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ABSTRACT Autonomous Surface Vessels (ASVs) are reliable and robust vehicles. They perform
autonomous missions in lakes, rivers and even open waters. Those are dangerous environments that requires
precise and secure navigation. Under these conditions, the knowledge of a robust and accurate mathematical
model is a fundamental aspect for adjusting the control system for reaching safety and performance. More-
over, traditional mathematical models disregard assimetries and coupling between the degrees of freedom.
While those models work fine for bigger vessels, to ignore these characteristics in small ASVs compromises
the model’s quality. In this context, this work presents a new methodology for modeling and identifying
the dynamics of ASVs along with the uncertainties arising from disturbances and non-modeled dynamics.
As for the uncertainties and disturbances, this work considers the coupling parameters into the mathematical
modeling, which synthesizes the divergences between the model and the real application, allowing to
incorporate asymmetries and model deficiencies. Regarding the parameter identification, the proposal is
based on (i) the design of optimal input excitation signals from a double layer optimization methodology
and (ii) a parametric estimation concept in two steps, dividing the original set of parameters into two partially
coupled sub-problems. Finally, this work also presents a full discussion and analysis about the importance
to manage the trade-off between precision and complexity of mathematical models, its respective solution
spaces and the impact over the optimization algorithms. To validate the approach, a real 3 Degree of Freedom
ASV with aerial holonomic propulsion system is used. The results show that it is possible to successfully
capture the complex set of parameters and identify physical characteristics not considered by the model.

INDEX TERMS Autonomous surface vehicles, real case parameter identification, 3 DOF ASV, optimal
input signal design, solution space complexity management, parametric estimation.

I. INTRODUCTION
Marine surface vessels also known as Autonomous Surface
Vessels ASVs, have attracted the attention of researchers
around the world [1], [2].There are several advantages of
using these ASV [1], [3]. They can perform dangerous
missions, have reduced maintenance costs, greater potential
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capacity for payload, and high flexibility for monitoring and
sampling in swallow or deeper waters.

Due to the potential mentioned above,this field of research
has grown in the last two decades [1], [4], [5].Literature
shows these vehicles operating in environments ranging from
dams, rivers, lakes and open sea. They have been applied in:
water and port supervision [6], shallow water hydrological
survey [7], maritime search missions and rescue [8], among
many other applications [1], [9].
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However, ensuring that activities are performed reliably
and safely is not a trivial task. In extreme situations, as in
running water environments, the ASVs can be exposed to sce-
narios of great difficulties. Under these conditions, it is neces-
sary a robust and reliable control strategy [10], [11].However,
the designing of such controller is highly dependent on an
accurate mathematical model, which enables to incorporate
environmental disturbances and uncertainties.

The design of a proper nonlinear mathematical model
presents tree main challenges [12]–[17]: 1©ASV’s traditional
modeling disregard couplings and asymmetries, 2© the high
complexity of the solution space which lies the problem of
optimal identification signal, and 3© the necessity of a robust
numerical process to estimate the optimal parameters, ASV.

The advanced of embedded hardwares, precise sensors,
robust propulsion systems, long range communications and
other innovations has increased the development and applica-
tion of several autonomous small ASVs [18], [19]. However,
most of the mathematical modeling used to develop the low
level control strategies are still based on large ships [20], [21].
Although this traditional modeling is a robust approximation,
it disregards the coupling among the degrees of freedom and
asymmetries that small robots are normally more sensitive.
Moreover, these characteristics may be disregarded in large
ships, however, they contribute to the final dynamics behavior
in small vessels.

Regarding challenge 2©, the optimal signal excites the ves-
sel’s main dynamics, so that these characteristics can be prop-
erly estimated [12], [16], [22]–[26]. The design of this signal
requires intense persistence excitation such as the signals
[12]: Pseudo-Random Binary Sequence (PRBS), Amplitude-
Modulated Pseudo-Random Binary Signal (APRBS) and Fil-
tered Gaussian Noise.

Despite this need for a signal with high persistence of
excitation, it is observed that most studies related to ASVs,
or even to marine vehicles in general, do not use this type
of approach. Instead most works use low complexity signals
as seen in [18], [19], [27].However different approaches are
shown in [28]–[31] and [32], where the design of an optimal
APRBS were presented. A major advanced shown in those
approaches is the possibility of incorporating operational
or safety constraints together with the optimization of the
excitation persistence. It is a fact that, in principle, unplanned
signals cannot guarantee.

In this context, this work presents the follow main contri-
butions to the field of parametrical identification and field
robotics involving ASVs;
• the introduction of coupling parameters generating a
more precise and reliable mathematical model for small
ASVs.

• An improved methodology for optimal exciting signal
generation for parameter identification by integrating
and adapting the concepts presented in [24], [25] and
[28].

• A double step optimization approach that breaks the
initial parameter set into two overlapped groups. This

approach creates two reduced searching space, improv-
ing solvability.

• A real case application with a 3DOFASVs vessel. In this
real study, the mathematical model was identified and
subsequently compared with experimental data.

• An in-deep walk-through from theoretical to practical
analysis that provides valuable insights about the model
identification process.

This paper is organized as follows: Section II presents
the topology of the 3DOF ASV named AERO4River, show-
ing all vehicle specifications and describing the traditional
kinematics and dynamics modeling; Section III presents
the parameter identification methodology; Section IV shows
the application of the previous methodologies on the
AERO4RIVER ASV; finally, Section V concludes this work.

