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ABSTRACT Handover (HO) is one of the key aspects of next-generation (NG) cellular communication
networks that need to be properly managed since it poses multiple threats to quality-of-service (QoS) such
as the reduction in the average throughput as well as service interruptions. With the introduction of new
enablers for fifth-generation (5G) networks, such as millimetre wave (mm-wave) communications, network
densification, Internet of things (IoT), etc., HO management is provisioned to be more challenging as the
number of base stations (BSs) per unit area, and the number of connections has been dramatically rising.
Considering the stringent requirements that have been newly released in the standards of 5G networks,
the level of the challenge is multiplied. To this end, intelligent HOmanagement schemes have been proposed
and tested in the literature, paving the way for tackling these challenges more efficiently and effectively. In
this survey, we aim at revealing the current status of cellular networks and discussing mobility and HO
management in 5G alongside the general characteristics of 5G networks. We provide an extensive tutorial
on HO management in 5G networks accompanied by a discussion on machine learning (ML) applications to
HO management. A novel taxonomy in terms of the source of data to be utilized in training ML algorithms
is produced, where two broad categories are considered; namely, visual data and network data. The state-of-
the-art on ML-aided HO management in cellular networks under each category is extensively reviewed with
the most recent studies, and the challenges, as well as future research directions, are detailed.

INDEX TERMS Handover, machine learning, mobility management, fifth generation.

I. INTRODUCTION
Wireless communication networks have been witnessing an
unprecedented demand in terms of bandwidth and number
of connections in this so-called information age—in par-
ticular the age of big data1 where data is regarded as new
oil [1]. It is reported in the Ericsson Mobility Report that
the mobile network traffic soared by 56% in the first quarter
of 2020 [2], indicating the imminent issue that needs to
be addressed. There are strong evidence for the correlation

The associate editor coordinating the review of this manuscript and
approving it for publication was Wenjie Feng.

1Steve Lohr, The Age of Big Data, The New York Times, 11 Feb. 2012.
Available online at https://www.nytimes.com/2012/02/12/sunday-review/
big-datas-impact-in-the-world.html. Accessed on 25 Oct. 2020.

between such growth in the global data traffic and the pro-
liferation of emerging applications, including tactile-internet,
virtual reality, high-definition video streaming. For example,
we learnt from the same report [2] that video streaming alone
constitutes more than half of the mobile data traffic, and
there is a tendency towards higher resolutions—putting the
issue at an alarming level in terms of data demand. This,
in turn, poses serious challenges to legacy networks and paves
the way for the fifth generation of cellular networks (5G),
which offers a thousandfold increase in capacity [3]–[5].
As such, enhanced mobile broadband has been included
in 5G New Radio (NR) as one of the scenarios—along
with ultra-reliable low-latency communications (URLLC)
and massive machine-type communications (mMTC)—in
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order to support the aforementioned bandwidth-hungry
applications [6].

On the other hand, Internet of things (IoT) devices have
already pervaded our daily life, as they can be seen in numer-
ous domains, including agriculture [7], healthcare [8], smart
living [9]–[11], and smart city [12], to name a few. In the case
of smart city, for example, city waste, building health moni-
toring, traffic, etc., aremanaged smartly using IoT technology
by deploying the IoT devices to the required places accord-
ingly [12]. A good example of this can be found in the publi-
cation by the Mayor of London on the road map for smart
city agenda2 with the slogan ‘‘Smarter London Together’’,
which dictates a heavy use of IoT technology in London to
make the City more efficient and to boost the standard of
living of its residents. IoT technology owes this popularity
to the promises in terms of making our everyday life as well
as industrial processes more manageable and efficient with
continuous monitoring and quick response [13]–[15]. The
alarming point here is that IoT devices are becoming more
pervasive each year and are projected to gain more dramatic
prevalence in the near feature, albeit a slight deceleration due
to COVID-19 pandemic [2].

The challenges of 5G and beyond (B5G) cellular commu-
nication networks, therefore, are primarily twofold: 1) the
bandwidth demand due to more advanced smartphones with
more computational capabilities, and the rise in data demand-
ing applications, such as online gaming, augmented real-
ity, etc. [16]; 2) the number of cellular connections that is
exponentially growing mainly due to IoT technology. Various
solutions have already been proposed in order to combat these
issues: network densification and millimetre wave (mm-
wave) communications are among the most important can-
didates for network capacity enhancement [17]. Network
densification is a phenomenon, whereby the base station (BS)
density in a given environment is increased in order to provide
more radio access network (RAN) capacity. This concept
mainly uses the idea of frequency reuse, which states that
the frequency spectrum of one BS can be reused by other
BSs as well only if they avoid interfering with each other.
This avoidance is provided by lowering the transmit power in
order to reduce the footprints of BSs, so that the overlapping
regions are minimized—the less footprint of BSs results in
more BSs deployment opportunity, which then leads to more
RAN capacity. mm-wave, on the other hand, offers a great
enhancement in the RAN capacity of cellular networks by
exploiting the abundant bandwidth available in the mm-wave
frequency spectrum. Moreover, as antenna sizes reduce with
increasing carrier frequency, the use of mm-wave commu-
nication enables Multiple-Input Multiple-Output (MIMO)
technology, which in turn enhances the reliability and capac-
ity of the network [18]. In other words, the capacity enhance-
ment supplied by mm-wave communications are mainly due

2The road map can be found at the following link. Accessed on
22/11/2020.
https://www.london.gov.uk/sites/default/files/smarter_london_together_v1.
66_-_published.pdf.

to two factors: 1) increased bandwidth made available, and
2) MIMO technology [18], [19].

Even though these are sensible and effective methods of
enhancing the capacity of cellular networks, a serious side
effect immediately emerges: mobility management [16]. The
common ground for network densification and mm-wave
communication concepts is that both lead to more frequent
handovers (HOs), which is defined as the user equipment’s
(UE’s) change of channel, resource, or cell3 associationwhile
keeping an ongoing call or session. The underlying reasoning
behind this consequence is mainly due the reduction of the
footprint of BSs. First, in the case of network densifica-
tion, the footprint is deliberately reduced with the use of
small cells (SCs) in order to facilitate more BS deployments
through frequency reuse. Second, concerning the mm-wave
communications, the footprint of BSs reduces due to the
higher propagation losses incurred at mm-wave frequen-
cies (more dependency on line of sight (LOS)). Furthermore,
the increased amount of bandwidth also shortens the range of
mm-wave signals [20].

As such, the frequency of HOs grows due to the smaller
footprints of BSs: mobile UEs would need to perform more
HOs, given that there are now more BSs in a certain environ-
ment. Given that the average throughput of a user is a function
of the number of HOs with an inverse proportionality [21],
this issue has severe consequences in terms of communica-
tion quality—degrades the quality-of-service (QoS). Besides,
as service interruptions are experienced during HOs, the user
satisfaction rates are also affected negatively, undermining
the great promises of 5G networks. These adverse effects
are mainly cause by two reasons: 1) the number of HO
experienced during a call or data transfer session; and 2) the
HO cost incurred for each HO experienced. In this regards,
the research activities on HO management have predomi-
nantly focused on these two aspects, such that minimizing
the number of HOs and/or the cost incurred per HO.

Although the figures in terms of the growing number
of IoT devices and BSs along with increasing demand for
data-oriented applications have been discussed negatively so
far, there are some positive impacts as well. The volume of
data being generated by cellular networks is also growing
considerably, making it a gold mine for network operators to
exploit in such a way that more efficient management can be
facilitated [16], [22]–[24]. In other words, although growing
network sizes results in more complexity, the immense data
volume generation becomes a key to alleviate such complex-
ity: this so-called challenge brings its own opportunity and
solution. In that regard, machine learning (ML) techniques
have gained significant attention in the field of wireless com-
munications, since such amount of data can be very well
utilized for training ML models, which could help the net-
works gain experience and take proactive and more informed
actions.

3Cell and BS are interchangeably used throughout this paper unless stated
otherwise.
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Therefore, in this survey, we focus on the application of
ML algorithms to HO management in cellular networking
with special attention aimed at 5G and B5G networks in order
to keep the discussion timely as 5G has already become a
reality, and visionary works about 6G has started to appear in
the literature [25], [26], [26]. One of the common grounds
of these studies, which try to plot the framework of 6G,
is that they all agree that artificial intelligence (AI) and
subsequently ML will play a key role in 6G networks as
intelligence is expected to lie at the core of 6G networks.
Moreover, terahertz (THz) frequencies have been projected
to be used in 6G due to the abundance of the bandwidth
available in these frequencies [26]. However, this makes the
HO management concept even more crucial as THz band
includes much higher frequencies that mm-wave band, and
therefore the smaller footprint (and more frequent HOs) will
be much more significant. To this end, we reviewed the
state-of-the-art on ML-based HO management in cellular
networks (with a special focus to 5G and B5G) by taking
into account the data used during the implementation of
such algorithms; a top-level taxonomy on the source of data
generation is provided with two primary classes: visual data
andwireless network data aidedHO optimization. Visual data
refers to the data that is captured from the environment of
interest in a visual format, such as image and video. The
data in visual format is then used to assist the HO process
by, for example, detecting objects/blockages affecting signal
propagation [27]. Wireless network data, on the other hand,
is any kind of data that can be acquired by the wireless
network, including received signal strength, channel state
information, BS traffic load, neighbouring information, user
locations, etc. As such, in addition to reviewing the most
recent literature, to the best of the authors’ knowledge, this is
the unique attempt to survey the visual data assistance in HO
management. Furthermore, discussions on HO management
of legacy networks, including 3G and 4G, are omitted in this
article, since a plethora of works surveying such networks are
already available in the literature [5], [28]–[30].

A. OBJECTIVES AND CONTRIBUTIONS
As HO management is deemed as one of the most severe
design challenges of 5G and B5G mobile communication
networks, in this survey paper, we aimed at highlighting the
current status of cellular communication networks as well
as forthcoming issues related to HO management. More-
over, provided that ML assisted wireless communications has
been projected to be at the heart of network management,
this survey focuses primarily on the ML applications to HO
management in the next generations of cellular networks.
In this regards, the mobility management in 5G networks is
thoroughly discussedwith a special interest given to HOman-
agement in order to reveal the distinctive mobility manage-
ment policy included in 5G standards, which makes it quite
different from the legacy networks. Furthermore, we present
the main characteristics of 5G networks, including mm-wave

communications, heterogeneous networking, IoT, vehicu-
lar communications, device-to-device communications, and
high-speed train communications, that make the HO man-
agement even more challenging compared to the legacy net-
works. One of the most distinctive contributions of this paper
is that we provide an outlook in terms of HO management
in B5G, especially 6G where THz communications is pro-
jected to be a key component. HO management in THz
communications is particularly covered in this work, since
the transmission range at THz frequency is quite short due
to the large-scale molecular absorption loss [31], increasing
the likelihood of HOs. Furthermore, as AI is considered to be
very instrumental in designing 6G networks [25], [26], [26],
the validity of this works spans from 5G to B5G networks.
In this regard, to the best of the authors’ knowledge, this paper
is one of the few attempts discussing the HO management in
B5G networks, and with this we intend to produce a timely
and novel survey paper that both reveals the current status and
mentions futuristic applications/technologies.

After that, ML algorithms are categorized as supervised,
unsupervised, and RL and briefly introduced, followed by
discussions on ML-based HO management. Through these
discussions, we aimed at providing a basic understanding of
the generic principles of the most popular ML algorithms as
well as how those algorithms can be applied to HO man-
agement process in cellular networks. Besides, the state-
of-the-art about ML-aided HO management is extensively
surveyed by reviewing the most recent studies in order to
showcase the current status and opportunities. A top-level
taxonomy is followed while reviewing the state-of-the-art,
such that the ML-aided HO management methodologies are
classified based on the source of the data they utilize. As such,
two broad categories are encompassed: visual data based and
wireless network data based HO management techniques.
With this novel taxonomy, the major objective is to rec-
ognize the visual data aided HO management schemes—
which has been long overlooked in the literature—by giving
it a special place along with the traditional network data
driven HO schemes. On the other hand, for the network-data
basedHOmanagement, themost recent works are extensively
reviewed under certain use cases: beam selection and BS
selection. In addition, we also briefly discuss how intelligent
HO schemes can help in emergency situations in the case
of mobile clinics, ambulances, and remote hospitals, which
could be also beneficial for pandemic scenarios, such as the
current COVID-19 pandemic.

Another objective of this paper is to present the grand
challenges for the application of ML algorithms to HO man-
agement, through which we aimed to address the current and
future requirements of such implementations, and to identify
possible research directions in order to make the ML inte-
gration to HO management in 5G and B5G more efficient,
effective, and feasible. Therefore, with this section, we try to
canalize the research focus to the identified topics to open a
road for practical solutions.
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B. RELATED WORKS
ML applications to self-organizing cellular networks were
surveyed in [32], in which the authors provided in-depth
coverage on the ML algorithms along with the characteris-
tics of self-organizing networks. The authors presented the
ML applications to cellular networks under the categories of
the major functionalities in self-organizing networks: self-
configuration, self-optimization, and self-healing. Various
use-cases under each of the aforementioned functionality
were provided, leading to a comprehensive picture of ML
implementations to cellular networks. Thus, while this work
focused on ML implementations and included a brief discus-
sion on HO management, it did not primarily focus on HO
management in 5G networks; instead, it drew a comprehen-
sive framework for ML applications to multi-domain cellu-
lar networks, such as radio resource management, anomaly
detection, backhauling, etc.

