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ABSTRACT Automatic modulation recognition (AMR) is one of the essential parts in the intelligent
communication system. In the underwater acoustic communication, it is a challenging work that promptly
and easily recognizes the signal modulation schemes by conventional methods. The deep neural network
method is a good solution to the problem, which creates a better recognition effect. The packets of data that
are fed to the familiar neural network is constant. However, the packets of signal data on the communication
course consistently change, which seriously reflects on the signal recognition veracity. A novel deep
learning network with the sequence convolutional network in this paper is proposed, which is composed
of one-dimensional sequence convolution of residual network modules and the variable convolution kernel
range. By extracting the time-domain signal characteristics, the affection of various signal packets can
be mitigated. In experiments, the employed network not only has more concentrated on the modulation
recognition veracity, but also owns a lower parameter quantity and a shorter training time, which indicates
ideal recognition results in the underwater communication environment. Moreover, it is more valuable to the
real underwater communication system.

INDEX TERMS Deep learning, convolutional neural network, modulation recognition, underwater acoustic

communication.

I. INTRODUCTION

The task of AMR, often considered as the signal recognition,
may mainly include classifying individual signal arguments
of modulation schemes to identify the communication style,
which is imposed between the transceivers on the application
scene. Customarily, the signal recognition has discovered
more intentions in the military and civilian context [1]. It
may be noticed that the signal recognition work, according to
different application requirements, could be broadly used in
the non-cooperative field and the network security field. The
military context contains the test, analysis and identification
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of unknown signal modulations from the potential source of
the adversary communication, which has a critical impact
on electronic warfare, signal surveillance, and communica-
tion interception [2]. As a comparatively new study field,
the cognitive radio (CR) has found more real applications in
the civilian context, which has been regarded as the concrete
form of software defined radio (SDR) [3]. It presents the
solution that is the client-oriented and scalable management
of the communication resource. The purpose of CR is to fully
develop the reusable wireless resource at the greatest extent,
applying agile, alterable and reconstructed software defined
transceivers. CR rebuilds these transmission arguments based
on the actual wireless environment in both time and fre-
quency domain. The information of arguments can be flowed
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between CR transceivers through the wireless channel. It is
important to note that this way requires some extra communi-
cation arguments to decrease the system effectiveness. AMR
provides an executable solution to the inefficient way. At the
receiver, the AMR algorithm provides a substituted plan for
retrieving these arguments from the received signal.

Water has a low absorption ratio in low-frequency acoustic
signals, and it is more evident in the shallow sea environment.
Actually, the beneficial transmission mechanism relies on
the sound wave in the underwater communication, which is
disadvantageously obstructed by several situations, such as
reflecting and scattering multi-path interference, external and
internal surrounding noise, salinity and temperature variation,
etc., [4]. The spreading speed is the extremely low mode of
around 1500 m/s. The underwater acoustic channel associates
two aspects of attributes: one is a bad condition of the physical
link comparing the terrestrial mobile radio communication
with the worst-case performance, the other is a large delay
of the wireless beam comparing the satellite transmission
[5], [6]. Although the lower frequency better carries on the
acoustic transmission course, the communication resources
are greatly constrained in the available bandwidth, may nor-
mally be from a few tens of hertz to a few kilohertzs. These
statuses make the job of the underwater signal modulation
recognition extremely difficult.

The most favorite modulation recognition methods are
Likelihood-based (LB) [7]-[10] and feature-based (FB)
[11]-[15]. The former depends on the likelihood function of
received signals; the latter takes on the modulation signal
characteristics. LB methods are enabled with a proportion
verification between two assumptions to issue the honest
judgment of different modulation schemes, which create
opportunities for the better recognition performance with
taking more cut-and-try struggles to select suitable judg-
ments. With more instinctive methods, LB would discover the
maximum likelihood among all candidates, called the maxi-
mum likelihood (ML) recognizer, it does not need carefully
designed judgments and is easier to fulfil. LB methods are on
behalf of the optimal recognizer in the circumstance of the
prior channel state knowledge.

Since LB recognizers produce the best recognition result,
their high calculation consumption has an influence on the
actual applied deployment, which drives the generation of
FB recognizers. FB methods take the sub-optimal effec-
tiveness, and have a much lower calculation wastage. The
time and frequency characteristics in FB are well extracted,
which are adjusted to the modulation recognition of both
analogue and digital signals. In the actual recognition course,
FB recognizers need the judgment strategy formality, and
miscellaneous modulation schemes will be decomposed into
several branches of subgroups, where the recognized mod-
ulations could be separated from the other. The most clas-
sical result-making forms in FB are to set the judgment
at each decision-identifying point. Normally, a given state
information of channel or a Gaussian white noise of signals
is considered to determine the judgment. The most popular
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method with the high-order statistics characteristics mainly
cover the moduli of time and cumulant, which is appro-
priate for the modulation recognizer. On the basis of the
wavelet-based characteristics, FB recognizer undertakes the
waveform function for the measure essence, and the signal
cyclic characteristics specify the cyclostationary analysis as
the underlying classification type.