II. ASV AERO4RIVER
A. TOPOLOGY
The developed vehicle has constructive characteristics that
differ from a conventional catamaran. Its configuration uses
a propulsion system with four aerial thrusters positioned at
the top of the hull, with their axes of rotation parallel to the
water surface, as illustrated in Fig. 1. This topology was first
presented in [33], [34]. It provides an over-actuated ASVwith
eight actuators (four directional servos and four propulsion
motors) and 3Degrees of Freedom (DoFs) (surge, sway and
yaw).

FIGURE 1. Real view of the developed catamaran.

The aerial thrusters are more secure navigation options
than conventional underwater ones. This feature enables the
vessel to navigate in waters with solid waste without damage
the propulsion system, and also does not influence the mea-
surements of submerged sensors. Furthermore, the thrusters
can be tilted from 0 to 360 degrees, ensuring 3 DoFs. A very
important note at this point is, considering the number of
DoFs along with its topology, the vessel responds very dif-
ferently depending on the required forces and torques. This
is a very difficult modeling problem where several dynamics
are coupled together. In a mathematical point of view, this
represents a high dimensional nonlinear solution space with
several local minima. The search for the correct parameters
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FIGURE 2. Motor rotation gear set.

FIGURE 3. ASV technical drawing.

depends on how to represent this space, what parameters are
considered and which is the best optimization strategy.

Figure 2 shows the configuration used to control the angu-
lar direction of each thruster, which is set by servomotors (in
red) coupled to the support axes by gearboxes (yellow).

B. KINEMATICS AND DYNAMICS
The adopted model has 3 DoF, i.e., x and y axis translation
movements (Surge and Sway) and rotation around the Z-Axis
(Yaw). The remaining DoF are disregarded due to their small
influence over the vessel’s dynamics [1], [20].

Themarine vehicle nomenclature is traditionally expressed
as: η = [x, y, ψ]T representing inertial (x, y) and angular (ψ)
positions in the vehicle Inertial Frame F I ; ν = [u, υ, r]T

being the linear (u, v) and angular (r) velocities in the Body-
fixed Frame FBF [20].
The general expressions that describe the vessel’s dynam-

ics and kinematic behaviors over the 3DoF movements are
given by equations (1) and (2), respectively.

M ν̇ + C(ν)ν + τA + τD C g(η) = τ + τE (1)

η̇ = J(ψ)ν (2)

where M ∈ R3×3 is the Rigid Body Inertia Matrix, C(ν) ∈
R3×3 the Matrix of Coriolis, J(·) the Jacobian matrix of
velocities in the rigid body and inertial frame, and τ ∈ R3

represents the forces and moments generated by the propul-
sion system [33]. The contact between the water and the
hull [20]generates added mass τA ∈ R3 and hydrodynamic
damping τD ∈ R3. The restoration forces are represented by
g(η) ∈ R3. τE ∈ R3 represents the environmental forces,
colored noises and asymmetries whose vessel is exposed to
(wind, waves and currents ‘‘oceanic or riverside’’). More-
over,the matrices J ,M and C are represented by:

J(ψ) =

 cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (3)

M =

m 0 0
0 m mxG
0 mxG Iz

 (4)

C(ν) =

 0 0 −m(xGr + v)
0 0 mu

m(xGr + v) −mu 0

 (5)

where m is the vehicle total mass, Iz is the z-axis moment of
inertia, and xG is the gravity center displacements on x axis.

1) HYDRODYNAMIC FORCES AND MOMENTS
The resulting hydrodynamic damping force is represented
by the superposition of the linear, D ∈ R3×3, expressing
contributions from potential damping and possible skin fric-
tion, and nonlinear Dn(ν) ∈ R3×3, associated with quadratic
damping and higher order terms, expressed by the following
equation [20]:

τD = Dνr + Dn(νr)νr (6)

where νr = ν− νf , νr ∈ R3×1 represents the relative velocity
between the rigid and fluid, where νf ∈ R3×1 represents the
fluid velocity. D and Dn are expressed by:

D =

 −Xu −X v −X r
−Y u −Yv −Y r
−N u −N v −Nr

 (7)

Dn(ν) =

 −X|u|u|u| −X |u|v|u| −X |u|r |u|
−Y |v|u|v| −Y|v|v|v| −Y |v|r |v|
−N |r|u|r| −N |r|v|r| −N|r|r |r|

 (8)

considering the linear damping, Xu,Yv,Nr represent the
uncoupling linear parameters and the vessel‘s symmetry.
Moreover, X v,X r ,Y u,Y r ,N u,N v represent its asymmetries
and express the linear relationship of damping for agiven
movement direction. For large scale boats, these asymmetries
are disregarded from the formulation. The terms Dn, X|u|u,
Y|v|v, N|r|r represent the nonlinear symmetrical and uncou-
pling damping of a quadratic order in the directions of the
x, y and z axes, respectively and all the others represent the
asymmetries and couplings.