The work in [33] focused on the use-cases of mobility
predictions, and provided an extensive review on the charac-
teristics of mobility predictions (e.g., mobility predictability,
user location, prediction output, and performance metrics)
along with the methods of mobility prediction. Even though
the review was not meant for ML alone, the methods covered
are predominantly ML algorithms, hence it can be classified
as focusing on ML. However, the scope of the work is not
limited to HO management—albeit being included as one
of the use-cases—, and visual data driven HO management
is mostly ignored. The authors in [28] presented a brief
survey on HO management in 5G and B5G networks, where
they provided a background on 5G networks along with
some enabling technologies, such as mm-wave communica-
tions, heterogeneous networks (HetNets), software-defined
networking, andML.Although themain focus of their work is
HO management in the next generation of cellular networks,
the authors reviewed the literature without extensive discus-
sions. ML implementations were included in general, and the
authors failed to demonstrate an in-depth analysis of how
ML can be incorporated in HO management in 5G and B5G
networks. In addition, the visual data aided HO management
and HO in emergency scenarios were completely overlooked
in their work.

A very comprehensive and detailed surveywas given in [5],
in which HO management was elaborated for both long-term
evaluation (LTE) and 5G networks with comparative dis-
cussions. HO procedures in both LTE and 5G were pre-
sented step-by-step, and HO types were covered in a detailed
manner. The literature was also reviewed without any par-
ticular attention to ML algorithms; as such, even though
some ML applications were mentioned while reviewing the
state-of-the-art methods, the scope of the paper was solely
HO management, not the ML applications to HO manage-
ment. Similarly, an extensive review of mobility manage-
ment in ultra-dense networks was given in [29]. In particular,
the authors included a meticulous tutorial on the mobility
management in cellular networks, followed by discussions

on proactive mobility management in the next generations of
cellular networks, which comprises of a brief introduction to
various ML techniques. Furthermore, the authors included an
analysis of AI assistance inmobility management, where they
mainly reviewed the literature by identifying the employed
AI methods and use-cases. This work seems to be one of
the most overlapping survey papers with our present work;
however, the focus of the survey in [29] is broader as it tries
to encompasses every single issue in mobility management.
In our present work, on the other hand, the scope is kept
limited to HO management in order to make the review
more comprehensive in terms of HOmanagement. Moreover,
ML application is not the main focus in [29], whereas, in our
present work, we try to exclusively analyse the integration of
ML to HO management in cellular networks by discussing
ML-oriented opportunities as well as challenges. Besides,
visual data based HO management parts covered in our
present work constitutes one of the most important novelties
and contributions in this present work, as it is not available
in [29] or any other mobility or HOmanagement based survey
paper in the literature.

Another comprehensive survey was conducted in [34]
for mobility management in 5G HetNets. In particular,
the authors provided a detailed tutorial on radio resource
control (RRC) states included in 5G NR along with the
initial access and reachability. RRC protocol is essen-
tial for cellular communication networks, and it performs
several key functionalities including connection establish-
ment/release, configuration/establishment/release of radio
bearer (RB), broadcasting of system information, etc. This
topic is more elaborated in Section III-A. Connected mode
mobility (i.e., HO) with various types of HOs were also
elaborated, followed by beam level mobility management
issues. The ML implementations were not the main focus of
their work, and thus the scope was primarily kept on mobility
management. As such, sinceMLwas not the target, the source
of data generation (visual data and wireless network data)
were also not discussed. The authors in [35] analysed fem-
tocell HOs in HetNets and provided a detailed background
on LTE HO procedure with a particular interest to femtocell
HOs. After identifying some challenges with the HO deci-
sion process in two-tier networks, an inclusive review was
conducted on the existing HO decision techniques. Although
the paper was meant for 5G networks, the main story was
originated around LTE networks, as there was no particular
discussion on the mobility management in 5G networks. In
addition, the scope was quite limited, as only HO decision
techniques were discussed, and even though some of the
cited literature included ML implementations, ML was not
the main consideration.

A succinct survey on HO-oriented mobility management
was conducted in [30], where the authors provided very
generic discussions on mobility and HO mechanisms in Het-
Nets. In particular, mobility management was divided into
location management and HO management, and each group
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was elaborated subsequently. However, 5G or B5G cellular
communication networks were not mentioned, and no special
HO management scheme, such as ML-based HO manage-
ment, was provided. Therefore, our present survey on intelli-
gent HO management is more advanced compared to the one
in [30] in terms of style, the methodology being followed, and
comprehensiveness. Another brief survey on mobility man-
agement in 5G networks was given in [36]. An overview of
the generations of cellular networks from 1G to 5G was first
presented, followed by 5G structure and mobility manage-
ment related discussions in 5G networks. HO management
was also reviewed by introducing different types of HOs as
well as HO parameters. However, the discussions were kept
very short, and an in-depth coverage was not provided for 5G
networks or mobility management. Furthermore, the author
did not intend to make the survey around the ML applications
to HO management.

The authors in [37] produced an extensive survey onmobil-
ity management by questioning the readiness of the state-of-
the-art solutions for the next-generations of cellular networks,
namely 5G and B5G. First, the requirements of the next
generations of cellular networks in terms of mobility man-
agement were first identified, followed by an introduction
of their own qualitative performance metrics for the existing
mobility management solutions. Moreover, a discussion on
the effectiveness and sufficiency of the standards for both
legacy networks and 5G as well as the research activities
for meeting these requirements was included in their work.
Lastly, potential enabling technologies and existing chal-
lenges were reviewed in detail. Compared to our present
survey; i) the authors did not focus only on HO management,
ii) ML applications were not mainly iterated although a mild
discussion on deep learning was included, and iii) visual data
assistance in HOmanagement in addition to HOmanagement
in emergency scenarios were not covered.

A tabular overview of the relevant survey papers on mobil-
ity and HO management is given in Table 1, where the
included works are analyzed in terms of their focus on 5G
and B5G networks, HOmanagement, ML applications to HO
management, the use of visua data for HO management, and
HO management in emergency scenarios.

C. PAPER ORGANIZATION
The reminder of the paper is structured as follows: the basics
of 5G networks along with mobility management-oriented
characteristics of 5G networks, including HetNets, IoT,
vehicular communications, device-to-device communica-
tions, and high-speed train communications, are presented in
Section II, while Section III provides an inclusive discussion
on the mobility management in 5G. Section IV provides a
comprehensive tutorial on HO management in 5G networks
by detailing the HO types, requirements and performance
metrics, and radio resource management. ML applications
to HO management is elaborated in Section V with a brief
introduction to different branches ofML (namely, supervised,
unsupervised, and RL), followed by an extension literature

review on the state-of-the-art in ML-based HO manage-
ment techniques. Section VI highlights the challenges which
ML-assisted HO management schemes would confront, and
identifies future research directions. Lastly, Section VII con-
cludes the paper with concluding remarks.

NOMENCLATRURE
3GPP 3rd Generation Partnership Project
5G Fifth Generation
A2C Advantage Actor-Critic
AI Artificial Intelligence
AMF Access Mobility Function
ANN Artificial Neural Network
AS Access Stratum
AUSF Authentication Server Function
B5G Beyond 5G
BBU Baseband Unit
BS Base Station
CCTV Closed-Circuit Television
CMAB Contextual Multi-Armed Bandit
CMAS Commercial Mobile Alert System
CN Core Network
CNN Convolution Neural Networks
CP Control Plane
CQI Channel Quality Information
CSI Channel State Information
D2D Device-to-Device
DRX Discontinuous Reception
DSRC Dedicated Short-Range Communication
E-UTRA Evolved Universal Mobile

Telecommunications System (UMTS)
Terrestrial Radio Access

EM Expectation-Maximization
EPC Evolved Packet Core
ETWS Earthquake and Tsunami Warning Service
FDD Frequency Division Duplex
HetNets Heterogeneous Network
HO Handover
HOO Hierarchical Optimistic Optimization
HST High Speed Train
ICA Independent Component Analysis
IoT Internet-of-Things
IP Internet Protocol
KNN K -Nearest Neighbour
KPI Key performance indicators
LIDAR Light Detection and Ranging
LOS Line-of-Sight
LTE Long Term Evaluation
M2M Machine-to-Machine
MIMO Multiple-Input Multiple-Output
mm-wave Millimetre Wave
MME Mobility Management Entity
mMTC Massive Machine-type Communications
MR Measurement report
NAS Non-Access Stratum
NEF Network Exposure Function
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NextGen Next Generation
NR New Radio
NRF NR Repository Function
NSI Network Slice Instance
NSSF Network Slice Selection Function
PCA Principal Component Analysis
PCF Policy Control Function
PCI Physical Cell Identifier
PPO Proximal Policy Optimization
QoS Quality-of-Service
RAI RAN Area Identifier
RAN Radio Access Network
RAT Radio Access Technology
RB Radio Bearer
RNA RAN-based Notification Area
RRC Radio Resource Control
SCs Small Cells
SGW Serving Gateway
SMF Session Management Function
SSB Synchronization Signal Block
SVM Support Vector Machine
TAI Tracking Area Identifier
TDD Time Division Duplex
UCB Upper Confidence Bound
UDM Unified Data Management
UDR Unified Data Repository
UDSF Unstructured Data Storage Function
UE User Equipment
UP User Plane
UPF User Plane Function
URLLC Ultra-Reliable Low-Latency

Communications
V2X Vehicle-to-everything
XGBOOST Extreme Gradient Boosting

II. CHARACTERISTICS OF 5G AND BEYOND: SOME
GENERAL CONCEPTS
This section presents general concepts behind 5G and B5G
system in a cellular network. A short review of the architec-
ture, channel characteristics and various features and appli-
cations of 5G are presented.

A. 5G SYSTEM
Although this survey focuses on HO management in NR,
it is useful to provide a brief overview of 5G’s architecture,
interfaces and connections to serve as a background. The
Next generation (NextGen) architecture is based on network
function (NF) instead of a network entity (NE) that is obtained
in LTE, according to 3GPP specification for LTE and new 5G
systems [38]–[40]. In LTE’s core network (CN) also known
as evolved packet core (EPC), the appropriate network pro-
tocols and interfaces are defined among the entities for each
network entity (e.g. serving gateway (SGW) and the mobility
management entity (MME)). In contrast, network protocols
and interfaces in 5G CN (5GC) are specified for each NF. The
NF is the processing functionality in 5G networks, and it can

be implemented in three ways [39]: 1) as a network element
on dedicated hardware; 2) as a software instance running on
dedicated hardware; or 3) as a virtualized function built on
an appropriate platform, such as a cloud infrastructure. The
advantage of NF over NE is that it dramatically decreases
latency. This is achieved by carefully controlling the UE
mobility (e.g. tracking and paging procedures) scheme and
separating the user plane (UP) (also known as data plane is the
dedicated channel that carries the network user traffic) from
the control plane (CP) (which is responsible for routing data
traffic through the network and for carrying out other control
activities) to ensure that each plane’s resources are indepen-
dently scaled and that more NF can be deployed in a dis-
tributed manner [41]. Fig. 1 shows the 5G system architecture
along with NFs and reference points. A reference point shows
the interaction between the services in two NFs (e.g. N4 is the
reference point that connects UPF and SMF). The NF in the
UP consists of user plane function (UPF) acting as a gateway
for the UE traffic passing through RAN to external networks
such as the Internet. It is responsible for packet routing and
forwarding, packet inspection, QoS handling, packet filter-
ing, and traffic measurement. Several components of NFs
run in the CP. Some of the components are: access mobility
function (AMF), session management function (SMF), net-
work slice selection function (NSSF), unified data manage-
ment (UDM), policy control function (PCF), authentication
server function (AUSF). For further information on these
functions, the reader is referred to [41]–[43].

FIGURE 1. The 3GPP-5G architecture with reference points adapted
from [41].

Overall, 5G architecture is divided into two parts, as shown
in Fig. 2. The first part is the CN whose components have
just been discussed while the second part is NextGen Radio
Access Network (NG-RAN). The NextGen NodeB (gNB)
serves as the access point for the 5G network, transmitting
CP and UP traffic originating from N1, N2, N3 reference
interfaces as shown in Fig 1. The purpose of the ng-eNB is
to provide Evolved Universal Mobile Telecommunications
System (UMTS) Terrestrial Radio Access (E-UTRA) UP and
CP protocol terminations for UEs. In addition, 5G technology
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TABLE 1. An overview of the related survey papers on mobility and HO management.

FIGURE 2. Overall architecture of 5G system showing network elements
and interfaces based on the logical CN/RAN split, as in [38].

also supports LTE via ng-eNB. It allows existing 4G radio
networks to coexist with the gNB. For example, if both LTE
and 5G radio coverage are available, a 5G UE may use either
LTE and 5G radio resources. Therefore, when there is no

5G coverage, LTE serves the 5G UE using the ng-eNB. The
connection interface between gNB and ng-eNB is known as
an Xn interface, and NG interface is the connection interface
between gNB/ng-eNB and CN more specifically to the UPF
the NG user-plane part (NG-U) and to the AMF the NG
control-plane part (NG-C). The last interface that needs to
be mentioned is the radio frequency interface, which is the
circuit between the UE and the active gNB or ng-eNB which
is also known as Uu interface. This interface supports a broad
spectrum from low to high frequencies [44].