Deep learning (DL) as a part of the machine learning
has a variety of applications in image recognition, speech
recognition, and natural language understanding [16]. DL has
been considered as indispensable tools for worth in many
areas of the wireless communication, such as RF signal
processing [17], radio resource allocation [18], [19], radio
control [20]-[22], MIMO detection [23], [24], channel esti-
mation [24]-[26] and IoT detection [27], [28]. In the ter-
restrial environment, DL for AMR primarily refers to the
network methods, such as the convolutional neural network
(CNN), the recurrent neural network (RNN) and the network
of the composite structural configuration with both CNN and
RNN. The deep full-connected feedforward network showed
a satisfactory effect for AMR in fading channels [29]. The
modified CNN accomplishes a more obvious classification
quality comparing to 2-layer CNN and 32-layer ResNet
[30], [31]. The extensible neural network with many hid-
den layers earns a more correct probability of AMR [32].
The CLDNN (Convolutional Long Short-term Deep Neural
Network) analyzes the structure design affected by different
hyper parameters, and there are excellent recognition out-
comes comparing with CNN, ResNet and DenseNet [33]. The
separate network structure comprised of CNN and long-short
term memory (LSTM) belongs to the fusion pattern in the
two paths of the structure, which has powerful function for
the AMR problem [34]. There are few studies of AMR with
DL in the underwater acoustic communication. The deep
sparse automatic encoder handles better in the random signal
conflict, and is qualified for recognizing the four modulation
schemes [35]. The DL method distinguishes five underwater
signal modulation schemes, and there are the better results
than the statistic’s method [36]. The mixed-structure network
consisting of LSTM and CNN learn the multidimensional
signal characteristics, which exceeds the impulse noise dis-
turbance to certify the AMR work competence [37].

It can be seen from these pursuits of literatures, which
highlights that the proper network structure can improve
the recognition rate of AMR. This paper considers the
sequence convolutional network (SCNet), an innovative
structure of one-dimensional sequence convolution (1DSC),
for the underwater acoustic signal modulation recognition.
In the network form, the recognition rate of acoustic signal
modulations is mainly improved by stacking one-dimensional
convolutional residual network modules and the variable con-
volution kernel range (CKR) in 1DSC. The complexity of
underwater communication environment makes it difficult
to distinguish the modulations of received signals. Through
SCNet, more recognition characteristics of time sequence sig-
nals can be obtained to promote the modulation recognition
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effect. The signal packets sent in the communication course
are constantly changing. SCNet can adapt to the influence
of various signal packets and achieve the effective modu-
lation recognition. During the signal sequence processing,
the extraordinary cost of too many computing resources and
too many parameter quantities are two main obstacles nor-
mally encountered in the ordinary RNN and the sophisticated
structure of the deep network, which causes the entire system
to run inefficiently. SCNet can capitalize on the parallel
manipulation of the 1DSC structure to solve problems. The
contributions of this paper are mainly as follows:

(1) The recognition effect of SCNet is verified, and it can
identify the various signal modulation schemes in harsh
underwater communication conditions, which adapts to
the different packets of the recombination signals.

(2) SCNet takes in the method of the variable CKR in varying
1DSC layers to enrich the types of the extracted signal
characteristics and further heighten the recognition accu-
racy, which has a great favor to the efficiency improve-
ment with no extra calculation amount.

(3) The employed network is authenticated by the simula-
tion experiment with the real underwater channel argu-
ments. There is also the comparison result of the diverse
cross-layer connection modes and the variable CKR.

The remaining parts of this paper is organized as fol-

lows. The communication signal model is given in Section II

along with the basic CNN and RNN structure. In Section III,

there are the details of SCNet structure and the various

packets of the signal dataset to the modulation recognition.

Section IV discusses the modulation signal dataset produced

at great length, and the modulation recognition performance

is evaluated in the real underwater acoustic channel. Finally,

Section V provides a summary of the paper.

Il. SIGNAL AND NETWORK MODELS

A. SIGNAL MODEL

There are several principal kinds of factors influencing the
underwater communication, such as multi-path, time delay,
doppler and additive white Gaussian noise (AWGN), etc.
Fig. 1 shows the underwater channel model [35], which is
the most representative form of received signals

1
Y1) = h(t, 0) ® x(t) + n(t) = > pit)x(t — 6,(1)) + n(t)
i=1
(1)
where x(t) is the transmitted signal, n(¢) is AWGN, h(z, 0) is
the channel arguments, including multi-path and time delay,

-
x(t) y(®)
Influence factors of channel n(t)
Multipath Time delay
Doppler effect AWGN

FIGURE 1. The underwater acoustic channel model.
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pi(t) is the ith path signal attenuation and ® denotes the signal
convolution operation. 6;(¢) is the ith path signal time delay, /
is the multi-path number, and there is a similar doppler scaling
factor « at all paths, 6;(t) ~ 6; — ot [38]. Transmitting signals
can be digital (e.g. phase-shift keying) or analog (e.g. phase
amplitude modulation).

B. NETWORK MODEL

In the multi-layer deep learning network, each layer acts
as the characteristic’s extractor. The neurons of the network
layer extract feature vectors that input from the previous layer,
and map them into a new vector space for further learning,
which can be one, two or three dimension convolution. While
the one-dimensional convolution is used in the natural lan-
guage processing (NLP) [39], 2D and 3D convolution are
used in the image processing [40], 2D for the single image,
3D for multiple images and videos. The usual 2D convolution
operation is shown in Fig. 2. The green and yellow cube
represents two data planes, and the blue cube conducts the
convolution results. Eight cubes, including four green cubes
and four yellow cubes in the transparent black box, are con-
nected to the blue result cube by the convolution calculator.

) o

FIGURE 2. 2D convolution operation.