The added mass is treated by separating terms dependent
on the accelerations and speeds of the body. Mathematically,
the expression that is widely used in the literature is the
following [21]:

τA = MAν̇r + CA(νr)νr (9)
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where τA ∈ R3×1 is the vector of forces and generalized
moments of added mass, MA ∈ R3×3 the Added Mass
Matrix and CA(ν) ∈ R3×3 the Matrix of terms of Coriolis
and Centripet added. The traditional representation of the
matrices is given by [20]:

MA =

 Xu̇ X v̇ X ṙ
Y u̇ Yv̇ Y ṙ
N u̇ N v̇ Nṙ

 (10)

CA(ν) =

 0 0 −α2
0 0 α1
α2 −α1 0

 (11)

MA express the mass added in a given direction. Similarly
to Equation (7) the diagonal parameters are related to uncou-
pling where the others represent coupling and asymmetries.
Additionally, α1 = Xu̇.u+Xv̇.v+Xṙ .r and α2 = Yu̇.u+Yv̇.v+
Yṙ .r .
for the sake of parameter set determination, it is possible to
consider νf = 0, so Equation (1) becomes

(M +MA)ν̇ + (C(ν)+ CA(ν)+ Dn(ν))ν + Dν = τ+ τE
(12)

As M,C(ν) and CA(ν) are related to already known
variables, the parameter identification problem is resumed in
findingMA,Dn(ν) andD. Moreover, non-modeled asymme-
tries will be considered as external forces or colored noise
represented by τE. As this last one is not considered as
parameter, the solution of the parameter identification lies on
the R27 dimensional space.

III. IDENTIFICATION OF THE ASVs DYNAMICS
This section presents the general problem definition along
with an analytical synthesis of possible approaches to
improve solvability.Moreover, it is also presents the proposed
method for modeling and identifying dynamic ASVs, which
consists of two stages: (a) design of identification signals
using the new approach called Robust SOESGOPE and, later,
(b) parametric estimation in two phases. Note that, although
the modeling and results consider the over-actuaded ASV
presented in [33], [34], the proposed framework can be used
for any other vessel.

A. PROBLEM DEFINITION
Consider a real vessel R(0) which can be satisfactorily
approximated by the nonlinear modelM(0), consisting of
n states, p inputs, m outputs and r parameters, the response
of this model for a given input signal u is represented by
M(0, u), and can is mathematically defined by:

M(0, u) :=
{
ẋ(t) = f (x(t),u(t),0)
y(t) = h(x(t),u(t),0) (13)

where f and h are the nonlinear functions that drives the
system considering the state vector x ∈ Rn, the input vector
u = [τ1, τ2, · · · , τk ] where each τi ∈ Rp is the acting forces
over the system at moment t , the output vector y ∈ Rm and
the set of parameters of the model 0 ∈ Rr .

Also consider that the R(0, u) system has some restric-
tions that need to be respected during its operation given the
input signal u, represented by:

x ≤ x(t) ≤ x

y ≤ y(t) ≤ y

u ≤ u(t) ≤ u (14)

where x and x ∈ Rn represent, respectively, the upper and
lower operating limits of the vector states, y and y ∈ Rm

express the lower and upper operating limits of the vessel’s
output vector, respectively, while u and u ∈ Rp represent
the upper and lower operating limits of the input signal,
respectively.

Also consider the function P defined by

P(M(0̂
−
,u), [x, y]) = 0̂+ (15)

as an arbitrary optimization procedure that uses the math-
ematical model M, the initial parameter estimation 0̂

−
,

the state and output vectors [x, y], and the signal u ∈ U where
U is the domain of all possible input signals, to estimate the
parameter set 0̂

+
whichM(0̂

+
,u) best represents [x, y].

In this notation it is possible to replace [x, y] byM(0, u)
orR(0, u) without loss of generalization.

In this context, assume that 0 is the optimal, but unknown,
set of system‘s parameters and thatM(0) best represents
R(0) for any given signal u ∈ U . Thus, the design of an
optimal identification signal requires to find the best signal
u⊕ ∈ U through an optimization search defined by

S(M(0̂
−
),R(0)) = u⊕ (16)

whereS is also an arbitrary mixed-integer optimization algo-
rithm that searches for the best u⊕ ∈ U . Finally, the optimal
parameter set is defined by

P(M(0̂
−
,u⊕),R(0, u⊕)) = 0̂

+
(17)

which generates the best a posteriori parameter estimation set
0̂+ whereM(0̂

+
,u) ≈R(0, u) for any other u ∈ U .

B. QUALITATIVE ANALYSIS FOR PARAMETER
IDENTIFICATION
Before continue with the parameter identification methodol-
ogy, it is important to expand the problem and its character-
istics. As well known in literature and specifically shown in
[25], [28] and [24] the parameter identification problem is
highly sensitive to the excitation signal. As briefly shown in
section III-A, the optimal designing of such signal is defined
as a complex mixed-integer nonlinear optimization problem
with an inner bounded nonlinear multimodal problem. While
the outer looping demonstrated by Equation (16) is respon-
sible for defining the optimal excitation signal u⊕, the inner
one defined by Equation (17) evaluates the optimal parameter
set 0̂

+
. Moreover, each possible signal u ∈ U generates a

non-linear optimization problem with a different and unique
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solution space. Thus, conceptually, the problem could be
stated as to find the solution space that best excites the
system and then, proceed with the parameter identification in
amultimodal, but less complex non-linear space. Considering
that the set U can be virtually infinite, this is a very complex
and time consuming problem.

Considering the computational complexity, it was demon-
strated for a toy problem in [25] that simpler mathematical
models generates smaller solution spaces with could benefit
the optimization process. It means that complex systems may
be more representative, however, the system’s complexity
makes it computationally difficult to search for an optimal
excitation signal.

