workpiece of new material, or a new grinding
wheel), and provides intelligent judgments about the
grinding status and helps optimize the process.

2) We use a hydrophone AE sensor to monitor the grind-
ing wheel. Although this sensor is suitable for grinding
in a two-axis rotation mode as it is not limited by the
grinding type, it is rarely addressed in related studies.

3) We show that it is necessary to identify the grade
of diamond wheels, because this affects the grinding
efficiency and is related to wafer defects. In this work,
we use five different grades of grindingwheels to estab-
lish feature samples and identification models. In the
future, new grinding wheels can be used for online
wheel grade detection.
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4) We use the classifiers to verify the efficacy of the
extracted features. The classifiers’ identification results
show that the AE signal yields superior performance
in discriminating wheel grades and that the vibration
signals better discriminate the surface conditions of the
grinding wheel.
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