There is only a simple superposition of CNN layers, which
is easy to encounter the degradation phenomenon [31]. It
demonstrates that the certain network scale can properly play
a considerable role instead of blindly expanding the restric-
tion. When further deepening the network layers, the recogni-
tion result will become worse. The network learns an excess
of characteristics of the training dataset, and the recogni-
tion accuracy decreases gradually and tends to be saturated.
As a result, there is a limited number of network layers,
and more hidden data characteristics cannot be ulteriorly
extracted to improve the recognition effect. When the net-
work is degraded, it shows that the shallow network can
achieve a better training effect than the deep network. By
analyzing values transferred between the network layers, it is
always that values learned from the front layer are transferred
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to the back layer, and the effect in the deeper network should
be at least no worse than that of the shallow network.
Through the characteristics’ delivery learned within net-
work layers, it can overcome problems to some degree, which
caused by deepening the network. From the perspective of
information theory, there is the existence of processing data
inequalities, and the data information contained in the sig-
nal characteristics’ map make the layer-by-layer decrease in
the forward transport. The identity mapping in the residual
network structure ensures that the back layer in the network
must involve more data information than that in the front
layer. Based on the idea using the identity mapping to con-
nect the varying layers in the network, the layer number is
further added for a better recognition ability, which is the
residual network module in Fig. 3, where Conv2D represents
two-dimensional convolution layer, ReLU represents an acti-
vation function layer that uses the relu function [41], BN
represents the batch normalization layer that is the input data
standardization technique, Add represents the Add layer that
attaches the two paths in the residual network module.

the front layer

/1

—
Conv2D

o
| Rew |
—
Conv2D
)
BN

Add

|

RelU |

|

the back layer

FIGURE 3. Basic residual network module.

Communication signal dataset is a kind of the time
sequence data, and the signal data before and after actually
have the inevitable correlation. RNN is an ordinary neural
network for coping with the time sequence shown in Fig. 4.
RNN performs well in almost all sequence problems, includ-
ing speech recognition, machine translation and handwriting
recognition, etc. In the application, there is a serious problem
in the internal design of RNN. Since RNN can only handle
one-time step at a time, the next step must wait until the
previous step is completed. It means that RNN cannot do
massive and parallel processing like CNN, which is extremely
computationally intensive because all intermediate results
must be saved before the entire task runs.

When CNN handles data, it regards data as a two-
dimensional matrix. Moving to the time sequence, it can be
considered as one-dimensional object (1 x n vector). Through
the multi-layer network structure, a large enough receptive
field can be obtained to extract more signal data information
to achieve better results. CNN supports overlay layers to
obtain the advanced recognition characteristics of data. The
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Input layer

Hidden layer

.//

FIGURE 4. RNN structure.

Output layer

calculation in CNN does not depend on the previous time
information, so each calculation is independent and can be
paralleled to get the utmost out of the hardware system power.
Meanwhile, the reverse propagation of one-dimensional CNN
structure is unlike RNN, thus avoids the problem of gradient
vanishment and gradient explosion that often occurs in RNN,
especially for the long input training data [42], [43]. Thanks
to the impressive speciality of the large-scale parallel process-
ing in CNN structure, which can be carried out no matter how
deep the network to raise the computational efficiency.

Ill. SCNet NETWORK STRUCTURE

Due to the special propagation carrier in underwater acoustic
communication environment, it is tough to recognize the
received signal modulation schemes. In order to obtain more
advanced recognition characteristics of the signal dataset,
the designment of the deep network structure is essential.
However, when network layers are accumulated continu-
ously, common insurmountable problems make it extremely
exhausting to train the deep network, which can be better
addressed by the network structure optimization of SCNet.

A. NETWORK STRUCTURE

1) STRUCTURE DESIGN

This paper adopts the design form of stacking multiple resid-
ual modules, which are connected in series in Fig. 5. It can
effectively overcome the network model problems caused by
the multiple layers. CNN can extract low/middle/high-level
features. The deeper the network is, the more abstract the
features are, and the more distinguishing information is. In
the prediction task of the time-series dataset, the network
achieves the ability to acquire the high-dimensional input
spatial features through deeper layers. The more multi-level
SCNet has the stronger stability requirement, and it is nec-
essary to avoid the gradient problem (vanishing gradient and
exploding gradient) caused by the deeper network structure.
There is the solution for the problem to initialize the weight
parameters and adopt the Batch Normalization regularization
layer, and the deeper network can be trained. When the gra-
dient problem is solved, another problem will arise, which is
the network degradation. As the layer number of the network
increases, the accuracy rate on the training set becomes sat-
urated or even decreases. Theoretically, the solution space of
the deep network includes the solution space of the shallow
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input
.

f comap

FIGURE 5. SCNet structure.

network, so the performance of the deep network should be
greater than or equal to the shallow network. However, both
the training error and the testing error of the deep network are
larger than those of the shallow network in the training results.
Although the solution space of the shallow network is con-
tained in the solution space of the deep network, the random
gradient descent strategy is used in training, which often gets
the local optima instead of the global local optima. Obviously,
the solution space of the deep network is more complex, and
the optima cannot be obtained by the random gradient descent
strategy. The network degradation problem can be rectified to
connect the redundant layer of the network by the identity
mapping of the residual structure, which regards the deep
network as the shallow network. Each residual module (green
dotted line block diagram) is composed of Conv1D, ReL.U,
Lambda and SpatianlDropout1D plus the identity mapping.
Conv1D represents the one-dimensional convolution layer,
and weights after the convolution operation are all handled by
Lambda, which is the weight normalization layer. In addition,
after each Lambda layer in the residual module, Spatianl-
Dropout1D is added to strengthen the generalization ability of
the trained network. In SCNet structure, ReLU and Add rep-
resents the equivalent functionality like the above basic resid-
ual network module. The residual modules are also connected
by the Add layer to establish the construction of the deep
network. The internal network only transfer values learned
by the residual module to get the limited recognition effect.
For better acquiring more hidden signal characteristics, it is
a practical way to find more learned values of middle layers,
which are further supplemented by transmitting more infor-
mation gained Conv1D (black solid line) and Add (orange
solid line). This will help to promote a higher talent that
extracts signal characteristics. In the final output, Add, ReLU
and Lambda serve as the complete network, which uniformly
deals with the cross-layer values passed by Conv1D and Add.
Dense outputs the final recognition results.
The formula of SCNet structure is