Specifically for the ASV’s parameters presented in 7, 8
and 10 the dimension of the inner solution space is R27 and
the outer space size depends on the designed signal charac-
teristics. Thus, considering 4 ∈ Rn a vector that encodes
all necessary information to create an APRBS-like signal,
the search space is defined by 3 × R27∗n. The variable n
must be sufficiently high to capture the system’s dynamics
and couplings, the scalar 27 represents this particular model,
the scalar 3 represents the number of controllable DoF and,
therefore, can be reduced in a way to capture the major
characteristics without severely increasing the computational
complexity.

Considering the above mentioned characteristics, this
section presents amore robust approach for designing optimal
input signals by using two different mathematical models;
a simpler one for the signal design and a more complex
one for the real parameter identification. Therefore, the first
model will consider a symmetrical uncoupled system (only
the diagonal terms) while the second one will also consider
the asymmetries and couplings. This approach will reduce the
solution space to 3× R9∗n.

C. EXCITATION SIGNALS DESIGNING
In many over-actuated dynamical systems, it is common to
use the DoFs as controlled states instead of the real signals
that are sent to the actuators [33]. This approach reduces
the system’s complexity and makes easier the control laws
definition. Thus, the actions defined by the control system
are forces and torques that act over the DoFs. In this work,
the variable τ represents the current

(
Fx ,Fy, τψ

)
forces act-

ing over the surge and sway and torque over yaw, respectively.
The real signals (f1, f2, f3, f4) representing the propulsion of
each motor and (θ1, θ2, θ3, θ4) the angle of each servo are
evaluated by the fast control allocation procedure defined
in [33]. It is very important to note that the allocation pro-
cedure could consider several different scenarios, including
one where the servos are fixed and oriented towards surge
only. In this particular scenario, although the ASV would
have just two controllables Dof, the proposed identification
frameworks would be almost the same; it would just have to
consider τ ∈ R2. Figure 4 depicts this pipeline in an open
looping scenario.

FIGURE 4. Control Allocation Scheme.

D. ORIGINAL SOESGOPE
The Sub-Optimal Excitation Signal Generation and Opti-
mal Parameter Estimation (SOESGOPE) methodology was
developed from the proof of the following hypothesis [28]:
‘‘Assuming that a set 0̂

−
is a rough, although valid, approxi-

mation of 0, then, if an optimal input signal u⊕ can be used
withM(0̂

−
) to estimateM(0̃

p
) where 0̃

p
is a set of well

known perturbed parameters used for benchmark, then u⊕ is
suitable for excitingR(0) such that a proper ‘‘a posteriori’’
estimation 0̂

+
can be obtained.’’

Moreover, reference [28] has also demonstrated that the
search space of u⊕ is only valid for an initial parameter set
inside a trust region around 0̂−. These concepts can be better
seen in Fig. 5, which presents the trust region surrounding the
initial estimation 0̂−. The original SEOESGOPE proposes a
two step approach. First to generate a well know perturbed
parameter set 0̃

p
and use it as parameter to find u⊕ and then,

to use this excitation system on the real systemR to find 0̂
+
.

FIGURE 5. SOESGOPE concept.

Mathematically these steps can be defined as

u⊕ = S(M(0̂
−
),M(0̃

p
)) (18)

0̂
+
= P(M(0̂

−
,u⊕),R(0, u⊕)) (19)

To design u⊕, reference [28] has developed an optimiza-
tion methodology using two well known optimization algo-
rithms: the Meta-heuristic of Particle Swarm Optimization
(PSO) [35] and the Interior Points Algorithm [36]. In this
approach, the algorithms are arranged in a double layer
strategy, with an external optimization layer specific to the
signal design and an internal layer, dedicated to parameter
estimation.

The outer layer is responsible for PSO and, therefore,
dedicated to the optimization of APRBS signals. Each indi-
vidual 4 of the swarm is a signal candidate with different
amplitudes and time intervals. Therefore, an APRBS signal
designed of six stages, each one with pairs of (Amplitude,
time interval). This designing strategy generates a the param-
eter’s vector 4 ∈ R12, as shown in Fig. 6 where 4 =
[A1, . . . ,A6, t1, . . . , t6] and u(4) is the realization of these
parameters, i.e. the signal marked as magenta.

The objective function used to find the optimal signal
proposes the sum of specific metrics with different purposes.
For the persistence of excitation, two metrics were used:
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FIGURE 6. Parameterization of an APRBS signal.

• Precision Output Metric fo(0̂+): find the best set of
parameter 0̂+ that, for a given u(4), minimizes the
difference between the outputs and states obtained from
M(0̂

+
,u(4)) e M(0̃

p
,u(4)). This metric repre-

sents the inner layer shown in equation (17) and is
mathematically described as:

ε :=

tu∑
k=0

||x̂+(k)− x̃p(k)|| + ||ŷ+(k)− ỹp(k)|| (20)

where
(
x̂+, ŷ+

)
and

(
x̃p, ỹp

)
are the state and output of

M(0̂
+
) eM(0̃

p
), respectively, and tu the duration of

the signal.
• The Recoverability Metric f

δ̂
(·) measures the capability

to estimate the correct parameter set given u and 0̃−.
Mathematically, f

δ̂
(·) is represented by the sum of the

relative error between the final estimation 0̂+ and the
reference 0̃p:

f
δ̂
(0̂+, 0̃

p
|fo) =

r∑
i=1

|0̂+i − 0̃i
p
|

|0̃i
p
|

(21)

where 0̂+i e 0̃pi represent the i-th parameter of 0̂
+
and

0̃p. This metrics evaluate the similarity given de result
provided by the former fo metric. It is important once it
is possible that completely different sets of parameters
generate the same output. Thus, this metric observes
how closely is the estimated parameters from the bench-
mark set.