B. CHANNEL CHARACTERISTICS OF 5G WIRELESS
SYSTEMS
As mentioned earlier, 5G systems use mm-wave frequencies,
along with sub-1 and 6 GHz spectrum. It is envisaged that
B5G networks will use THz frequencies [45], [46]. Com-
pared to the sub-6GHz band, the advantages of the mm-wave
band include more available bandwidth and use of small
antennas in devices. Antenna size is inversely proportional
to frequency; therefore, mm-wave antennas for UE and BS
are small and can be placed in small devices. However,
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the mm-wave band has some drawbacks that necessitate the
use of sub-6 GHz frequencies in 5G. In this subsection,
we present the rationale for the co-existence of multiband fre-
quencies in 5G, as well as the characteristics and applications
of different spectrum bands from sub-1 GHz to mm-wave.

1) SUB-1 GHz AND SUB-6 GHz IN 5G
In its early phases of implementation, 5G’s main spectrum
options were around 3.5 GHz and 4.5 GHz for sub-6 GHz
with time division duplexing (TDD) technology. For the
3.5/4.5 GHz band, 5G aims to use existing BSs to help in
the roll-out and implementation [47]. The 3.5 GHz band
provides comparatively less coverage than the 2 GHz band
used in legacy networks, and this is because radio propa-
gation decreases as frequency increases. However, introduc-
ing MIMO beam-forming antennas at 3.5 GHz and higher
spectrum reduces propagation losses, thereby significantly
increasing coverage for 3.5/4.5 GHz.

The sub-1 GHz bands are also used through frequency
division duplex (FDD) in 5G, especially for deep indoor
penetration [48]. With its broader coverage, low data rate
IoT connectivity and other critical communication like
remote control or automotive applications can be introduced.
Therefore, extensive coverage becomes imperative for these
new use cases which can be served by the sub-1 GHz
band [48]–[50].

2) mm-WAVE IN 5G
The propagation of waves at mm-wave is more prone to
adverse effects of obstacles which can be caused by move-
ment of people, presence of trees, foliage (outdoor scenario),
furniture and walls (indoor scenario). Since the mm-wave
spectrum is severely affected by rain and other atmospheric
conditions, previous studies suggested that it was impracti-
cal to use this frequency band for mobile communications.
However, this has been proven to be wrong, as recent stud-
ies have shown that atmospheric absorption does not create
a significant loss when used in picocells—coverage below
200 m from transmitter— [51], [52]. These studies also show
that even under very extreme rainfall, the rain attenuation
would cause 1.4 dB and 2 dB loss at 28 GHz and 73 GHz,
respectively. The impact of rain attenuation on mm-wave
propagation, especially in urban picocell areas, will there-
fore become insignificant [52]. The short-range coverage of
mm-wave has both advantages and disadvantages. Spatial
reuse of frequency band, strong multi-path behaviour due to
reflection are among the advantages of using mm-wave while
one of the disadvantages of using this band is that many SCs
are required to provide coverage due to the high propagation
loss of mm-wave.

mm-wave is an inherently directional wave which means
that there is a need for the transmitter and receiver to focus
the beam towards each other, this is commonly known as
beam steering. The main advantage of beam steering is to
achieve high gain by focusing the transmitter and receiver
towards each other. The beam steering is completed through a

beam training/tracking process. Beam training is a process of
finding the desired beam to connect theUEs in order to reduce
initial access delay. Another critical parameter to consider
is sensitivity to blockage. mm-wave has a higher frequency,
making the size of its wavelength small compared to many
physical objects, and thus the low ability of mm-wave to
diffract through large objects makes it sensitive to blockage.
For example, at the 60 GHz band, it is observed that there is a
20-35 dB increase in the path-loss if an obstacle (e.g., humans
or furniture) is introduced between the mm-wave link [52].

While it has been demonstrated that using mm-wave fre-
quencies such as 28 GHz and 38 GHz is possible even in
complex urban environments, many challenges such as low
throughput and high signaling overheads associated with HO
still needs to be addressed to realize the full potentials of the
mm-wave band [52], [53].

3) CO-EXISTENCE OF SUB-1 GHz, SUB-6 GHz AND
mm-WAVE
Given the rigid transmission efficiency standard for certain
use cases such as vehicular networks, the use of mm-wave
poses some significant difficulties in implementing reliable
but high data rate communication. Critical IoT applications,
including remote healthcare systems (for clinical remote
monitoring and assisted living), traffic and industrial control
(drone/robot/vehicle), and tactile Internet, etc., require higher
availability, higher reliability, safety, and lower latency to
ensure end-user experience as failure to satisfy these require-
ments would result in severe consequences, such as vehicle
collision, and accident [15].

A CP and UP decoupled network is designed to circumvent
these challenges by using the sub-6 GHz for the CP and
mm-wave frequencies for the UP [54]. This guarantees that
signaling from the CP reaches the UE with high reliability
by using the sub-6GHz spectrum. On the other hand, the use
of mm-wave frequencies for UP provides unprecedented data
speeds, due to the vast bandwidth availability at the mm-wave
spectrum. Therefore, themain purpose of sub-6 GHz and sub-
1 GHz bands is to provide uninterrupted access to the CP or
to provide coverage for areas where mm-wave cannot offer
adequate coverage.

C. HETEROGENEOUS NETWORKS
HetNets comprises the deployment of BSs with different
sizes. They are exciting low-cost approaches to meet the
industry’s growth requirements and offer a consistent connec-
tivity experience. HetNet comprises SCs that support aggres-
sive spectrum spatial reuse coexisting within macrocells,
as shown in Fig. 3. A macrocell is a BS used in cellular
networks with the function of providing radio coverage to a
large area of mobile network access. The macrocell overlaps
several SCs, and it has high output power, usually in the range
of tens of watts and can provide coverage to a large area.
However, the macrocell suffers from interference caused by
the use of sub-6 GHz, which can travel far by nature. While
the macrocell transmits radio waves over a long distance,
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FIGURE 3. An illustration of heterogeneous networks —the macrocells are
overlaid by three tiers of low-power BSs which are microcells, picocells
and femtocells in the same geographic area.

if not managed properly, signal interference with other cells
is very likely, which in turn could result in the degradation
of network performance [55]. Nevertheless, macrocell has
low spectral efficiency or area spectral efficiency, typically
measured in (bit/s/Hz) per unit area, which results in less
bandwidth and low data rate per UE. The data rate is the
function of bandwidth, and SCs allows frequency reuse due
to limited range hence more bandwidth and data rate per UE.
Therefore, to increase the data rate, the idea of reducing BS
footprint for macrocells was introduced [56].

In order to address the challenges facing the macrocell,
the easiest and simplest way was to get the transmitter
and receiver closer to each other. This solution creates a
dual-benefit of high-quality links and more spatial reuse.
Different cells with different sizes are considered based on the
transmitted power, and the frequency of transmission used:
macrocell, microcell, picocell, and femtocell are popular cells
created by gradually reducing coverage range and transmis-
sion power. A summary of the types of cells in terms of
coverage and capacity is presented in Table 2.

TABLE 2. Cell types in wireless networks in term of coverage and capacity.

As the BS footprint becomes smaller with smaller BSs,
the use of mm-wave become more feasible. The mm-wave
frequency suffers from high penetration loss which brings
the advantage of enabling the reuse of mm-wave frequency
in indoor environment for femtocell. For further studies on
HetNets please refer to [55], [57]–[59].

D. INTERNET OF THINGS
In this modern era, various applications used by billions of
people are daily made available via the internet, thereby

FIGURE 4. Sensors and IoT use case.

making the Internet an essential tool to interconnect these
applications, among which services like video streaming, file
sharing, electronic commerce, etc. are increasingly taking
place online. The types of interconnected devices includes
smart phones and IoT devices such as sensors, wearables,
etc. These IoT devices are able to communicate with each
other to share information with little or no human involve-
ment. Fig 4 illustrates some common IoT uses cases. As the
number of IoT devices keep increasing, the traffic generated
by these devices also increases, hence, the underlying pro-
tocols that support IoT should be reconsidered to support
the massive interconnection of both new and conventional
devices [60], [61]. Conventional devices need to be made
smarter by incorporating advanced technologies such as ubiq-
uitous computing, artificial intelligence, embedded devices,
different communication standards and technologies, vari-
ous application services, and different Internet standards.
However, the problem is that these devices used in IoT are
memory-limited and energy-limited, so information should
be routed efficiently, and the proper channel between source
and sink should be carefully chosen [61]. IoT has different
use cases such as smart cities, smart home, vehicular sensors,
health monitoring, and sport & leisure scenarios. Several of
these use cases are discussed in the following subsection,
while focusing on the differences in application domains
requirements.

1) SMART CITIES
This involves the use of smart technologies to provide rele-
vant information and automated services that would improve
the standard of living of the people in a particular area.
These smart technologies include: deployment of sensors for
trafficmonitoring to prevent traffic jams and detect bad roads,
for automated street lights, smart grid, waste management
systems where environmental sensors deployed in various
locations to detect pollution, water level, or fire. In these
cases, the early detection of abnormal environmental situa-
tions can be used to alert the appropriate authorities in order
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to enable them take the necessary actions when any incident
occurs etc [15].

2) SMART HOME
This use case is sometimes classified as a part of smart cities.
However, it is mostly limited to user-oriented applications,
particularly for home networks [15]. Different services that
can be classified under the smart home use-case include:
(1) Connected home appliances where appliances such as
smart fridges can be used to automatically order for the
restocking of the fridge with food items or beverages when
it detects that it is running out of supplies by checking a
pre-defined threshold for the amount of each item. (2) Home
videomonitoring Homes can be equipped with small cameras
that are mounted in different locations, and can be used to
stream the video to the Internet for a remote monitoring. They
can also be used to send alarms upon the detection of unusual
movement or abnormal behavior, smoke, carbon monoxide,
etc. in the monitored area.

3) HEALTHCARE/TELEMEDICINE/WEARABLE
This use case is becoming more popular as more devices such
as watches and other wearable devices become increasingly
available. Patients do not necessarily need to be monitored
manually, but smart wearable devices track their health con-
ditions for any abnormality. Such devices send an alarm
message to a nearby hospital as soon as they detect anomalies
with the patients being monitored.

All the use cases mentioned above face challenges that
need to be addressed before IoT can become very efficient
and able to integrate heterogeneous devices—device with dif-
ferent communication standards (protocols, technologies and
hardware)—and applications envisaged for 5G [62]. These
challenges include scalability, network management, security
and privacy, interoperability and heterogeneity, network con-
gestion and overload, and network mobility and coverage. To
interconnect a massive number of devices and accommodate
enormous traffic generated within 5G system, conventional
sub-6 GHz is no longer sufficient, hence the need for the
utilization of a new frequency band (mm-wave) [60]. This
would led enhanced QoS for IoT devices.

E. DEVICE-TO-DEVICE COMMUNICATION
Device-to-device (D2D) communication involves the direct
communication between two devices without passing through
a BS. These devices could be smartphones, vehicles, etc. This
kind of communication usually occurs when both device are
in close proximity to each other [63]. The introduction of
D2D communication is necessary to cope with the rise in the
number of devices as well as the increase in demand for high
speed connections. It is one of the technologies that is being
exploited in 5G and B5G networks as its use would lead to
enhanced link reliability, spectral efficiency, system capacity,
energy efficiency and reduced network delays [64]. The use
of mm-wave in 5G would facilitate D2D communications as
more direct links would be supported, thereby enhancing the

capacity of the network. In addition, due to the directional
nature of 5G antennas, it would be possible to support more
simultaneous connections in mm-wave systems. Despite the
inherent advantages of D2D communications, due to UE
mobility, and the fact that the UEs still need to connect to
the BS in order to transmit control signals, the issue of HO
needs to be carefully considered in order to prevent ping-pong
effects which results in frequent HOs [65], [66].

F. VEHICULAR COMMUNICATIONS
Vehicular-to-everything (V2X) is a special case of D2D
communication. It is a technology that provides commu-
nication between vehicles and surrounding devices, includ-
ing hand-held devices, moving/stationary cars, and all
other external IoT appliances. V2X is categorized into two
main components: vehicle-to-vehicle (V2V) and vehicle-
to-infrastructure (V2I). The former allows communication
between two or more vehicles. On the other hand, the latter
deals with communication between cars and other devices in
its external environment, such as traffic/street lights [67]. The
most common and popular communication protocol that sup-
ports vehicular networks is the dedicated short-range com-
munication (DSRC), and it can support all V2X architecture.
DSRC uses 75 MHz bandwidth at 5.9 GHz band, and was
expected to provide the data rate up to 27 Mb/s and a trans-
mission range up to 1000 m [67], [68]. As a result of the
high mobility of vehicles, one of the major challenges that
vehicular networks suffer from is HO. This occurs because
in the course of the vehicles movement from one location to
another, the often move out of the coverage area of one net-
work also known as road side unit (RSU) to another thereby
leading to frequent change of connection from one RSU to
another. This issue would become more pronounced with the
use of mm-wave in 5G as the coverage area of the RSUs
would become smaller [69]. Hence, HOmanagement must be
carefully considered for fast moving vehicles in 5Gmm-wave
communication networks in order to ensure seamless HO.