M
Su =Y lsm+ 9o+ ) 2 2
m=1

nenN

where Sy represents the output of the employed network. s,
represents the signal characteristics learned by the residual
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RelU { Lambda m SpatialDropout1D ' Add ' Dense ||

Output

Residual module

module, m represents the number of residual modules, m =
0,1,2,---,M.Whenm = 0, ro represents the input original
signal data, M represents the total number of residual mod-
ules. s, = Wy, X y—1 + by, wy, represents the weight, r,—1
represents the input from the front layer, and b, represents the
deviation. G(r,,) represents the learned residual part, G(r,,) =
rm — rm—1, which is the residual identity mapping opera-
tion. A\, cy(-) represents the selection method, which is the
Conv1D layer or the Add layer in the employed network. Z(-)
represents to choose a cross-layer approach, and N = 1,2, 3
represents three ways. The cross-layer connection mode of
the Conv1D layer, the Add layer, and the Conv1D layer with
the alliance of the Add layer is corresponding ton = 1,n = 2,
n = 3, respectively.

2) INTERNAL STRUCTURE

The convolution layer of SCNet combines 1DSC in Fig. 6 (a)
with the variable CKR in Fig. 6 (b), and each square
in layers represents a neuron, which contains the fixed

4 /

NI

A

) layer

(1+1) tayer

(1+2) layer

(a) One-dimensional sequence convolution.

(1) tayer

/ (U +1) layer

o

=

(1+2) layer

(b) The variable convolution kernel range.

FIGURE 6. Internal structure.
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convolution kernel size. ReLU, Lambda, SpatianlDropout1 D
and Add in intermediate layers are temporarily ignored for the
clear description. The time sequence convolution operation
requires that the prediction of y, at the ¢ time can only be
determined by the input from x,_; to x1. The requirements
for 1DSC can be achieved to limit the sliding window of
the convolution, which can be realized by simply shifting
the convolution output at several time steps. The purpose
of 1DSC is to ensure that the prediction at the previous time
step will not deal with the future data information. It can
be guaranteed that the output at the ¢ time step will only be
obtained by the + — 1 time step and the previous time step
of the convolution operation. In contrast to the fact that RNN
cannot directly predefine the data object to length. 1DSC can
ascertain the data to be trained as a sequence by the length
information defined in advance, and it assures the parallel
processing efficiency. In the training course, the convolution
prediction of all past time steps can be parallel, and their input
and labeled true values are known, which has the enhanced
capacity over RNN in the execution speed. Simultaneously,
the simplified network of SCNet with 1DSC is more produc-
tive than the sophisticated network structure.

IDSC requires a larger convolution kernel to extend the
receptive field to enrich the signal recognition information.
Nonetheless, it needs to increase increases the computational
complexity by the convolution operation of the broader scope.
When the signal modulation schemes is classified, a larger
convolution kernel will also cause the redundant local signal
characteristics to be acquired, resulting in an unsatisfactory
final recognition effect. Therefore, it is necessary to widen
CKR without adding the redundant signal information for
covering the whole signal dataset in 1DSC. The biggest
advantage of the variable CKR is to extend the receptive field
progressively, which does not insert the blank data between
the sequence convolution but skips over some existing data.
It is equivalent to keep the unchanged input and add some
weights with zero values to the convolution kernel. Where
the calculation amount is basically unchanged, the sequence
range of signals observed by the network is fortified. If the
stride length of the general convolution operation is exag-
gerated, it can also extend the receptive field. When the
convolution stride is greater than 1, it will have the down
sampling impression, and the output sequence range will be
reduced. The signal data at the previous sequence cannot
be covered in the condition, and the time sequence analysis
cannot be finished.

It can be seen in Fig. 6 (b) that the convolution form of
the variable CKR is very similar to the sequence convolution
in Fig. 6 (a), and the biggest difference is the dilation of
the convolution kernel. There are no empty holes in convo-
lution kernel windows used by the sequential convolution,
and the data involved in the convolution operation are closely
connected together. As the layer number increases, the con-
volution kernel window will become larger and larger in
the variable CKR, and more signal data will be skipped in
the convolution kernel window. Through the variable CKR,
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the receptive field of the back convolution layer can be more
extensive, so that more signal history information can be
introduced. While the neuron in the second layer can see
3 neurons in the first layer, each neuron in the output layer
can see 9 neurons in the first layer. If the output layer needs
to remember a longer length, the network layer number needs
to be augmented by the corresponding layer number. The
advantage of the variable CKR is that there is no informa-
tion loss contrasting to the pooling operation [44]. As the
receptive field is enlarged, each convolution output contains
a wide range of rich history information. When the deep
convolution network structure is accepted, it ensures that the
convolution kernel covers all the inputs in the effective history
information.