The 2(·) penalizes a given signal u(4) if it leads
the system out of the desired operational constraints.
Mathematically:

2(x̃p, ỹp, tu|4)

:=


tu
K1
+
Kt fV (x̃p)
K1

+
Kt fV (ỹp)
K1

, if
∑

9(·) ≤ α

9(x̃p)+9(ỹp)+9(tu)+ 1, otherwise
(22)

where a space function fV used in experiment andK1 � Kt ,
9(·) is the penalty function and α ∈ R is a relaxation index.
It starts with α = 100 and, in each iteration, it is assumed that
α = 0.6α such that α −→ 0 at the end of the optimization
process. So, the function 2(·) is based on α-constrain [37].
The penalty function is given by the system limitations.

Finally, using the metrics, [28] proposed to minimize the
following objective function, composed of the weighted sum
of the three metrics presented:

f (4) = Min
4

(
k1fo(·)+ k2fδ̂(·)+ k32(·)

)
(23)

where k1, k2 and k3 ∈ R≥0 are constant weightings related to
metrics and established according to priority.

E. ROBUST SOESGOPE
The new approach for designing identification signals is a
derivation of the methodology originally developed by [28].
As [24] shows, the method is robust only when the initial
estimation is valid. However, when the initial point does not
represent the real system,the SOESGOPE does not provide
good results. Moreover, to improve [28] the work [24] has
proposed a sequential estimation methodology that performs
a given mission, analyze the data and adjust the initial guess
and operational limits. As this process is iterative until no
further missions are required, it may be not suitable for real
complex case scenarios. Fig. 7 where, due to uncertainties,
the initial start point 0̂−, the benchmark and the final a
posteriori parameter set are outside the trust regionwhich size
is related to the system’s complexity and nonlinearities.

FIGURE 7. Initial guess outside of the trust region.

In this context, the modeling of an ASV has a high level of
uncertainties in several hydrodynamic parameters, making to
have an initial guess in a good region. Therefore, to increase
performance and applicability, this work proposes a new
derivation of SOESGOPE by adopting:

1) Use ofmultiple identification signals instead of one sin-
gle signal. This approach increases the signal’s excita-
tion capacity, allowing to find the proper characteristics
of the nonlinear dynamics system (NDS);

2) Establishment of restrictions only for the states of
the NDS, concentrating the efforts into the signal’s
designing;

These modifications were designed to simplify the system
by reducing its complexity, enhancing the capability of avoid-
ing local minima and, therefore, making it more robust. By
adopting multiple smaller signals means that each optimiza-
tion problem will probably find a different local minimum
and thus, will havemore divisibility. This approach is a trade-
off between precision and solvability and can be better seen
in Fig. 8

Mathematically, the first proposal can be defined by
the follow hypothesis: ‘‘if a parametric estimate a pri-
ori 0̂− vector generates a set of well spatially distributed
benchmark parameters P⊕

= [ ˜0p1,
˜0
p
2, . . . ,

˜0
p
n] to be

applied toM(P⊕) it generates a series of signals U⊕
=

[u⊕1 ,u
⊕
2 , . . . ,u

⊕
n ] that are more likely to correctly estimate

R(0).’’
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FIGURE 8. Multiple Signal Generation.

The second modification changes the evaluation met-
ric 2(·) that now only establish constraints over the state
variables;

2(x̃p, ỹp|4) =:



∑N

k=1

∑n

i=1

|x̃pi (k)− xi|

|xi|
,∀x̂pi (k) > xi

+∑N

k=1

∑n

i=1

|x̃pi (k)− xi|

|xi|
,∀x̂pi (k) < xi

+∑N

k=1

∑m

i=1

|ỹpi (k)− yi|

|yi|
,∀ŷpi < yi

+∑N

k=1

∑m

i=1

|ỹpi (k)− yi|

|yi|
,∀ŷpi < yi

(24)

F. REAL PARAMETRIC ESTIMATION
After the design and application ofU⊕ inR(0), the next step
is the estimation of the vessel’s parameters. As explained in
subsections III-A and III-B, the ASV‘s identification problem
can have up to 21 parameters, depending on the topology and
hydrodynamic couplings.

The new estimation topology is different than the tradi-
tional ones found in the literature [12], [28]. Basically it
defines an iterative and recursive two-phase parametric esti-
mation solution with updates at the search limits parameters
at each new iteration.

The two-phase approach creates two solution spaces reduc-
ing the individual complexity of each one improving the final
convergence. This is a common tool in optimization [38], [39]
that is now introduced by this work to the specific problem
of parameter identification. Moreover, the limits are updated
by a continuous iterative process. This is done by shifting
the current range rather than just increasing it. Remembering
that, as shown in [28], the limits expansion has a negative
impact over the convergence process.

These concepts are detailed bellow.