G. HIGH SPEED TRAIN COMMUNICATION
High speed train (HST) communications is one of the ver-
ticals that would be supported by 5G networks. The avail-
ability of large spectrum in the mm-wave frequency band
would make the provision of enhanced mobile broadband
services possible for passengers in high speed trains [49].
HST communication networks basically encompasses two
kinds of communications, namely: critical and non-critical
communications. The former is the communication between
the HST and its associated infrastructures and is necessary to
control the speed and ensure the safety, reliability and smooth
functioning of the HST. The latter is required to provide
services to the passengers on-board such as high quality
video, and other data services [70]. Even though mm-wave
has great potentials for application in HST communications,
due to the high mobility of trains, HST communication is
often prone to frequent HOs and fast fading channels, that
potentially undermines its availability. As a result, some new

VOLUME 9, 2021 45779



M. S. Mollel et al.: Survey of ML Applications to HO Management in 5G and Beyond

technologies such as hybrid beamforming, beam manage-
ment, network slicing, and distributed antenna system have
been introduced in mm-wave communications to enhance its
application in HST communications [50].

H. BEYOND 5G SYSTEM
5G is game-changer as it can provide data rates up to tens
of gigabits per second, which is far beyond what is provided
by legacy networks [71]. However, with the introduction of
new use cases and applications such as virtual and augmented
reality, remote surgery and holographic projection, 5G would
not be able to meet the projected explosion in wireless data
demands. As a result, research into higher frequency (beyond
mm-wave) has risen, and THz frequency has become the B5G
researcher’s focus as the new spectrum for B5G systems.
Only frequency bands in the THz range can provide the
large amount of bandwidth that is needed to support the
terabit-per-second data rates in order to support huge traffic
types such as uncompressed videos that is envisioned in B5G
networks [46], [72].

The use of THz band in 6G is required to provide the
reliable communication that is required to support various
critical applications, accommodate high data rates per area,
and support massive amounts of connected UEs. The THz
frequency band has quite similar characteristics to that of
mm-wave. However, because it has a higher frequency com-
pared to mm-wave, this means that it would be prone to all the
challenges facing mm-wave alongside additional challenges.
Therefore, there is a need for more advanced error control
mechanisms, mobility management techniques, as well as
other new features to enable the utilization of this frequency
band in mobile cellular networks.

III. MOBILITY MANAGEMENT IN 5G
Mobility management in 5G is quite different from that of
legacy networks (2G-4G) and in this section, we present
the concepts behind the radio access mobility in 5G cellular
network.We also briefly explain themobility state procedures
in 5G system that makes it more efficient than legacy systems.
Definition 1 (Access Stratum): Access stratum (AS) is the

set of protocols in 5G that contains the functionality associ-
ated with the UE’s access to the RAN and the control of active
connections between a UE and the RAN.
Definition 2 (Non-Access Stratum): Non-access stratum

is the set of protocols in 5G that handles functionality oper-
ating between UE and CN.
Definition 3 (RRC Context): The RRC context are the

parameters necessary for establishing/maintaining communi-
cation between the UE and the CN.
Definition 4 (Cell Selection): Cell selection is the process

of choosing a suitable cell4 for the UE to camp on. This
process is performed as soon as the UE is switched on [74].

4A cell with the measured cell attributes satisfy the cell selection
criteria [73]

Definition 5 (Cell Re-Selection): Cell re-selection is the
process of choosing a suitable cell after the UE camps on a
cell and stays in the idle or inactive state.

A. RADIO RESOURCE CONTROL STATE MACHINE
The RRC protocol is in the IP-level (Layer 3 /Network Layer)
and is the protocol between UE and NG-RAN as speci-
fied by 3GPP TS 38.331 [75]. The RRC protocol’s essen-
tial functions include; 1) broadcast of system information;
2) Control of the RRC connection—this procedure includes
paging, establishment, modification and release of the RB.
It also involves establishing an RRC context; 3) measurement
configuration and reporting, and other functions specified by
3GPP TS 38.331 that can be summarized in [43], [75]. The
RRC’s operation is guided by a state machine that defines
specific states where a UE may be present. The different
states in this state machine have different amounts of radio
resources that can be utilized by the UE once it enters into
a particular state. Since different amounts of resources are
available in different states, the state machine impacts the
QoS that the user experiences and the energy consumption
of the UE [76]. In addition, RRC states provide a clear
distinction between HO and cell (re-) selection. The UE
can be in one of the three RRC states, namely: RRC_Idle,
RRC_Connected, and RRC Inactive state. Fig. 5 depicts the
UE state machine and state transitions in 5G while Table 3
summarizes the RRC protocols and functions in each RRC
state.

FIGURE 5. UE state machine and state transitions in 5G [75].

1) RRC_IDLE
In RRC_Idle state, the UE is not registered to a particular
cell; hence, it does not have an AS context or receive any
network information. This means that no specific link is
established for communication between the UE and CN, and
the UE does not belong to any specific cell. From the CN
perspective, the UE is in the CN_Idle state,5 and the UE is in

5UE is said to be in CN_Idle state from CN perspective when no connec-
tion is established between UE and the CN [43], [77].
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TABLE 3. Summary of the RRC state and mobility handling in 5G.

(a kind of) sleep mode and wakes up periodically (accord-
ing to a configured discontinuous reception (DRX cycle))
to listen for paging messages from the network through the
downlink channel. During this period, no data transfer takes
place and the UE enters into sleep mode regularly to reduce
battery consumption. The network can reach the UEs in the
RRC_Idle state by sending paging messages to notify them
of changes in system information, warning messages such
as earthquake and tsunami warning service (ETWS), and
commercial mobile alert system (CMAS) which are send
as short messages. In this state, the UE manages mobility
based on the network configurations via cell re-selections.
It also performs the neighbouring cell measurements needed
for cell re-selection in order to determine which cell it is to
connect (explained in Section III-B). To reduce the network
signaling overhead and the latency experienced by legacy net-
works (such as LTE) during the transition to RRC_Connected
state, the RRC_Inactive state was introduced in 5G. In 5G,
the network initiates the RRC release procedure to transit a
UE from the connected to the idle state. In addition, as UE
moves from the idle to the connected state, both the UE and
the network establish the RRC context.

2) RRC_INACTIVE
5G-NR introduced RRC_Inactive state from lessons learned
during the development of LTE. The findings revealed that
the transition of wireless devices from idle state to connected
state is the most frequent high-layer signaling event in exist-
ing LTE networks, occurring about 500 − 1, 000 times a
day.6 This transition involves a significant amount of signal-
ing overhead between the UE and the network, as well as
between network nodes, which can lead to increased latency
and power consumption in the UE. The solution is to switch
to RRC_Inactive state which will result in a significant reduc-
tion in both latency and UE battery consumption. When the
UE is in inactive state, its behaviour is similar to that in idle
mode in term of power-saving. However, unlike the idle state,

6Meeting 5G latency requirements with inactive state, Published on
19 June. 2019. Available online at https://www.ericsson.com/en/reports-
and-papers/ericsson-technology-review/articles/meeting-5g-latency-
requirements-with-inactive-state. Accessed on 25 Nov. 2020.

in the inactive state, RRC context is kept in both UE and
gNB, and the UE is in CN_Connected state7 from the CN
perspective, meaning that its connection to the CN is kept
intact. Different from RRC_Idle state, the primary purposed
of RRC_Inactive state is to reduce the network signaling load
and latency involved during RRC_Idle to RRC_Connected
state transition. In RRC_Inactive state, the network signaling
becomes faster since the AS context is stored in both the UE
and gNB. While 5G CN connection is still retained - (UE
remains in CN_Connected state), the UE in RRC_Inactive
state is in sleep mode and wakes up repeatedly- according
to configured DRX cycle (which in this case is controlled by
the 5G-RAN), and regularly monitors for paging messages
from the network. The procedure for notifying the UEs about
any change of system information or warning message is the
same as that of the idle state [78].

3) RRC_CONNECTED
In the RRC_Connected state, the RRC context and all param-
eters needed to establish communication between the UE
and the RAN are known to all entities. The means that in
RRC_Connected state, the network configures all required
parameters for communication between the network and the
UE. In RRC_Connected state, the UE is in CN_Connected
state from the CN point of view. The cell to which the
UE belongs and the UE’s identity is known. In addition,
the cell radio-network temporary identifier (C-RNTI) used
for signaling purposes between the UE and the CN is con-
figured. The connected state is intended to transmit data to
or from the UE, and to minimize excessive power consump-
tion of the UE. DRX is optimized while maintaining user’s
quality-of-experience (QoE) [79]. With a configured DRX
cycle, the UE only monitors downlink signaling when active,
and then goes into sleep mode for the rest of the time with the
receiver circuitry turned off. This process allows significant
power consumption reduction, as the longer the DRX cycle,
the lesser the power consumption. For exhaustive discussion
on howDRX reduces excess power consumption, please refer
to [78], [80]. Also, the RRC context is established in gNB
for the connected state, therefore, data transmission/reception
can commence relatively fast, as no connection setup, and sig-
naling is needed. In this state, the network manages mobility
by the process known as HO, explained in the Section IV-E

As regards cell re-selection when leaving RRC_Connected
state, the UE attempts to camp on a suitable cell accord-
ing to redirectedCarrierInfo when transitioning from
RRC_Connected state to RRC_Idle or RRC_Inactive
state [73]. In the connected state, if the network initiates
the RRC release message or the UE and CN are no longer
attached, the UE moves into an idle state, on the other hand,
if the network initiates the RRC suspend procedure, the UE
would transit from connected to inactive state [73], [75]
(see Fig. 5). One significant difference among the different

7CN_Connected state is when the UE establishes connection to the
CN [43], [77].
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states, as seen from the preceding discussions, is the mobility
mechanisms involved. Efficient mobility management is an
essential aspect of any mobile communication system. In
the following subsections, we describe the different mobility
mechanisms including idle- and inactive-state mobility.

B. IDLE AND INACTIVE STATE MOBILITY
Most importantly, RRC states ensure that the mobile UE is
accessible via network mobility mechanisms, mainly when
the UE is in the idle or inactive states, during which it has lim-
ited connection to the network. The network, through paging,
communicates with the UE occasionally, and also sends short
broadcast message which carries information about changes
in the system [73]. The area over which a paging message is
sent is an essential feature of the paging process. Also, in both
states, the device can switch from one cell to another via cell
re-selection. The UE scans for candidate cells for cell
re-selection, and if the UE discovers a cell with received
power sufficiently higher than its current one, it deems
this the best cell and contacts the network through random
access [73].

FIGURE 6. RAN Areas and Tracking Areas.

UE tracking needs to be intelligently carried out to avoid
high overhead due to paging, and signaling at the network
and cell level respectively [81]. Hence, the cell-group level
tracking system was introduced in 5G-NR to tackle the chal-
lenge of high overhead due to signalling and paging. Figure. 6
illustrates how tracking of UE in the idle and inactive state
is carried out in 5G-NR. In order to enable effective UE
tracking, the cells are organized into cell groups, and the
UEs are only monitored on the cell-group level, as shown
in Figure. 6. The network only receives new UE location
information when the UE moves into another cell group
outside its previous cell-group. In case of paging the UE,
the broadcasted paging message is sent to all cells within
the specific cell group — this is done to reduce the paging
overhead. This is the primary tracking procedure in the NR
for both states. However, there is a difference in the way
that cells are grouped in both states as well as how paging
is initiated.

For the idle state, cell groups are grouped into RAN areas,
where a RAN area identifier (RAI) identifies each RAN area.
The RAN areas, in turn, are grouped into an even larger
group known as tracking areas, where a tracking area iden-
tifier (TAI) is used to identify tracking area. Thus, each cell
belongs to one cell group which also belongs to one RAN
area as well as a tracking area, and their respective identities
are provided as part of cell system information.

Tracking areas are the basis for CN-based UE tracking,
and the CN is responsible for managing and initiating paging.
The CN assigns each UE to a UE registration area, which
consists of a list of TAIs. When a UE enters a cell belong-
ing to a tracking area outside its assigned registration area,
it accesses the CN and performs a Non-Access Stratum (NAS)
registration update. The CN records the UE’s location and
updates the UE’s registration area, then it provides the UE
with a newTAI list that includes the TAIs that the UE has been
assigned. The UE is assigned a set of TAIs to avoid repeated
NAS registration updates in case the UEmoves back and forth
between two neighbouring tracking areas. If the UE moves
back to the old TAI within the updated UE registration area,
no new update is needed.

In the inactive state, RAN Area becomes the basis for
UE tracking, which is carried out in the 5G-RAN level.
5G-RAN is responsible for initiating the paging and manag-
ing RAN-based notification area. UEs are assigned a RNA
comprising the following: a list of cell identities, a list of RAN
areas, or a list of tracking areas. The RNA is assigned to a
UE by its serving NG-RAN based on the UE’s registration
area and can cover a single or multiple cells (a subset of the
tracking areas). As a result, the UE canmove freely within the
allocated RNA without contacting the NG-RAN. However,
if it moves to an area outside its current RNA, it initiates
RAN-based Notification Area Update (RNAU). Once the
serving cell (ng-eNB or gNB) receives the RNAU request
from the UE, it may send the UE to one of the following
RRC states: RRC_Inactive, RRC_Connected, or RRC_Idle.
If UE remains in the inactive state, the serving NG-RANmay
continue to send a periodic RNAU timer to the UE, which is
used to notify the network that the UE is still active. The value
of the RNAU time is assigned based on the RRC_Inactive
assistant information (RIAI) [39]. In summary, two lev-
els of paging can be applied for reaching the UE depend-
ing on its RRC state: CN-based paging for idle state and
5G-RAN-based paging for the inactive state (see Table 3).