1DSC and the variable CKR is translated into the formula
expression

ED
D) = VY dy k) x -
)
ED
VY dRED) X gy 3)

eH=1

DW(.) represents the (/) layer output of neurons selected in the
(1) convergence layers, u represents the input sequence, and
a represents the time sequence number according to neurons
in the network layer. (. is the function of the () layer
in the network to select inputs for the sequence convolution
operation in the previous layer. (") is the sequence number
of neurons selected in the (/) layer, e® = 1,2,... ED,
EW" is the total neuron number in the relating layer. d:f,))()
represents the 1DSC operation in the (/) layer. The receptive
field in each layer of the variable CKR is k(1), kD = 1, k® =
3,---,k® = K, K = 3%, which exponentially multiplies
by 3 to extend the receptive field range. As shown in Fig. 6
(b), k is 1, 3, 9. Assume that 9 neurons of the first layer are

Mas Ma—1, Ba—2, Ra—3s Ha—4s Ha—5, Ha—6> ha—T, Ha—8, The
last output of the third layer is D®. The dependent 1DSC

operation outputs of the first layer and the second layer are
D(l) — (dfl)(k(l)), dél)(k(l)), dél)(k(l)),
dil)(k(])),dél)(k(l)), dél)(k(l)),
dP D), dg D), aiP (kM) “
D? = @ k), P k), dP k) )
Substituting Equ. 4 and Equ. 5 into Equ. 3 has
D = dP®)
AP (kD) x [d}P kD) - s +dy D) - pag
+d"* D) - ]
+dy? k) x [V (D) s +dPCD) - prga
+dg (D) - pa-3)
+dy” D) < [dg D) - oz + dg kD) - g
+dP kD) - 1) ©)
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B. SIGNAL PROCESSING

The familiar CNN requires to import a constant magnitude of
data in the network. However, the solution is not applicable to
the recognition of signal modulations. Data with the constant
magnitude cannot fully exploit the information profoundly
embedded signals. When the signal dataset is split to different
magnitude of packets, there is a powerful genius to extract key
recognition thresholds in the modulated signals. The different
magnitude of packets matching up the signal formats are
represented as

J—1

W) =Y v+ i) (7

j=1

where a byte composes of eight binary signal elements, and
several bytes form a packet in terms of the demand for the
input training data. W(-) is the total signals in the current
location. j is the packet number, J is the starting packet in
the new position, and ¥ (-) is how many chosen signal bytes
according to the packet number. [ is the present accessing
number of the signal bytes. The employed network treats
W;(I) as the input format of classified signals, and the differ-
ent modulation schemes are efficiently recognized by SCNet.
The recognition efficacy of DL model is better safeguarded
by the signal data normalization, and each signal packet
data are distributed to the unit vector for fitting the feature
diversities between the simulation experiment and the live
environment. The data format is the real vector with 32 bits
of the floating-point type. It is saved as a 2-dimension eigen-
vector with the vogue utility of numpy in the DL ecosystem,
which is stored as P x I form. P represents the input packet,
which is equivalent to W; (/). I represents the input dimension.
SCNet uses Conv1D in the network design, and [ is set to 1,
which corresponds to the one dimension data entry mode.

IV. EXPERIMENT

A. SIGNAL DATASET AND TRAINING PARAMETER SETTING
The employed network method is evaluated by the simula-
tion experiment with the signal dataset, which establishes
on the real channel arguments in the shallow underwater
environment [45]. The underwater testing environment has
an average depth of about 53 meters. There are approx-
imately 1.5 kilometers away from the distance between
the transducer and the hydrophone, and they are placed at
the depth of 38 meters in water. The attenuation factor is
around 0.01875 dB/wavelength, the velocity of sound is
roughly 1574 m/s, and the density of water reaches 1.268
g/cm?. The communicational channel exhibits the typical
underwater sparse features. Ten signal modulation schemes
are considered, such as binary phase-shift keying (BPSK),
quadrature PSK (QPSK) and 8PSK, 16 quadrature ampli-
tude modulation (16QAM), 32QAM, single-sideBand (SSB),
frequency modulation (FM), pulse amplitude modulation
(PAM), 4 frequency-shift keying (4FSK), 8FSK. The doppler
shift is set to 5 x 1073 [5]. The carrier frequency is 10 kHz,
and the symbol transmission rate is 1000 symbol/s. SNRs
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are from —20 dB to 20 dB, and the packets are 81, 243,
729 and 2187, respectively. The sample rate of the maximum
deviation is 15 Hz in the random fashion, which is 1 Hz per
sample in the sample rate during the standard offset drift pro-
cess. The sampling clock drift is in the random fashion. The
sampling frequency deviation between the transmitter and
receiver usually results in the frequency offset before received
signals are demodulated. The deviation also leads to the per-
formance degradation of the time synchronizer algorithm at
the receiver. In order to achieve the better synchronization in
the communication system, the symbol clock synchronization
module frequently searches the fast fourier transform (FFT)
window to ensure the synchronization information. It will
take up too many computing resources, resulting in the sig-
nificant decline in the communication system performance.
Through the setting method, the simulation experiment can
be more realistically close to the actual communication situ-
ation. The Rayleigh distribution does duty for the time fading
model, and there is 20 cosines in the frequency selective
fading simulation. The additive noise is assumed to be band-
limited, zero mean white Gaussian noise, and the random
seed number is 14631, which is generated by the noise gen-
erator. The filter of the raised cosine pulse-shaping is the
0.35 roll-off factor.