1) Separate the original parameter set 0 into two subsets
(0̂α and 0̂β ) whose swap solution brings healthy diver-
sity to the optimization process;

2) Initialization of subsets: 0−
α and 0−

β
;

3) 1a Phase: ‘‘estimation of 0̂α , considering ˆ0
+

β fixed
variables’’;

4) 2a Phase: ‘‘estimation of 0̂β , considering 0̂+α fixed
variables’’;

5) Adjust the search limits of the parameters according to
the associated uncertainty. In this stage, the following
treatment was adopted for both sets:

0̂ =
(
1+

σ

100

)
0̂+ (25)

0̂ =
(
1−

σ

100

)
0̂+ (26)

where σ represents the parametric uncertainty vector,
0̂ represents the lower limit and 0̂ the upper limit.

6) Return to the step 3© until the established number of
iterations ends.

The final algorithm is shown below:

Algorithm 1 Two-Phase Parametric Estimation

Algorithm input information aboutR(0):
- Estimated a priori model:M(0̂

−
);

- States and sign of the experiment:
{
x̃r , ỹr

}
e u;

- Definition and initialization of parameter sets: 0̂−α e ˆ0−β

for i = 1 : N do F N : no of estimation iterations
Phase 01: [0̂+α ] = fest (x0, 0̂α

−
, xr, yr,u, ˆ0+β )

Phase 02: [ ˆ0+β ] = fest (x0, 0̂β
−
, xr, yr,u, 0̂+α )

Parametric Update: 0̂−α = 0̂
+
α e ˆ0−β =

ˆ0+β
Update of the limits of 0α e 0β

end for
Return: 0̂+ = [0̂+α ,

ˆ0+β ]

IV. RESULTS
In this section, it is presented the methods and applications
of rSOESGOPE over the ASV AERO4River. All results are
from real field missions and, due to the system’s complexity,
it is not possible to measure the performance by compar-
ing the individual parameters as the way it was done in
[28]. However, it is possible to analyze the real vessel’s
dynamics by comparing the linear and angular velocities
with the ones provided by the mathematical models. For
that, subsection IV-A shows the a priorimodel identification,
which provides the initial set 0̂−, subsection IV-B shows the
procedure to generate the set of optimal input signals U ,
subsection IV-C shows the estimation procedure used to find
0̂+ along with comparisons with the orginal SOESGOPE,
subsection IV-D compares the results ofM(0̂

+
) with the

real ASV, i.e. R(0), for different input signals. The input
signal uses all the eight available actuators on the ASV. For
better compression, a practical step-by-step of the presented
framework is described in Appendix A.

A. INITIAL PARAMETRIC ESTIMATION - AERO4RIVER
For this step it is necessary to have a simplified mathemat-
ical model Ms an initial estimate of the dynamic model
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TABLE 1. Vessel operating characteristics.

TABLE 2. Inertial parameters of the vessel.

TABLE 3. Summary of the Priori Estimation Ms(0̂
−

).

parameters set 0̂
−
. The operational and inertial parameters,

which are easier to evaluate through direct measures or
CFD simulations were obtained. The results are shown in
Tables 1 and 2, respectively.

To obtain the initial information about the main hydrody-
namic parameters for the simpler nine variables uncoupled
model, a test was performed using an APRBS based signal
[40]. The results are shown in Table 3.

B. ROBUST SIGNAL DESIGNING
The first study is the definition of the signal stages number,
i.e. the dimension of 4. The highest dim(4) is, the highest is
the solution space and more difficult is to find a good signal.
However, lower dimensions mean short excitation signals,
which could make it difficult to capture the correct dynamics.
To search for the optimum dimension size, each candidate
was tested by using initial parameter set 0̂− shown in table 3
along with 100 different perturbed benchmark 0̃p simulated
systems.

The 0̃p was generated from the uncertainty (50%)
attributed to the parameters, defined by the following
equation:

0̃
p
=

(
1+

σ

100
r1
)
0̂
−

(27)

where σ ∈ R represents the level of parametric uncertainty
between [0, 100] and r1 ∈ R9×1 is a vector of random
numbers with uniform distributions between [−1, 1].

TABLE 4. RMSE Result.

TABLE 5. Operational constraints.

FIGURE 9. APRBS Signal u⊕3 .

The results of related to the Root-Mean Square Error
(RMSE) for the best 3 signals of each run are shown in table 4.
It is possible to conclude that the best number of stages is
6 and, for values over 24, the optimization problem diverges.

Thus, the settings used to identify the dynamics of the real
AERO4River ASV by using the Robust SOESGOPE method
are:

• number of signals: 3
• PSO algorithm: population with 15 particles each one
encoding a 46 signal; 100 generations as a stopping
criterion;

• Interior Point Algorithm:fo < 10−2 stop criterion;
• Weightings of the objective function: k2 = 1, k3 = 20
and k1 = 200;

• 50 % uncertainty about 0̂
−

for the emulation of the
systemMs(0̃

p
);

• The operational constraints are shown in Table 5.

1) APRBS SIGNALS
Table 6 shows the initial perturbed parameter sets 0̃

p
1, 0̃

p
2 and

0̃
p
3, used along with406 signal configuration to evaluate u

⊕
1 ,

u⊕2 and u⊕3 . The excitation characteristics of each signal are
shown in Figures 9, 10 and 11, respectively.

C. COMPLETE MODEL PARAMETRIC ESTIMATION
After generating U⊕

= [u⊕1 ,u
⊕
2 ,u

⊕
3 ], the next step is its

application inR(0,U⊕) for the parametric estimation (PE)
using the methodology described in the section III-F.
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TABLE 6. Optimization Results - P⊕.