C. CONNECTED STATE MOBILITY
The connection between UE and network is established
in the connected state. Connected-state mobility aims to
maintain connectivity without interruption or noticeable
degradation as the UE moves within the network. To main-
tain the connection between UE and network in the con-
nected state, the UE is continuously searching for new
BSs to connect to. The BS search is based on current car-
rier frequency (intra-frequency measurements) and different
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carrier frequencies (inter-frequency measurements) from the
UE perspective.

Cell search in the connected state results in HO if suit-
able condition are met while for idle and inactive state,
it results in cell re-selection. When it becomes necessary to
perform HO in the connected state, the UE is not responsi-
ble for the decision. Instead, the UE performs signal mea-
surement of the serving cell and neighbouring cells and
generates the measurement report (MR)—containing cell
level measurement results such as reference signal received
power, signal-to-interference-plus-noise ratio, reference sig-
nal received quality, etc.— sent to the network. Based on this
report, the network decides whether or not the UE is to HO
to a new cell. The above procedure is not applied to the very
small SCs (e.g 5G femtocell) that are tightly synchronized to
each other [38], [76].

IV. HANDOVER MANAGEMENT IN 5G AND BEYOND
This section describes the step-by-step procedure for HO
in 5G NR, introduces the various categories of HO, and also
discusses HO requirements alongside its relationship with
radio resources management.

A. TYPES OF HANDOVER
There are two broad categories of HO, namely; intra-
/inter- frequency and intra-/inter- radio access technology
(RAT) HO.

FIGURE 7. An illustration depicting intra-frequency HO in scenario 1 and
inter-frequency HO in scenario 2.

1) INTRA-/INTER-FREQUENCY HANDOVER
Intra-frequency and inter-frequencyHO are the HOs types for
which the carrier frequency is the subject of interest. If the UE
is to move to the target cell with the same frequency as that
in the serving cell, it is generally known as intra-frequency
HO as seen in Fig. 7 Scenario 1. In contrast, inter-frequency
HO occurs if the UE is to use a different carrier frequency
in the target cell as shown in Scenario 2 in Fig. 7. Event
A3 and A6 initiate intra-frequency HO. Both Event A3 and
A6 are triggered when the neighbouring BSs RF condition
is higher than that of the serving BS. Moreover, Event A6 is

used for intra-frequency HO of the secondary frequency on
which the UE camps. Event A4 and A5 are typically used
for inter-frequency HO. Event A4 is triggered when the RF
condition of one of the neighbouring BSs is higher than
the threshold compared to that of the other BSs. On the
other hand, Event A5 is triggered when the serving BS RF
condition becomes lesser than the lower threshold and the RF
condition of one of the neighbouring BS becomes higher than
the upper threshold (where the threshold values are param-
eters that are optimized based on the network) [75], [82].
As mentioned in Section III-A3, HO occurs in the con-
nected state and in that state, UE regularly sends the
measurement report (MR)—containing cell level measure-
ment results such as reference signal received power, signal-
to-interference-plus-noise, reference signal received quality,
etc.— of all neighbouring cells to the serving cell. More
information regarding the HO trigger events can be found
in [29], [38], [75].

The UE essentially carries out the measurements in the
measurement gap at different frequencies for inter-frequency
cases [82] and [5]. Themeasurement gap is necessary because
without it, the UE would not be able to measure the target
carrier frequency while transmitting/receiving to/from the
serving cell simultaneously. The measurement gap specifies
the time interval when no downlink (DL) or uplink(UP)
signal is transmitted. Measurement gap only applies to some
cases of intra frequency HO where enhanced UE coverage
is not guaranteed to be aligned with the serving gNB’s cen-
tre frequency [5], [82]. However, the measurement gap is
required for all cases of the inter-frequency HO as specified
in 3GPP [82]. Researches are concerned with fundamentals
question on how the measuring gaps can be reduced, as large
measuring gap results in lower throughput and higher UE
energy consumption.

2) INTRA-/INTER-RAT HANDOVER
In the case of intra-RAT HO, UE hands over from serving
BS (S-BS) to the target BS (T-BS) which both use the same
RAT. Intra-RAT HO is commonly referred to as horizontal
HO [5] as shown in Fig. 8. Intra-RAT HO can be either intra-
or inter-frequency HO. Intra-RAT HO aims to preserve the
connectivity of the UE with the existing network and the
primary reason for this kind of HO can be attributed to load
balancing or measurement trigger conditions [83]. Once UE
HO occurs, it prefers to camp on the cell which provides the
strongest received signal.

In contrast to intra-RAT HO, inter-RAT (or vertical) HO
occurs when the UE hands over to a T-BS which uses
a different RAT from the S-BS. Unlike in intra-RAT HO
where the cell with the highest received signal is selected,
in inter-RAT HO, other factors such as user mobility, service
type, as well as the network property and state are considered
when selecting the target cell. It also involves the switching
of the logical interface between the two RATs [84]. The
latency incurred during inter-RAT HO is still prohibitive for
many application and services, thus, it poses a severe problem

VOLUME 9, 2021 45783



M. S. Mollel et al.: Survey of ML Applications to HO Management in 5G and Beyond

FIGURE 8. UE undergoes HO from one cell to another with both cells
using the same RAT (intra-RAT).

in the NexGen mobile systems [84]. In order to improve
the user experience, centralized architecture for inter-RAT
HO, which integrates legacy and NR network protocol was
proposed [84]. Fig. 9 demonstrates how the UE performs
inter-RAT HO. From the figure, it can be seen that both
distributed, and centralized CN architecture for multi-RATs
are possible. The advantage of using centralized architecture
is that it can lead to a significant reduction in HO signaling
and interruption time.8 The centralized architecure comprises
unified CN along with the baseband unit (BBU) and remote
radio head (RRH) separated through a transport mechanism
such as optical fiber. In a C-RAN architecture, the RRHs are
connected to the BBU pool through high-bandwidth transport
links known as fronthaul.

B. HANDOVER REQUIREMENTS AND KEY PERFORMANCE
INDICATORS
Since HO has adverse effect on the overall performance
of wireless networks, different features and requirement are
necessary to reduce the impact of HO. Also, various key
performance indicators (KPIs) are used to measure how the
network performs during a HO. The various HO requirements
and KPIs are presented as follows:

• Seamless HO: a seamless HO occurs when UE per-
ceives continuation of connection during HO with little
or no interruption during gNB switch. This guarantees
the UE’s active connection.

• HO interruption time: is a period where the UE is not
permitted to send user plane packets to the BS. The UE
experiences seamlessly HO if the interruption time is
very small (≤ 1ms) [85], [86].

• HOcost: is defined asmobility interruption time per HO
multiplied by the number of HOs for a particular UE’s
trajectory. This metric is imperative in the network as it

8Michael Wang, 5G, C-RAN, and the Required Technology Breakthrough,
Published on 21 Jun. 2018. Available online at https://medium.
com/@miccowang/5g-c-ran-and-the-required-technology-breakthrough-
a1b2babf774. Accessed on 25 Oct. 2020.

has a direct relationship to the system throughput [53].
HO cost decreases as the number of HOs and/or the
mobility interruption time per HO decreases.

• HO failures rate: For any given UE trajectory or unit
time, the HOs failure rate is the number of HO failures—
unsuccessful HOs—divided by the number of times the
UE experienced the HOs.

• Signaling overhead: HO signaling overhead are the
various data generated during the process of HO to facil-
itate the operation. However, the HO process interrupts
the data flow and results in the reduction of the UE
throughput. [29].

There are other performance metrics that are essential to
ensure optimal performance in wireless networks, particu-
larly for HO optimization. Further details can be found in
Tayyab et al. [5].

C. HANDOVER AND RADIO RESOURCE MANAGEMENT
In 5G, the term radio resource includes both traditional
(from the legacy system) and extended resource concept [87].
These legacy resources include energy consumption (cell
and UE transmitting power), frequency (channel band-
width, frequency of the carrier) and antenna configurations.
In addition, the extended resource definition in 5G covers
the hard resource (number/type/configuration of antennas,
the existence of nomadic/unplanned nodes, or mobile termi-
nal relays) and soft resources (network node and UE software
capabilities). It is also important to meet UE requirements
such as QoS or QoE for all the UEs while properly managing
resources. On the other hand, proper resource management
can help networks fulfill HO KPIs, for example, by reducing
the probability of HO failures while maintaining the QoE
during and after HO [88], [89]. To increase wireless system
efficiency, it is necessary to address and take into account the
fundamental issues related to HO and resource management
such as admission control, bandwidth and power control.

D. DUAL CONNECTIVITY
Dual connectivity means that the UEs can establish connec-
tion to two different cells at the same time [90]. Usually,
in dual connectivity, UEs either connect to BSs of different
sizes (macro cell and SC) or two different RATs simultane-
ously (e.g. 4G and 5G network), as illustrated in Fig. 10. Since
the UE can be connected to two different RAT over differ-
ent frequency bands simultaneously, the interruption time is
reduced to zero. However, this would trigger an additional
likelihood of HOwhere new HO cases are introduced relative
to a single connection. These new HO scenarios (see Fig. 10)
occur in two situations; when the UE switches the connec-
tion either from SC to macrocell or from SC to SC. With
the introduction of mm-wave, the use of dual connectivity
could lead to an increase in HO probability, thereby causing
additional problems with mobility management, including an
increase in signaling overhead, synchronization complexity
between RATs for multi-RAT connectivity, simultaneous uti-
lization of resources in multiple BSs, and reduction in battery
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FIGURE 9. Inter-RAT HO scenarios in distributed and centralized RAN architectures10 [84].

FIGURE 10. Dual connectivity with HO scenarios in future communication
networks.

lifespan. The increase in signaling overhead is due to flow
control between the RATs [90], [91], and these issues could
be addressed using intelligent approaches.

E. HANDOVER MANAGEMENT IN NR
NR physical layer uniquely differs from the legacy RAT with
the following features: dual connectivity, high-frequency
spectrum, forward compatibility, ultra-lean design, use of
mm-wave and relay for devices (device-to-device). NR
supports both multi-connectivity and single-connectivity
selection depending on the configuration set. For both con-
figurations, hard HO is used during path switching [29].
In both licensed and unlicensed spectrum, NR operates
between 600 MHz and 73 GHz. Forward compatibility
means designing radio-interface architecture that enables new
service requirements and accommodate new technologies
while supporting legacy network UEs. While the ultra-lean
design principle aims to decrease the always-on transmis-
sions (for example, signals for BS detection, broadcast of
system information) to achieve high data rates with low

energy consumption in the network. The main challenge for
NR is the coverage due to the use of high frequency with
high penetration loss that makes the cell footprint to become
smaller. In this section, we describe the NR HO with a brief
introduction of critical features and the entities involved in
NR mobility. Also, a step by step HO procedure is provided
for intra-AMF/UPF. The types of HO in NR are described
as follows: 1) Intra-gNB HO: This occurs when both the
source and target cells11 belong to the same gNB, as shown
in Fig. 11.

FIGURE 11. UE performs intra-gNB HO which involves the change of cells
in the same gNB.

2) Inter-gNB HO without AMF Change: Inter-gNB
HO generally occurs when serving and target cells are
from different gNBs. There are two different types of HO
within inter-gNB HO without AMF change, depending on
whether the HO involves a change of UPF or not. However,
the inter-gNB HO discussed here does not include a change
of AMF in both cases, as shown in Fig. 12. Inter-gNB with

11Cell here means the part of sector gNB that has specific beams and
covers the specific environment.
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FIGURE 12. UE performs inter-gNB HO, which involves the change of
gNBs with same UPF and AMF for scenario 1 and change of UPF for
scenario 2.

intra-UPF HO is presented in Fig 12 scenario 1, where the
HO involves a cell change with the same UPF, while Fig. 12
scenario 2 presents inter-gNB with inter-UPF HO where the
cell switch involves a change of UPF.

3) Inter-gNBHOwithAMFChange: In this case, the HO
requires a change of AMF from the source to the target
AMF. However, the HO involves no change of SMF, and only
the NG interface is used as depicted in Fig. 13. There are
two cases of inter-gNB HO with AMF change; in the first
case (Fig. 13 scenario 1), the same UPF is maintained while
the second case (Fig. 13 scenario 2) involves a change of UPF
during HO.

FIGURE 13. UE performs inter-gNB HO with AMF change, involving the
change of gNBs while UPF is maintained in scenario 1 and change of UPF
in scenario 2.

The basic HO procedure in NR is shown in
Fig. 14 [5], [38]. It consists of three phases, namely: HO
preparation (Steps 0-5), HO execution (Steps 6-8) and HO
completion (Steps 9-12), which are described as follows:
• Step 1: the UE measuring procedure is configured
according to access restriction and roaming information
by the serving gNB (S-gNB), and the UE sends an MR
to the target gNB (T-gNB).

• Step 2: the S-gNB determines to HO the UE, based on
the MR and radio resource management information.

• Step 3: the S-gNB sends a HO request message to the
T-gNB (which includes the necessary information to
prepare for HO to the T-gNB).