The original data are txt format and mp3 format files
(two files are half of each), and they are converted into the
binary data through coding, which is modulated by various
modulation schemes to be sent. It ensures that the final
modulation recognition effect has nothing to do with sent
contents. The distribution of continuous data in the dataset
may be similar, and the sending contents may influence the
recognition outcome. The uncertainties of influence factors
are taken into account, and the training dataset and the testing
dataset are randomly and dispersedly formed by the data
index serial numbers. Through the use of the index, it is not
necessary to scan the entire dataset, and directly locates the
signal data record that meets the index number, which greatly
speeds up the query of the captured data. Contemporarily,
the manner pledges that the recognition effect of the trained
network model is independent of the distribution and specific
content of the original txt and mp3 data. The number of
training vectors is 5000 for each modulation scheme, and
there are 5000 testing vectors in one of the modulation
schemes. The batch size of the employed network is set to the
input time sequence number, corresponding to the packets.
In the training course, the optimizer, the loss function and
the early stopping number are taken into consideration to
refine the learning effect of networks. The Adam optimizer
[46] has been adopted. It is different from the stochastic
gradient descent (SGD) [47], which maintains the fixed single
learning rate to update all the weights. Adam combines the
advantage of adaptive gradient (AdaGrad) [48] and root mean
square propagation (RMSProp) [49]. AdaGrad maintains the
learning rate for each parameter to improve the performance
in the sparse gradients, and RMSProp adaptively pursues the
learning rate ground on the nearest magnitude of the weight

VOLUME 9, 2021



Y. Wang et al.: Underwater Communication Signal Recognition Using Sequence Convolutional Network

IEEE Access

gradient for each parameter. Adam not only calculates the
adaptive parameter learning rate of the first-order moment,
but also makes full use of the second-order moment of the
gradient. The initial value in the moving average is close
to 1, and the order moment deviation estimate is close to
zero. In the issue, the deviation is improved for calculating
the estimated deviation. The common loss functions include
mean squared error (MSE) [50], binary cross entropy (BCE)
[51] and categorical cross entropy (CCE) [52]. MSE assumes
that the error matches the Gaussian distribution, which cannot
be satisfied in the AMR task to result in bad performances. In
the perspective of information theory, the minimizing results
of the cross entropy are in good agreement with the effects
of the maximum likelihood, so that the cross entropy is used
for the loss function. BCE only compresses and restores the
output, and the output of the sigmoid activation function
is transformed into the range between 0 and 1. Obviously,
it is difficult to deal with the multi-classification problem
in this way. The output value of CCE is a one-hot vector,
and the output activation function is Softmax, which limits
the output range of each dimension to (0, 1). The output
sum of all dimensions is 1, which represents the probability
distribution. This method is in accordance with the compat-
ibility of the modulation signal classification problem. The
loss function chooses the CCE function. The early stopping
mechanism [53] is an inconspicuous form of regularization.
It hardly needs to change the training process, the value of the
objective function or the set of the legitimate parameters. It
means that the early stopping is easier to use without affect-
ing the learning mechanics of the network. This is different
from the weight-decay used in the regularized L1/L.2 meth-
ods [53]. The method directly adds the weight values to
the cost function, which is controlled by a reasonable range
during the training. In the training process, the problem of the
weight-decay setting must be brought into focus. Otherwise,
the network is easy to fall into the local minimum value, and
cannot correctly obtain the global minimum value to achieve
the optimal effect of the network. The number of early stop-
ping mechanism is set to 5 for the improved generalization
performance.

B. EXPERIMENT PERFORMANCE

In Fig. 7, there is the recognition performance with the
employed network. M represents the residual module num-
ber, and n represents the cross-layer connection mode. As
M grows from 2 to 8, CKR used by Conv1D in the residual
module grows exponentially with a base of 3, which is the
increase of CKR from 1 to 3°. At SNR < —15, there is a
similar recognition result to about 10% in 4 forms of input
packets. With the increase of SNRs, the recognition perfor-
mance dramatically improves. In Fig. 7 (d), M = 6 (n = 3)
has the best effect from —15 dB to O dB at 2187 packets,
which is an average of around 44.4%, 27.2% and 1.5% more
thanM =2n=1)~m=3),M=4mn=1)~ (n=73),
and M = 8 (n = 1) ~ (n = 3), respectively. In the same
SNR range, the other three packets forms play out in similar
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(d) Modulation recognition accuracy at 2187 packets.

FIGURE 7. The recognition performance of the different number of
residual modules and the cross-layer connection modes at various

packets.
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fashion in Fig. 7 (a) ~ (¢). In Fig. 7 (a), M = 6 (n = 3)
is, on average, about 29.3%, 20.2% higher than M = 2
m=1)~m=3),M =4(n=1)~ (n=3), respectively.
M=60n=3)andM =8(n =1) ~ (n = 3) show
the high degree of recognition consistency, and the former is
slightly almost 0.3% lower than the latter. In Fig. 7 (b), M = 2
m=D)~m=3)),M=4n=1)~m=3),andM =8
(n = 1) ~ (n = 3) average approximately 32.4%, 13.9%
and 2.1% less than M = 6 (n = 3), respectively. A similar
event occurs in Fig. 7 (¢),and M =2 (n = 1) ~ (n = 3),
M=4mn=1)~m=3)andM =8(m=1)~ n = 3)
is nearly 33.2%, 14.3% and 7.3% fewer than M = 6 (n =
3) on average, respectively. The trend of recognition results
between M = 6 (n = 3)and M =8 (mn=1) ~ (n = 3)
are closer at SNR > 0. M = 6 (n = 3) is averagely 3.6%,
1.0% and 1.8% better than M = 8 (n = 1) ~ (n = 3) at 243,
729 and 2187 packets, and M = 6 (n = 3) is averagely 0.3%
worse than M = 8 (n = 1) ~ (n = 3) at 81 packets. When
the employed network is fed by the sufficient signal data,
the recognition performances are promoted to some extent.
The more interactions the residual module has, the better the
recognition effect will be. It is the dominant consideration
that the deeper network and the enlarged kernel size in layers
obtain the advanced signal characteristics. When the residual
module number increases to a certain extent, the recognition
effect does not continue to grow at M = 8. It is chiefly
because too deep network suffers from the degradation prob-
lem. In this case, there is a similar recognition result between
three cross-layer connection modes between (n = 1), (n = 2)
and (n = 3) in 4 forms of input packets. Under the condition
of M = 2 and M = 4, three cross-layer connection modes
have the small difference of recognition performance at SNR
<0,and M = 6 (n = 3) is 42.4%, 15.6% higher than
M =2, M = 4 on average in 4 forms of input packets. When
there are few signal characteristics transferred from layers in
the shallow network, the performance is improved to some
degree. From —15dB to 5 dB, M = 6 (n = 3) has better
recognition effect about 8.5%, 9.9%, 9.6% and 10.7% than
the separate mode of (n = 1) and (n = 2) at 81, 243, 729 and
2187 packets, which is approximately 2.4%, 2.8%, 3.2% and
3.1% higher than the two connection modes at SNR > 5 dB.
It is shown that the recognition effect can be further improved
by transferring more signal characteristics from layers in the
appropriate depth of SCNet.