FIGURE 10. APRBS Signal u⊕2 .

FIGURE 11. APRBS Signal u⊕3 .

The first task is to define the breaking sets. The 3 DoF
with all possible couplings provides a model with 27 hydro-
dynamic parameters. For the sets definition, three scenar-
ios were analyzed as described below and presented in the
Table 7:

1) Model 0 (M0): original SOESGOPE;
2) Model 1 (M1): independent sets, 0α groups the param-

eters of greatest contribution in the dynamics of ASV
and 0β the others parameters related to couplings;

3) Model 2 (M2): dependent sets, whose common ele-
ments are the coupling parameters between the lateral
and yaw movements and nonlinear damping, adding
to 0α the other parameters of direct influence on the
dynamics of ASV and to 0β the remaining parameters;

4) Model 3 (M3): dependent sets, where the elements in
common are the parameters of greatest contribution to
the dynamics of the vessel, adding to 0α and 0β the
other parameters of drag and added mass, respectively;

Once defined the parameters sets (0α,0β ), the next step
is to excite the real system R(0) with one given input

TABLE 7. Parameters set of study.

FIGURE 12. Study of parameter sets.

FIGURE 13. Evolution of fest .

FIGURE 14. Linear Velocity RSE Results for Optimal Excitation Signal.

signal and to compare the convergence process of each set
against the traditional Single-Phase PE. parameter estimation
approach. Figure 12 shows these results for R(0,U⊕),
and it is possible to notice that the configurations M2 and
M3 proved to be superior to the traditional method. Note that
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FIGURE 15. Estimated trajectory states using U⊕.

from 1st iteration, the traditional method did not improve,
suggesting the meeting of a local minimum. Different fact
from study M3 (PE method in two phases) whose iterative
process was beneficial up to approximately 60th iteration,
obtaining results superior to all studies.

The Two Phase PE technique convergence process is
shown in Fig. 13. Note that the effect of the approach stimu-
lates a slight disturbance in the optimization of fest , providing
beneficial effects to the process and mitigating premature
convergence to minimum locations by emulation a predictor-
corrector optimization algorithm.Moreover it is observed that
as the iterative process continues, both phases converge to
close values.

The final parameters sets identified by each approach using
signal U⊕ is shown in table 8

Figure 15 show a comparison between the velocities from
each DoF (u, v, r - surge, sway and yaw) obtained from the
modeling approaches (M0,M1,M2,M3) and the real ASV

AERO4RIVER for signal U⊕
= [u⊕1 ,u

⊕
2 ,u

⊕
3 ]. In this

figure, the signal U⊕ was broken in three just to analyze the
results for each individual part.

Analyzing the states in Fig 15 it is possible to see that
the model obtained was able to identify the main dynam-
ics of the 3 DoFs. Note that the DoF of surge and yaw
obtained satisfactory results, while the DoF of sway diverged
a little from the desired movement at times. This fact may
have happened due to the low speed profile in the estima-
tion, the presence of structural asymmetries and the lack
of roll and pitch modeling not incorporated in the priori
model.

It is also possible to see that the rSOESGOPE obtained
better results, mainly in the DoFs relative to the frontal and
lateral movements. In the yaw the original method was also
efficient. In these movements, the new approach presents
behaviors closer to the reality of the real vessel and very
consistent in all experiments.
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TABLE 8. Parametric Estimation Results from R(0, U⊕).

TABLE 9. Linear Velocity RMSE Results for Optimal Excitation Signal
(m/s).

Tables 9 and 10 show the final RMSE results considering
the linear (m/s) and angular (rad/s) dynamics. These results
were divided by the individual signals (u⊕1 ,u

⊕
2 ,u

⊕
3 ) with

U⊕ consolidating the final performance. Considering the
linear dynamics, it is possible to notice that dealing with the
couplings has improved the performance in each individual
section. Moreover, the final rSOESGOEPE, considering M3,
is 20% better than its original version. A small enhancement
was also observed in the yaw dynamics, resulting in a better
performance of 3%.

The complete Root Square Error (RSE) for the signals can
be seen at Figs 14 and 16. The proposed modeling had lower
dispersion around the RMSE result with the M3 approach
been a little superior than its peers. The rSOESGOPE RMSE
final result is aroud 0.3271m/s and 0.1352rad/s for the lin-
ear and angular dynamics. Considering the maximum linear
velocity as 3m/s this result represents an error about 11%
of the real boat. Taking into account that it is a real open
field experiment and so, subject to small but existing external
forces, these are excellent results.

TABLE 10. Angular Velocity RMSE Results for Optimal Excitation Signal
(rad/s).

FIGURE 16. Angular Velocity RSE Results for Optimal Excitation Signal.

FIGURE 17. Linear Velocity RSE Results for Validation Tracks (m/s).

D. MODEL VALIDATION
Normally, works that deals with parametric identification that
demonstrate the results in three ways; a) using the same train-
ing excitation signal for training and validation, b) different
models for each individual signal or c) using well controlled
experiments [2], [16], [18], [27], [32], [41], [42]. However,
to demonstrate the practical performance of the proposed
approach, two different sets were designed. The first, pre-
sented in section IV-C, represents in a machine learning
taxonomy the training step. The second one, presented in this
section, is the validation. Normally, training and validation
signals are similar. However, for this domain, signals that
are good for excite the system are likely not related to real
missions. The other way is also a problem; real missions may
not excite the system to capture its dynamics.