• Step 4: the T-gNB executes the admission control pro-
cedure if the T-gNB can grant the resources.

• Step 5: the T-gNB sends a HO request acknowledge-
ment to the S-gNB. As soon as the S-gNB receives the
HO request acknowledgement message, data forwarding
may be initiated.

• Step 6: S-gNB sends a HO command to the UE.
• Step 7: S-gNB sends the Sequence number status trans-
fer message to the T-gNB.

• Step 8: UE detaches from the S-gNB and synchronizes
with the T-gNB.

• Step 9: the T-gNB informs the AMF that the UE
has changed the cell, through the Path switch request
message.

• Step 10: 5GC switches the DL data path towards the
T-gNB.

• Step 11: the AMF acknowledges the Path switch
request.

• Step 12: the T-gNB informs the S-gNB that the HO
was successful and triggers the release of resources by
the S-gNB by sending a UE Context Release message.
Finally, the S-gNB release the radio resources associated
with the UE.

It is essential to point out that the above procedure is
applied for HO between NR and NR technologies.

F. MOBILITY AND HANDOVER MANAGEMENT IN B5G
Researchers have anticipated some use cases and applications
that make B5G to be different from 5G. Some of these use
cases include integrated unmanned aerial vehicles (UAVs)
communications, high mobility of devices (above 500 kmph),
holographic projection, etc [92]. The high mobility of
devices, UAVs, and other applications that use radio waves
at the mm-wave and THz spectrum presents unprecedented
wireless communication challenges in B5G. Among these
challenges, mobility and HO management are anticipated to
be the two most challenging issues in B5G networks since
B5G networks would be highly dynamic, and multi-layered,
which would lead to more frequent HO. High mobility of
devices and UAVs results in uncertainties of their locations
and keep in mind that high frequencies such as mm-wave
and THz that would be used in B5G can be easily blocked
by humans, buildings, etc.

Heuristic and traditional HO methods would not be able
to react quickly. An alternative solution is to adopt artificial
intelligence models for mobility prediction and optimal HO
strategy in order to guarantee communication connectivity.
Even though the introduction of multi-connectivity is a very
promising solution, the procedure still needs intelligent HO
management strategies to optimize the cell (re-)selection
process in order to reduce signaling, guarantee high data
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TABLE 4. Handover management in NR challenges associated, existing solution and future research directions.

rate, high reliability, and low latency in the B5G [92]. The
HO procedure for the B5G might be similar to that of 5G,
but there are no standards for B5G system yet. A summary
of the challenges associated with HO management in NR
alongside their causes and potential solutions are presented
in the Table. 4.

V. MACHINE LEARNING FOR HO MANAGEMENT
The use of mm-wave and higher frequencies in 5G and B5G
networks is going to introduce new challenges and complex-
ity to the HO management that would be difficult to handle
by conventional methods. Firstly, these frequency ranges suf-
fer from severe attenuation (e.g., larger penetration losses),
which means their transmission distance will be small. As a
result, more BSs need to be deployed to cover the same
area that would have been covered by those utilizing the
microwave frequencies [104]. This implies that the size and
the complexity of the network is going to greatly increase and
the users will be prone to more frequent HOs which would
greatly affect their QoS, particularly for high mobility users
and applications.

Secondly, due to the use of directional beams for transmis-
sion in mm-wave networks, the presence of obstacles on the
path of the transmitted beam can partially or completely hin-
der the user from gaining access to the network or negatively

impact the signal quality. As such, in mm-wave communica-
tion networks, the users are not only faced with the challenge
of selecting the optimal BS but also the optimal beam to
connect to per time in order to maximize their QoS. Hence,
optimal beam selection has become another factor to consider
in HO management process which would further add more
complexity to the HO process because of the massive number
of beams that the user has to select from during each HO
instance [105], [106].

Finally, there is also the need to provide some highmobility
based essential services for emergency scenarios such as
medical services to patients in ambulances en-route hospi-
tal through real-time consultations with the doctors that are
situated in a remote hospital. Especially, in the pandemic
situation that we find ourselves in now, this kind of ser-
vices may be needed to sustain the lives of the patients in
critical conditions before they get to the hospital to receive
proper medical attention [107], [108]. Intelligent HO opti-
mization would help predict the route of the ambulance,
determine the optimal BSs to connect and also pre-allocate
the resources that will be needed at the BSs. This will
help prevent intermittent service interruptions and guarantee
the QoS need to support the communication between the
paramedics in the ambulance and the doctors at the remote
location [109], [110].

VOLUME 9, 2021 45787



M. S. Mollel et al.: Survey of ML Applications to HO Management in 5G and Beyond

FIGURE 14. HO procedure in 5G-NR involving no change of AMF and UPF,
based on [38].

Therefore, effective HO optimization would enable the
selection of the optimal BS and beam for user connection that
will maximize user connection, reduce excessive or unnec-
essary HOs, and enable the detection of obstacles and their
avoidance. These are some of the issues that make HO opti-
mization in mm-wave communications networks more chal-
lenging to handle compared to the previous generations of
cellular networks. Moreover, since the HO process involves
various network parameters that must be considered and opti-
mized in real time in order to ensure seamless HO, this would
be very challenging for most conventional methods to handle.
The challenge with conventional methods of HO manage-
ment is that they are computationally demanding to imple-
ment, particularly when the network dimension becomes very
large. As such, before they can decide which target BS to
associate the user with, the user must have moved from that
location. This would result in sub-optimal HO decision and
degradation in user QoS. In addition, they cannot accurately
capture certain details of the network such as the presence of

different types and sizes of obstacles, as well as the dynamic
traffic demand patterns that are typical of 5G and B5G net-
works, which are also important for making an optimal HO
decision [109], [111], [112].

However,ML techniques can assist in bringing intelligence
and helping the network to self-optimize. ML techniques
are able to learn various network characteristics from data
generated from the network, in order to optimize various
aspects of the network. They are able to capture hidden
details and patterns in the network from the network data
that cannot be represented by analytical models [111]. They
are self-adaptive and as such can react to changes in network
environment and even predict future network or user demands
before hand, thereby enabling the network to adequately
prepare to handle such demands when they occur [109].
They can be designed in a computationally efficient manner
such that the training phase of the algorithm, which is often
computationally demanding, can be carried out offline, and
then the trained model deployed online to carry out real-time
optimization after which the model can be updated periodi-
cally, as it experiences new data [113].

In this section, we first present an overview of the major
categories and types of ML algorithms used for HO opti-
mization. Then, we delve into reviewing the state-of-the-art
on ML-aided HO management. A top-level taxonomy is
followed while reviewing the state-of-the-art, such that the
ML-aided HO management methodologies are classified
based on the source of the data they utilize. As such, two
broad categories are considered: visual data based and wire-
less data based HO management techniques. The major
objective of this novel taxonomy is to recognize the visual
data aided HO management schemes—which has been long
overlooked in the literature—by giving it a special place
along with the traditional wireless data driven HO schemes.
The visual aided wireless communications is an emerging
research area in wireless communications where visual infor-
mation (pictures/videos) captured from cameras, light detec-
tion and ranging (LIDAR), etc., are combined with wireless
sensory data for wireless network optimization such as chan-
nel prediction, HO optimization, etc [114], [115]. This is nec-
essary because mm-wave communication networks possess
unique challenges that would be difficult to handle using only
wireless sensory data but with the assistance of visual data,
some of these challenges can be handled properly. On the
other hand, for the wireless data based HO management,
the most recent works are extensively reviewed under two use
cases: beam selection and BS selection.

A. AN OVERVIEW OF MACHINE LEARNING ALGORITHMS
It has become very important to include AI/ML in the BS’s
and beam selection process during HO, in order to achieve
the primary objective of providing a seamless HO and to
ensure that the UE achieves maximum throughput during
the entire duration of its connection to the network. The
HO optimization problem is a decision-making problem, and
intelligence is imperative to ensure that the optimal decision
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TABLE 5. Types of machine learning algorithm.

is taken at each HO instance in a more efficient and effective
manner.

We begin by defining ML and discussing the various cat-
egories. According to [116], ML is a set of computation
procedures that evolved from formidable techniques in the
field of AI that allow the computer to self-learn, discover
patterns, and generate models from historical data without
being explicitly programmed. The objective of ML is to
identify features of a given data set that are likely to influence
an outcome of interest given the input, and then use those
learned features to predict the result in a new situation not
previously encountered [32]. A substantial collection of ML
techniques (model and algorithms) has been created to solve
various challenges in different domains. These algorithms can
be classified according to how learning is performed. They
have been broadly categorized into three major classes [117].
Table 5 presents an overview ofML approaches based on their
learning styles.
Definition 6 (Labelled Data Set): A labelled data set is a

data set with clearly defined features (input) and target (out-
put). The features are usually related to the target and enables
the ML algorithm to identify the target or map the input to the
output during the training phase.
Definition 7 (Unlabelled Data Set): An unlabelled data

set is a data set that does not have labels. That is, there
is no clear description of the features or targets in the
data set.
Definition 8 (Model Training): Model training is the pro-

cess of exposing an ML algorithm to the training data set
(i.e., labelled or unlabelled data set) in order to enable it
to learn the mapping between the features and the target.
Thereafter, a model is obtained that can correctly predict the
right target, even when it is feed with a new data set that it
had not previously seen.

1) SUPERVISED LEARNING
As the name suggests, it is the learning technique which
requires a labelled training set consisting of inputs features
and output. The learning model tries to search for a function
that maps the input to the desired output by minimizing

both the bias and variance error of the predicted results.
After that, new data set is then applied to the trained model
in order to predict the output. Supervised learning is basi-
cally classified into regression—where the predicted output is
continuous—, and classification— where the predicted out-
put is discrete or categorical. Examples of supervised learn-
ing algorithms include: artificial neural networks (ANN),
support vector machine (SVM), extreme gradient boost-
ing (XGBOOST), k-nearest neighbour (kNN), decision tree,
random forest, etc, [118]. Supervised learning algorithms can
help provide user mobility information through prediction
of future location, trajectory, cell, etc., which is needed for
proactive HO optimization and efficient resource allocation
in 5G and B5G networks order to enhance the QoS of
users [32].

2) UNSUPERVISED LEARNING
Different from supervised learning, in unsupervised learning,
the training data set is unlabelled. The learning model in this
case, tries to find hidden patterns, structures, and correlations
within the training data set. They are mainly employed for
anomaly detection, pattern recognition, and the reduction of
the dimension of a data set. Common examples of unsu-
pervised learning algorithms are k-means clustering, prin-
cipal component analysis, expectation-maximization (EM),
etc [119]. With the deployment of ultra-dense cellular net-
works and use of diverse kinds of devices (conventional UEs
and IoT devices) in 5G and B5G, clustering algorithms can
enable scalable and decentralized HO optimization particu-
larly for cases where user mobility patterns are heterogeneous
thereby reducing complexity. As an example, the authors
in [120] proposed a two-layer approach to HO optimization
in an ultra-dense network where k-means was first used to
cluster the devices with similar mobility pattern then deep
reinforcement learning was implemented to determine the
optimal HO policy of the devices within each cluster.

3) REINFORCEMENT LEARNING
Unlike supervised and unsupervised learning that deal with
continuous or discrete output prediction and identification
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of hidden pattern or structures in data, RL is concerned
with making decisions in order to obtain an optimal pol-
icy in a given environment. It is a trial and error kind
of learning whereby an agent interacts with the environ-
ments, takes action and gets feedback in terms of reward
or penalty, depending on whether the action taken is good
or bad for a given objective. The outcome of RL is to
learn the optimal policy that would enable the agent to
make an optimal decision at any given state of the environ-
ment. RL algorithms can be value-based (e.g. Q-learning,
SARSA), policy-based (e.g. policy gradient, proximal pol-
icy optimization (PPO) and actor-critic (A2C)) [121], [122].
Reinforcement learning algorithms are suitable for mobility
management and HO optimization as they are able to adapt
to varying user mobility and network condition in order to
determine the optimal HO policy. They are particularly rele-
vant in 5G and B5G networks because of increasing network
dimension and complexity in order to reduce HO delays and
minimize frequent HOs [32].

4) DISTRIBUTED LEARNING
Conventional approach to ML requires that the training data
be stored in a central location either at the data centre or
in the cloud. However, this approach has several challenges
including data privacy, latency, increased signaling overhead,
increase in the energy consumption of the UEs, etc. This has
led to a growing interest in distributed learning where the
data is processed at the location where it is generated, and
only the trained ML models are transmitted to the central
entity [123] and [124]. In this regard, federated machine
learning [123] and [125] has been introduced to handle the
aforementioned challenges and is gaining increasing applica-
tion in the field of wireless communication [124] and [126].
Federated learning is a distributed machine learning approach
which enables data generating entities to jointly learn a shared
prediction model without having to send their data to the cen-
tral entity. In this case, only the trainedmodels are transmitted
to the central entity. This ensures the preservation of data
privacy and requires less communication resources for model
transmission [127] and [128]. Federated learning has been
applied in [129] and [130] for human mobility prediction
in order to preserve the privacy of users and in [103] for
proactive HO mm-wave vehicular networks in order ensure
the privacy of user location information, minimize communi-
cation overhead while minimizing frequent HOs.