In the training and testing course of various packets, there
is the convergence situation in Fig. 8. In th vertical axis,
Training Loss in Fig. 8 (a) is the loss result that the employed
network is fed by the training dataset to learn the signal
recognition characteristics, and Testing Loss in Fig. 8 (b) is
the loss result that the trained network is verified by the signal
testing dataset. Two losses are computed from the categorical
crossentropy function. Number of Epoch in horizontal axis
is the number of epoches, which means the network passes
throughout the overall dataset and returns once. During the
training course, Training Loss at packets = 81 is average
poorer than the other three by more than 0.56. When packets
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FIGURE 8. Convergence situation in the training and testing course.

are 2187, Training Loss achieves the best convergence. With
the rise of epoches, losses have a sustained reduction, which
proves the employed network can acquire the essential signal
characteristics to complete the training course. Testing Loss
has a nearly trend to Training Loss. The testing course is
slightly more volatile than the training course, which can
finally converge to complete the verification. The trained
model is definitely optimized for the training dataset, and the
sample distribution of the testing dataset is not exactly the
same as that of the training set, which will produce oscillatory
results. The situation is similar to the training course, and
epoches of the testing course constantly decline when packets
boost. It shows that the employed network can apply to a
variety of packets.

According to the recognition performance of four kinds of
input packets in Fig. 7, SCNet selects the optimal network
form with M = 6 (n = 3) to introduce more contrast to the
recognition effect in different packets. Fig. 9 illustrates the
modulation recognition accuracy in various packets, which is
gradually increased with the expansion of packets at SNR >
—16 dB. The packets of 243 is above average 1.6% higher
than the packets of 81. The packets of 729 has the similar
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FIGURE 9. Modulation recognition accuracy with various packets.

recognition effect to that of the packets of 243, and the
discrepancy between them does not exceed 0.7%. The packets
of 2187 have a certain improvement to the packets of 729,
and the former was about average 3.6% higher than the latter.
The employed network can realize the effective modulation
recognition in the various packets. Comparing with the vari-
ous packets, it is helpful for improving the recognition effect
by inputting more signal data. The better effects mainly come
from that more signal data contain more hidden recogni-
tion characteristics, which benefit the employed network to
learn more precise classification thresholds for the favorable
results.

Fig. 10 shows the recognition effect of different mod-
ulation schemes at typical SNRs of the 2187 packets. In
Fig. 10 (a), the recognition rates of 4FSK and 8FSK are
low at SNR = —4 dB. 4FSK and 8FSK misrecognize
each other, which are also misrecognized as SSB and FM.
The low SNR seriously interferes with the analog signal
waveforms, which is easily confused with the results of the
poor performance. At the same time, 16QAM and 32QAM
are poorly recognized, and the modulated signal constel-
lations between the two modulations have a higher like-
ness to obtain bad performance. As SNR increases to 0 dB
in Fig. 10 (b), The recognition effect of 4FSK and 8FSK
have an effective increase, which are expressively improved
by 49%, 48% in the recognition rate, respectively. At the
SNR, the employed network can easily distinguish between
16QAM and 32QAM, and other modulation schemes can
also implement the better recognition effect. As SNRs grow,
the employed network acquires more signal characteristics
and realizes ideal recognition effects.

In Fig. 11, the employed network compared with the typi-
cal solutions is as follow: LSTM [54] and GRU [55] are the
familiar form of RNN; ResNet [56], DensenNet [57], SENet
[58] are the sophisticated structure of deep residual neural
network with more layer-by-layer connections; PnasNet [59]
is the irregular structure generated by reinforcement learning
method; Deep neural network (DNN) [29], extensible neural
network (ENN) [32], Sparse Autoencoder [35] are in the
light of the regular one-dimensional fully connected layer
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FIGURE 10. Recognition results of different modulations.