Thus, to validate the estimated models, this work will
use maneuvering signals from three open looping field mis-
sions emulating real scenarios. Although the environment is
a closed lake, noises such as minor water currents and wind
are still present.
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FIGURE 18. Excitation Signals and Estimated trajectory states for Tracks 1, 2 and 3.

1) DESIGNED TRACKS
The following tracks were heuristically designed to test the
models. Tracks 1 and 2 represent real scenario inspections
and track 3 emulates a feedback control output.

1) The first validation track consists of a strong frontal
movement with minor yaw adjustments.

2) The second validation scenario analyzes the dynamics
of the frontal and yaw movement together, simulating
a zigzag movement.

3) The third and last scenario equally excites all dynamics
in a pseudo-random movement emulating the output of
a feedback control output for a given setpoints set.
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TABLE 11. RMSE erros from the Estimated trajectory states - Linear
Velocity (m/s).

TABLE 12. RMSE erros from the Estimated trajectory states - Angular
Velocity (rad/s).

FIGURE 19. Angular Velocity RSE Results for Validation Tracks (rad/s).

Figure 18 shows the input signal τ = [Fx ,Fy, τψ ] for
each track; they directly feeds the control allocation module
in a open looping strategy. The real model dynamics for the
surge, sway and yaw velocities is represented by (u, v, r)
respectively.

2) INTEGRATED ANALYSIS
Tables 11 and 12 show the RMSE results for the linear and
angular velocities considering the four modeling strategies,
and the three designed tracks. Models M2 and M3 have
presented results almost up to 40% better than the original
SOESGOPE (M0). The only scenario where the new mod-
eling was inferior was in the M1 approach during track 1.
In this case the surge dynamics was not properly captured.
This is an important result once indicates that although the
complete model is important, the optimization strategy used
to solve the problem also makes the difference. Considering
the angular velocities all models were able to capture well the
dynamics in all tracks.

Figures 19 and 19 show the RSE result for the linear and
angular velocities. Moreover, the error distribution in these
twomodels were also more concentrated thanmodelsM0 and

M1 for all tracks. The highest error of modelsM2 andM3was
lower than 1.45 m/s in the linear velocity. Disregarding the
outliers, all models were able to capture the angular dynamics
efficiently.

V. CONCLUSION
This work has presented a series of improvements for model-
ing and identification of small ASVs given the uncertainties
and couplings arising from disturbances of the non-modeled
dynamics.

Considering the ASV’s dynamics, different from tradi-
tional approaches, all coupling variables were modeled and
identified.Moreover, it was demonstrated that, for small ASV
the couplings have a significant impact over the final model.

For the excitation signal, it was proposed and demonstrated
that it is better, for the presented problem, to use a simplified
mathematical modeling system. This approach reduces the
solution space and is still able to capture the main dynam-
ics of the ASV. Furthermore, it was also demonstrated that
the signal size is important for optimal performance. While
longer signals could provide richer excitation characteristics,
the nonlinear solution space grows exponentially, making
difficult for a traditional optimization algorithm to find a good
instance.

Considering the final parameter estimation it was proposed
to break the system in two overlaying sets to improve the
convergence process. Although this approach is used in other
domain problems such electrical power systems, it was intro-
duced here for the problem of parametric estimation. More-
over, a new dynamic constraints range control was introduced
and tested. The results of these two approces toghter have
demonstrated that, by using two smaller but interconnected
solution spaces and limiting its size through the desired
ranges, the convergence process is slower, however with bet-
ter results.

The final mathematical model was also tested in a real
3DoF ASV in a closed harbor environment operating differ-
ent field missions. The results have shown a high similarity
between the model developed by the proposed approach and
the real system. This enhanced model can be now used to
design robust control strategies and fault-tolerant systems to
use the ASV in more hostile and demanding environments.

Finally the trade-off between precision and solvability
was fully discussed and demonstrated during all this work
and, although no fixed rule was proposed, it can be further
exploring and testing several different ideas in future works.
For instance, to study the performance of more robust multi-
modal optimization algorithms.

APPENDIX A
Algorithm 2 shows the practical high-level procedure to use
the proposed framework. Although it was developed and
tested for an ASV it can also be applied in asymptotically
stable dynamical systems that can operate in an open looping
strategy.
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Algorithm 2 : General Step by Step Practical Procedure
1: Generate the simplifiedMs and completeM mathe-

matical models of the real dynamical system.
2: Obtain the initial parameter estimation 0̂

−
for the simpli-

fied model through simulation softwares (openfoam R©,
solidworks R©, etc.), real measures or analytical proce-
dures.

3: Define practical operational constrains and a set of vali-
dation signals tracking T D [tr1, tr2, . . . , trn].

4: Use the complete rSOESGOPE along with the simplified
model to find U⊕

= [u⊕1 ,u
⊕
2 , . . . ,u

⊕
n ].

5: Apply U⊕ and T in the real dynamical system R(0)
by using an open looping approach, avoiding as much
external disturbances as possible.

6: Use R(0,U⊕),M and the rSOESGOPE estimation
module to find 0̂

+
.

7: UseM(0̂
+
,T) andR(0, T) to validate the estimated

parameters.
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