B. MACHINE LEARNING BASED HANDOVER
OPTIMIZATION
HO optimization is necessary when selecting the BS/beam
that a user should connect to, in order to minimize frequent
HOdue to the small footprint ofmm-waveBSs in 5G and THz
wave BSs that are envisioned to be used in B5G. This is
because frequent HOs increase the HO cost, thereby reducing
the network throughput. Throughout this paper, we will refer
to HO as defined in [53] which establish the term HO cost.

With efficient HO optimization, the network is able to select
the best T-BS that will provide a higher throughput for UE.

Before ML came into play, classical methods for BS
selection were based on specific parameter measurement.
These methods include selecting the T-BS based on distance,
or the BS that provides a higher KPI such as reference sig-
nal received power, received signal strength indicator, and
signal-to-noise ratio. In the measurement-based approaches,
the channel state information (CSI) from theMR of all neigh-
bouring BSs is measured, and the one with the best CSI is
selected as the potential T-BS. These approaches are practi-
cal for sub-6 GHz frequencies; however, they are inefficient
solutions inmm-wave and THz application band due to severe
path loss and susceptibility to LOS blockage [102].

ML techniques can play a significant role in HO optimiza-
tion and BS station selection by reducing delays, computa-
tional overhead, and frequent HOs. They help predict the
T-BS and also ensure that adequate resources are available
at the T-BS before HO occurs in order to ensure a seamless
HO. In this section, we consider ML-based HO management
in 5G networks from the perspective of visual, and wireless
data aided HO optimization. In Table 6, we present a sum-
mary of the state-of-the-art ML-based HO optimization in 5G
mm-wave communication systems.

1) VISUAL DATA AIDED HANDOVER OPTIMIZATION
Successive generations of cellular networks have mainly
depended on wireless sensory information such as CSI,
received power, etc., for network design and optimization.
However, the use ofmm-wave and THz frequencies in 5G and
B5G networks would mean that BSs will have many anten-
nas, communication will be through a large number of LOS
beams, which would be subject to blockages of various types
and would limit signal reception at the user end. In addition,
much signaling overhead would be involved in the selection
of the optimal beam for user connection in mm-wave net-
works if only wireless sensory data are exploited for optimal
beam selection considering the massive number of beams that
would be involved [114], [115].

The vision assisted HO optimization has become necessary
because of the complexity of the mm-wave networks, and
it might not be possible to capture all the conditions of
the environments like obstacles, buildings, etc., using wire-
less sensory data. As a result, detecting or predicting the
presence of obstacles that would block the received beam
and reduce the throughput at the user end is very difficult
to achieve using only wireless sensory data. However, with
vision assisted HO optimization, visual data (image/video)
is combined with wireless sensory data to enable proactive
obstacle prediction and optimized beam/BS selection that
would help enhance user QoS [131]. In addition, with the
advancement in computer vision, the training overhead that
is normally associated with training ML models for optimal
beam selection can be greatly reduced by utilizing the images
of networks in developing deep learning algorithms for effi-
cient HO operation [132], [133]. In the following paragraphs,
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TABLE 6. Summary of the state-of-the-art ML-based HO optimization in 5G mm-wave communication systems.
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we review the research works that have been proposed on
the use of visual data for HO optimization in mm-wave
networks.

One application of visual data for HO optimization is the
prediction of obstacles that might affect the magnitude of the
received power or data rate at the user end. In this regard,
the authors in [27], proposed a cooperative sensing scheme
for proactive HO in mm-wave networks using a combina-
tion of images captured from multiple cameras and received
power. The idea is to map camera images with HO decision
using DRL such that a proactive HO decision can be initiated
before the received signal is blocked by an obstacle. The
advantage of using multiple cameras is to cover areas that are
inaccessible by other cameras so as to get a complete view
of the network environment. The camera images also enable
the prediction of obstacles that will affect the mm-wave links.
The authors in [134] developed a DRL framework using cam-
era images for optimizing the HO timing by predicting the
future data rate of mm-wave links and ensuring that proactive
HO is performed before data rate degradation occurs due to
presence of obstacles.

Another application of visual data for HO optimization is
the prediction or selection of the optimal beam that the user
should connect based on user mobility and the presence of
obstacles in the mm-wave network environment. Following
this research direction, the authors in [135] demonstrated how
data obtained from LIDAR sensors could be used to reduce
the overhead associated with mm-wave beam selection and
LOS detection, and proposed a decentralized architecture
using deep CNN. Their work was extended in [136] by devel-
oping a deep learning-based centralized architecture for beam
selection and the detection of the LOS in vehicular networks
by combining location information and LIDARdata. In [137],
the authors proposed a novel beams selection scheme that
is capable of predicting the optimal beam to connect to at
any position in the cell using image-based 3D reconstruction
and CNN. They argue that the proposed method takes images
from ordinary cameras and is cheaper to implement compared
to LIDAR-based approaches in [135], [136].

The work in [131] considered the problem of beam selec-
tion and blockage prediction using camera images, channel
state, and deep learning for a single user communication in
a mm-wave network. The beam selection problem was for-
mulated as an image classification problem such that the UEs
are mapped to a class of beams having a unique beam index,
depending on their location in the image. However, to detect
users that are blocked, the images are matched with channel
information due to the difficulty of detecting obstacles in
still images. The authors in [132] first developed a realistic
image data set for ML-based mm-wave network optimization
that considers many BSs, users, different obstacles, and rich
environmental dynamics. Then leveraging the image data set
and information regarding previously selected beams, a ML
based vision-aided beam tracking framework was proposed
to predict the future beams of mobile users in a mm-wave
communication system.

2) WIRELESS DATA AIDED HANDOVER OPTIMIZATION
Non-vision assisted HO optimization, on the other hand,
does not involve the uses visual sensory information such
as images and videos for HO optimization. It uses the con-
ventional wireless sensory information such as received sig-
nal level and channel state, and user location information
to optimize the switching of user connection from one BS
or beam to another. This is the general technique that is
commonly used in wireless communications systems. In this
session, we review the state-of-the-art in HO optimization in
mm-wave communications networks from the perspective of
the BS and beam selection by exploiting the CSI and user
mobility information such as user location, trajectory, etc.

a: BEAM SELECTION
Due to the high path loss and sensitivity to blockage experi-
enced by mm-waves, a large number of BSs comprising mul-
tiple directional antenna arrays have to be deployed. The use
of multiple antenna arrays enables the formation of narrow
signal beams with a high gain when the phase or amplitude
of each antenna is adjusted. This approach, commonly known
as beamforming [138], enables the formation of directional
links between the BSs and UEs. However, because each BS
comprises multiple beams, the challenge becomes selecting
the optimal beam that will serve the UE in order to satisfy its
QoS. In the following paragraphs, we review the most recent
works on ML-based beam selection in mm-wave and THz
communication systems.

The beam selection problem is sometimes modeled as
a multi-classification problem, after which a supervised or
deep learning algorithm is used to identify the beam class.
In this regards, the authors in [139] proposed a data-driven
approach for analog beam selection in hybrid MIMO sys-
tems. The beam selection problem was first formulated as a
multi-classification problem and then solved using SVM in
order to obtain the optimal analog beam for each user. The
performance evaluation shows that the proposed method has
similar data rate to that of traditional methods but with lesser
complexity. In [140], the direction of arrival information was
leveraged to developed a ML scheme for beams selection
in mm-wave communications. The beam selection problem
was expressed as a multi-class problem, and three supervised
learning algorithms namely kNN, SVM, and ANNwere used
to solve the problem. The authors in [141], proposed a beam
selection policy for THz systems based on ML approach
with low complexity. The beam selection problem was first
formulated as a multi-classification problem after which a
random forest algorithm was used to determine the optimal
beam class.

In [142] and [143], a ML framework for analog beam
selection was proposed using SVM, which considers the
transmit power of the SCs and channel information as inputs
while the model training was performed using sequential
minimal optimization in order to achieve high sum-rate
at a lower computational complexity. A DNN model for
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beam selection where channel knowledge is not required
was developed in [144]. The beam selection problem was
modeled as an image reconstruction problem, after which
the DNN was used for interpolation. The proposed model
was first trained offline—to reduce the training overhead—
before online implementation of the trained model was per-
formed. A beam selection framework for mm-wave vehicular
networks using different ML-based classification models was
proposed in [145]. The training data set comprised the vehicle
location, type of receiver vehicle and its surrounding vehicles
as well previously selected beams. It was observed that the
random forest algorithm outperformed other classification
algorithms in terms of accuracy and efficiency. A neural net-
work framework for beam selection in THz communication
networks was proposed in [146]. The proposed model was
trained using data samples obtained from the THz channel
based on the multi-classification approach. The proposed
model was able to determine the optimal beam for each user
with low complexity compared to the conventional exhaustive
search method.

Another category of mm-wave beam selection technique
exploits the CSI of sub-6 GHz to minimize the search over-
head involved in selecting the optimal beam as well as
for initial beam establishment. In this regards, the authors
in [147] proposed a DNN based framework for selecting
the optimal mm-wave SCs and beam in a HetNet involving
mm-wave SCs and sub-6 GHz macrocells. They utilized the
CSI from sub-6 GHz macrocells for both SCs and beam
selection in order tominimize the latency resulting from using
conventional exhaustive search approach for beam selection.
The authors in [148] introduced a deep learning approach
to mm-wave beam selection in 5G and B5G using sub-6
GHz CSI. They argue that using the sub-6 GHz CSI for the
mm-wave beam selection would help reduce the search space
required for establishing the initial beam. In [149], a deep
learning framework was proposed for predicting mm-wave
beam and blockage while using sub-6 GHz channel. They
proved that under certain conditions, a mapping function
exists, that can be used to predict the optimal beam and
blockages in any environment. Then they went further to
to show that this mapping function can be learnt using a
large enough neural network after which a DNN model was
designed to perform both predictions. The work in [150],
suggested a deep learning approach for the prediction of
the optimal mm-wave downlink beam. The developed DNN
model takes as input a combination of features extracted from
both the sub-6 GHz channel and mm-wave band in order to
enhance prediction accuracy and achievable data rate.

RL techniques have also been applied to mm-wave beam
selection in literature. In this regard, different (deep) RL
algorithms such as multi-armed bandit (MAB), Q-learning,
deep Q-learning approaches have been proposed. A novel
ML-based beam tracking and alignment framework for a
sparse and time-varying mm-wave channel was proposed
in [151]. The channel tracking was performed using Bayesian
learning and Kalman filtering after which the optimal beam

selection strategy was obtained using MAB. A fast ML
algorithm for beam selection in 5G mm-wave vehicular
networks using contextual MAB (CMAB) was proposed
in [152] and [153]. The proposed model considers the traffic
pattern and different types of blockages in order to select
the optimal beam in real-time without prior training of the
model. In [154], a beam tracking approach based on MAB
is proposed to determine the optimal beams and data rates
of the beams in a mm-wave communication system. The
proposed model uses the beam quality information, and the
feedback obtained from users during initial access to deter-
mine the optimal beam and transmission rate during the next
transmission.

The authors in [155] proposed an online learning algorithm
for optimal beam selection in mm-wave vehicular networks
using CMAB. The developed algorithm is able to predict the
beam direction of the target mm-wave BS from the serving
mm-wave BS depending on the current traffic pattern while
considering the user QoS requirements. In [156] multi-agent
RL (MARL) approach for the joint optimization of user
scheduling and beam selection in mm-wave networks was
developed. The proposedmethod ensures that the delays asso-
ciated with beam selection are minimized while ensuring that
the users QoS are satisfied. The authors in [157] proposed a
framework formm-wave beam prediction inmulti-UAV com-
munication systems using Q-learning. The proposed model
exploits the received coupling coefficients (a pair of analog
beamforming vector from the transmitter and receiver side of
the channel) to determine the optimal beam that will maxi-
mize the received signal-to-interference-plus-noise-ratio.

A learning-based approach for optimizing beam search
in mm-wave BSs in an indoor network environment while
considering user mobility has been proposed in [158]. The
proposed approach uses multi-stateQ-learning while exploit-
ing user trajectory-based data from the radio. They argue
that the proposed method is superior to traditional methods
because it jointly considers both BS and beam selection, can
be adapted to different indoor environments and user mobility
and minimizes the delays due to beam search. A beam selec-
tion framework for high mobility vehicular networks which
aims at enhancing data rate, minimizing the number of HOs
and disconnection time was proposed in [159]. The proposed
framework utilizes parallel Q-learning to determine the opti-
mal beam for each vehicle. The algorithm leverages the possi-
bility of simultaneously collecting information from multiple
vehicles on the road to hasten its convergence to the optimal
solution. In [160], an RL framework for beam selection in
NLOS scenarios was introduced. The proposed framework
employsQ-learning to determine the optimal NLOS beam for
each user based on the user’s QoS requirement.