to construct the network; the improved CNN [30], CLDNN
(Convolutional Long Short-term Deep Neural Network) [60],
fusion neural network (FNN) [34] are made up of CNN
and RNN; K Nearest Neighbors [13], Random Forest [15],
support vector machines (SVM) [14] are frequently used
ML methods in AMR work. All networks are trained and
verified at packets = 2187. Although the recognition effect
of SENet, FNN and the improve CNN is around 2.7%, 4.1%
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and 1.3% higher than SCNet from —20 dB to —11 dB,
their maximal recognition rates are less than 25.5%, which
hardly work at the low SNRs. The compared networks except
SENet and FNN have almost the same recognition effect to
SCNet from —20 dB to —11 dB. When SNRs are tightened
up, the recognition effects continue to rise on all network
methods, especially the effect is most significant in SCNet.
From —11 dB to 0 dB, SCNet is adequately higher than
other network methods in the recognition rate, which is
more around 33.4%, 16.7%, 17.1%, 14.9%, 30.7%, 7.1%,
27.7%, 35.6%, 25.3%, 38.6%, 15.4%, 11.0%, 53.5%, 52.3%
and 50.4% than LSTM, GRU, DenseNet, SENet, PnasNet,
ResNet, DNN, ENN, FNN, Sparse Autoencoder, CLDNN,
the improve CNN, K Nearest Neighbors, SVM and Random
Forest on average, respectively. SCNet gains more unattrac-
tive signal characteristic due to the benefit of the network
structure. There is a great improvement in the recognition
effect of all networks after SNR = 0 dB, and SCNet also has
a better performance than other five networks. LSTM, GRU,
DenseNet, SENet, PnasNet, ResNet, DNN, ENN, FNN,
Sparse Autoencoder, CLDNN, the improve CNN, K Nearest
Neighbors, SVM and Random Forest approximately mean
lower 19.1%, 17.4%, 11.6%, 21.3%, 37.4%, 10.3%, 34.5%,
35.0%, 31.9%, 38.1%, 17.3%, 13.0%, 71.8%, 71.5% and
44.9% than SCNet, respectively, which are less valid than
SCNet. It is due to that SCNet has a greater ability to extract
the plentiful recognition information with the variable CSK,
which performs better than the compared network methods.
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The trained network model is deployed to perform the
AMR work, and it is necessary to consider the hardware
resource limitations on the communication system. The
smaller network model can run better in the limited hardware
resources of communication terminals. The training time
of the network model is one of the important factors that
reflect the sensible design of the network structure. A more
reasonable network structure can greatly shorten training
time, improve training efficiency, and facilitate engineering
applications. The conventional ML methods of K Nearest
Neighbors, Random Forest and SVM do not find a function
to predict all samples like DL methods, which control the
error of the prediction function. For this reason, the param-
eter quantities and each epoch time are investigated in the
DL methods. SCNet compares the parameter quantities with
other networks in Table 1, which were acquired on CPU
15, GPU 2080ti, ubuntu 16.04 and tensorflow version 1.14.
SCNet includes 1DSC, which has the easy way to decrease
the parameter quantities. In the case, there are minimal values
in SCNet, which is less than 1/2, 1/18, 1/15 and 1/29 of
ENN, FNN, LSTM and GRU, respectively. The improve
CNN, DenseNet, SENet, ResNet and PnasNet have the
parameter quantities about 132 times, 207 times, 274 times,
468 times and 551 times than SCNet, respectively. The com-
plex network has a larger number of parameters, meanwhile,
the recognition effect is not as good as that of SCNet. There
is little difference in the parameter quantities compared to
SCNet, DNN, Sparse Autoencoder and CLDNN, and the total
accurate rate of SCNet is more excellent than that of DNN,
Sparse Autoencoder and CLDNN. In Fig. 12, Epoch time
is the training time of each epoch. SCNet owns the shortest
time, and DNN, Sparse Autoencoder, GRU, CLDNN, ENN,
LSTM, the improved CNN, DenseNet, SENet, FNN, ResNet
and PnasNet have around 1.1 times, 1.3 times, 1.5 times,
1.7 times, 1.9 times, 2.0 times, 2.0 times, 2.1 times, 2.9 times
3.3 times, 5.2 times and 5.8 times each epoch time of SCNet,

TABLE 1. The parameter quantities of different networks.

Network method Parameter
quantities
SCNet 153,930
LSTM 2,383,370
GRU 4,546,058
DenseNet 31,872,370
SENet 42,281,344
PnasNet 84,939,820
ResNet 71,990,730
DNN 171,150
ENN 345,210
FNN 2,833,051
Sparse Autoencoder 169,514
CLDNN 258,568
the improved CNN 20,326,666
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respectively. Each epoch time concerns on the parameter
quantities. The lower the parameter quantities are, the faster
the training speed is, and the shorter each epoch time gets.
Another major factor is that the CNN structure adopted
by SCNet can perform the parallel manipulation, which is
more efficient than LSTM, GRU and FNN that need to save
intermediate states. The brief and efficient network structure
designed in SCNet also shows better results than the com-
plex network structure, including the improve CNN, ResNet,
DenseNet, SENet and PnasNet, and it is also more efficient
than the fully connected layer networks, such as DNN, ENN
and Sparse Autoencoder. The employed network is remark-
able on lower parameter quantities and shorter training time.

V. CONCLUSION

The paper considered the modulation recognition of underwa-
ter acoustic communication signals. It is hard to carry out high
recognition accuracy in the tough condition of the underwater
communication. The employed network with 1DSC and the
variable CKR provides more advantages than the traditional
neural network in recognition performance, which not only
has the low parameter quantities but also has the short training
time. It is also robust to the various signal packets. This shows
that the trained network can be deployed and plugged in the
actual underwater communication scenario with the restricted
condition, which can also be afforded to the other signal
recognition situation for the underwater communication. In
the future, we will study the deep neural network in the
orthogonal frequency division multiplexing (OFDM) envi-
ronment to recognize the underwater communication signals
effectively.
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