The user location can also be exploited in order to iden-
tify the optimal beam selection for user association. The
authors in [161], proposed a beam selection strategy based
on ML that considers the user position and receiver ori-
entation to select the optimal beam pair, thereby reducing
the overhead associated with beam alignment. Moreover,
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since their approach to beam selection is based on multi-
classification, the neural network model is enriched with
a large amount of CSI to enable it not only to select the
strongest beam based on the magnitude of received signal but
also an alternative beam. This makes the proposed approach
resilient against blockages. A hierarchical learning-based
beam selection scheme was proposed in [162] for multi-users
in mm-wave vehicular networks. They developed a graph
neural network (GNN) model for beam pair selection while
considering CSI and user positions. A deep learning model
based on CNN architecture was proposed in [163] for select-
ing the beam that gives the best communication performance
to users in a massive MIMO system while considering user
position. In [164], the authors developed a learning-based
beam alignment scheme for mm-wave systems that can deter-
mine the optimal BS while only exploiting the user position.
The proposed scheme can predict the optimal BS and beam
even with incomplete user location information with reduced
search time. A position-based online learning framework for
optimal beam pair selection and refinement was proposed
in [165] while considering only user position. The beam
selection and refinement problem was first modeled as a
continuum-armed bandit problem after which a risk-aware
greedy upper confidence bound (UCB) algorithm was devel-
oped for beam selection while a hierarchical optimistic opti-
mization (HOO)was used for beam refinement. The observed
that where more information regarding the environment can
be obtained from BS or user devices, the training overhead
can be further reduced.

b: BASE STATION SELECTION
A proactive HO framework that enable users to switch con-
nection to another BS before link disconnectionwas proposed
in [101]. The proposed method uses deep learning to predict
obstacles and trigger HO before link disconnection occurs,
thereby ensuring the reliability of the link and preventing
data transmission delays due to link disconnection. In [166]
and [166], a HO mechanism for selecting the optimal BS in
mm-wave network based onMABapproachwas developed in
order to ensure the user has a longer connection time with the
BS after HO. The considered the user’s post-HO trajectory,
and the blockages along the LOS to predict future HO. A RL
framework for minimizing frequent HO while satisfying
users QoS was proposed in [167] using MAB. The proposed
framework takes into account the channel conditions and user
QoS requirements before triggering HO. Furthermore, two
BS selection algorithms were also developed based on user
density for both single-user and multiply user HO scenarios,
respectively. An intelligent HO decision framework for BS
selection was proposed in [97]. The proposed framework uses
a double DRL (DDRL) algorithm to learn the optimal BS
for user association in order to minimize the number of HOs
and optimize the average throughput along the user trajectory.
A distributed learning framework for HO optimization in
dense mm-wave networks was proposed in [168] and [169] in

order to minimize frequent HO and optimize user throughput.
The framework employs MARL where each user was mod-
eled as an agent and takes an independent HO decision
based on its local observation, thereby reducing signaling
overhead.

The authors in [170] introduced a HO optimization algo-
rithm based on RL for 5G systems. They modeled the HO
problem as a CMAB, then developed a Q-learning solution.
In [171], the authors proposed a deep learning model for user
localization and proactive HO management, while consider-
ing user behaviour in the network. The proposed model uses
the received signal measurements to reduce the number of
unnecessary HOs and predict the user location while ensuring
that the throughput of the network is maintained. A joint
optimization framework for minimizing HO frequency and
maximizing user throughput was proposed in [172]. The
HO and power allocation problem was modeled as a coop-
erative multi-agent task, after which a MARL framework
using proximal policy optimization (PPO) was developed.
The model training was performed in a centralized manner
after which decentralized policies were obtained for each
user. The authors in [173], proposed a learning framework
that jointly optimizes HO and beamforming for mm-wave
networks. RL algorithm was employed to determine the opti-
mal backup BSs along user trajectory that will help reduce
the overhead signaling during channel estimation for user
association and minimize the number of HOs. This would
ensure an enhanced data rate along the user trajectory.

A learning-based load balancing HO mechanism was pro-
posed in [95]. The user association problem was modeled as
a non-convex optimization problem, after which a deep deter-
ministic policy gradient (DDPG) RL algorithm was applied
to solve the optimization problem. The algorithm’s goal is to
associate all the users in different trajectories in the network
environment to the optimal BSs in such a way that maximizes
their sum rate as well as reduces the number of HO occur-
rences. The authors in [174] exploit user-centric information
to predict user future content request and mobility pattern,
after which the optimal user association with UAVs, UAVs’
position and content to cache at the UAVs were determined.
The goal of their work was to enhance the QoE of the users
while reducing the UAV’s transmission power. A ML frame-
work using echo state networks was proposed to predict the
user future content requests and mobility pattern after which
analytical derivations of the optimal UAV locations and con-
tents to cache at the UAV were performed. In [175], a joint
optimization framework was proposed for both resource and
cache management over licensed and unlicensed for UAV
networks. To solve the optimization problem, a liquid state
machine learning algorithm was developed to predict the
distribution of the user content as well as to enable the UAV
select the optimal resource allocation strategy for serving user
requests. In addition, a closed form expression was derived
to determine the optimal user content to cache and optimal
resource allocation.
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VI. CHALLENGES AND FUTURE RESEARCH DIRECTIONS
Although many studies have been carried out to address the
issue of HO management in 5G specifically for mm-wave
applications, many significant challenges still needs to be
addressed. In this section, we briefly highlight some of
the challenges associated with the application of ML tech-
niques for HOmanagement in 5G and present future research
directions.

A. DATA SET AVAILABILITY
ML-based implementations rely on the availability of suf-
ficient12 and quality data13 for model training. However,
ML based mobility and HO optimization require data set con-
taining user mobility history which is usually very difficult
to obtain due to various data protection regulations [118].
Hence, synthetic data via network simulations are normally
used for model training. Also, there is the issue of data
uniformity where data set generated cannot be used across
different platforms. Hence, there is a need to create qual-
ity data sets that can be used as benchmarks to assess the
accuracy of different ML models that are being proposed for
mobility predictions and HO optimization in order to verify
their authenticity.

B. PRIVACY AND SECURITY
Mobile service providers are typically responsible for pro-
tecting the privacy of their customers. As a result, it is
very difficult to release the complete and quality data sets
from mobile networks without revealing the personal iden-
tity of the users and compromising their privacy. Moreover,
ML model security is another issue that should be considered
as deep learning models can be subject to adversarial attack.
These attacks often inject fake data set to the training data set,
thereby reducingmodel accuracy and resulting in sub-optimal
network performance [178] and [179]. More researches need
to be conducted on how to properly anonymise data sets from
mobile operators in other to prevent vital user information
from being revealed while retaining the relevant features
of the data set. There is also a need for more research on
how to secure deep learning model from adversarial attack
that seeks to undermine their accuracy. In addition, more
privacy-preserving ML algorithms such as federated learning
needs to developed and employed for mobility management
and HO optimization in order to guarantee the security and
secrecy of user information.

C. GENERALIZATION OF THE ML MODEL
Generalization is the ability of a ML model to learn from
seen data and be able to predict the unseen data. Nevertheless,
it is not always clear if the trained model is truly generalized
since it is difficult to determine if the data set that was used

12Sufficiency heremeans that the available data set should be large enough
to enable proper training of the ML model.

13Quality here means that the data set must be free from missing entries,
duplicated entries or any form of noise that may hinder the ML model from
accurately learning from the data set.

for model training captured all the environment features and
parameters such that the model would have been exposed to
all these features during model training for effective gener-
alization to happen. Therefore, it is essential to ensure that
when generating synthetic data set or obtaining real data
sets for mobility predictions and HO optimization that all
the features in the environment are adequately represented
in the data set in order to enhance generalization of the ML
models.

D. OFFLINE VERSUS ONLINE LEARNING
Due to the large dimension of 5G and B5G networks as well
as the large number of parameters that needs to be learnt
during mobility prediction and HO optimization, network
designers often have to resort to offline training to reduce both
time and space complexity. The successful implementation of
offline trainedmodel depends on the adaptability and general-
ization ability of the model. However, HO optimization often
require real-time training and decision making. Hence, there
is a need to reduce the number of parameters that needs to
be trained by employing clustering method [120] and the use
of hardware acceleration [180] to facilitate the ML training
process. Theremight also be a need for both offline and online
learning where the model goes through a periodic update and
refinement during real time implementation.

E. CENTRALIZED VS DISTRIBUTED DEPLOYMENT
ML models can either be implemented centrally or in a
distributed manner, depending on the network configura-
tion with each having its advantage or disadvantage. On the
one hand, the advantage of decentralized implementation is
low signaling overhead and lesser computation. At the same
time, it faces the challenge of inaccurate network optimiza-
tion due to localized or lack of global network information.
On the other hand, the centralized learning case has a global
information of the environment and is able to perform a
coordinated and collaborative learning that leads to global
network optimization. However, it results in massive sig-
naling and computation overhead due to periodic data col-
lection as well as end-to-end delays. Hence, there must be
trade-off considerations between global accuracy and huge
overhead [181]. With increased network dimensions, com-
plexity and heterogeneous UEs in 5G and B5G networks,
it would be more suitable to implement decentralized ML
approaches for mobility management and HO optimization
as they can help preserve user privacy, reduce latency and
communication overhead and also minimize the energy con-
sumption of UEs [124]. However, the issue of coordination
for decentralized learning and the challenges involved in
sending the locally trained models from the user devices to
the central entity due to imperfect channel conditions [126],
requires that more research and investigations needs to be
carried out on how to effectively implement decentralizedML
approaches for mobility management and HO optimization
in 5G and B5G networks.
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F. FREQUENT HANDOVER
The deployment of large number of mm-wave small
cells (due to the short transmission distance of mm-wave
signals) to serve the traffic demands of the growing number
of UEs would result in increased and unnecessary HOs as
well as HO failures. More frequent HO occurrences results
in increased signalling overhead, reduced QoS of UEs and
increased device power consumption [182]. Therefore, more
improved models needs to be developed to reduce the number
of HO occurrences as well as optimize the procedure of the
HO decision-making process.

G. SIGNALING OVERHEAD
The increase in the number of UEs as well as the large deploy-
ment of mm-wave BSs would make the UEs more prone
to frequent HOs. The process of HO usually involves the
transmission of packets which results in increased signaling
overhead in the network. The more the number of HO occur-
rences, the higher the signaling overhead. Signaling overhead
during HO leads to interruptions in data transmission which
reduces the user throughput and increases latency [183].
Newer approaches needs to be developed to reduce the num-
ber of HOs and shorten data interruption time due to transmis-
sion of HO signaling messages by optimizing HO parameters
and eliminating the concept of area notification.

H. DEVICE POWER CONSUMPTION
The process of HO in mm-wave communications requires
that the UEs makes intra-frequency or inter-frequency mea-
surements depending on its carrier frequency and that of
the BS. These measurements increases as the number of
mm-wave BSs increases, thereby resulting in increased
power consumption for the UEs [184]. This power con-
sumption can be minimized by reducing the measurement
gaps and ensuring that the UEs take measurements within
the DRX cycle. The smaller, the DRX cycle, the lesser the
power consumption [100]. Hence, mobility and HO man-
agement schemes that can reduce the DRX cycle needs
to be developed in order to optimize the device power
consumption.

I. LOAD BALANCING
The uneven distribution of UEs within the network due to
random cell positioning and UEs mobility makes some cells
to become more loaded than others as a result of more UEs
associating with those cells than others. This load imbalance
among the cells causes frequent HO and degradation in the
QoS of the UEs [94]. Also, in an attempt to prevent frequent
HO, most of the HO optimization methods proposed in lit-
erature suggest HO skipping or prolonged user connection
to a BS [185], which could lead to load imbalance in the
network. Therefore, further research needs to be conducted
on the effects of the proposed HO optimization schemes on
the load balance of the network in order to ensure the QoS of
UEs and minimize network congestion.

VII. CONCLUSION
HO management has already been one of the main issues in
cellular networks, and is envisioned to be more critical with
the introduction of 5G networks due to the prospective capac-
ity enhancement technologies. ML has been quite pervasive
in numerous domains, including healthcare, agriculture, dis-
aster prevention, etc., and it has become a reality in 5G
networks with proven capabilities in terms of effectiveness
and efficiency. Besides, almost all the visionary works that
attempt to draw a framework for 6G network foresee that
ML will lie at the heart of 6G. In this survey, we first tried
to take a snapshot of the current status of cellular communi-
cation networks, and then gave a comprehensive tutorial in
both mobility and HO management in 5G after elaborating
some distinctive characteristics of 5G networks. After that,
the major ML branches, namely supervised, unsupervised,
and RL (RL), were introduced, and their applications to HO
management process were presented. An extensive review
on the recent studies on ML-aided HO management tech-
niques was provided under a novel classification that is based
on the source of the data for ML implementations. Lastly,
the challenges that can be faced while incorporating ML
into HO management procedure were identified and thor-
oughly discussed, followed by a discussion of future research
directions.

Although there are multiple survey papers available in the
literature reviewing mobility and/or HO management in 5G
networks, this is a unique attempt to solely focus on ML
applications to HO management. Further, the scope of the
paper was kept limited to HOmanagement in order to analyze
the topic in a concise and clear manner. The state-of-the-art
was reviewed which encompasses the most recent studies in
order to demonstrate the current research focus within the
community and to keep the readers up-to-date with the most
relevant and timely data. In addition, we provided a novel
taxonomy about the source of the data and visual data aided
HO management techniques, which has been overlooked in
the existing survey papers, was included in the discussions
along with the traditional wireless data driven applications.
With this, we aimed to divert the research focus from con-
ventional approaches to the visual data sources due to the
promising potentials of utilizing them in HO management.
We also included a discussion on how intelligent HO man-
agement can be helpful in emergency scenarios, where there
could be mobile clinics, ambulances, remote hospitals, etc.
This is quite important on its own considering the current
COVID-19 pandemic, which created a chaos in the world
and put the need for intelligent and remote control under the
spotlight.
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