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ABSTRACT Head orientation prediction is one of the solutions to reduce end-to-end latency on Virtual
Reality (VR) systems and is important since it can alleviate negative effects like motion sickness. This
study compared head orientation prediction models from two different electromyography (EMG) systems:
surface EMG (sEMG) and High-Density EMG (HD-EMG). The deep learning method was used to train
the prediction model, and the results showed that the model with input from the pre-processed sEMG +
IMU sensor outperformed the model with input from the HD-EMG+ IMU sensor. However, the decreasing
performance from HD-EMG was compensated by its comfort and the ease of use of its electrode. This
tradeoff between performance and usability with sEMG compared to HD-EMG should be a consideration
for users who want to choose between performance and ease of use for head orientation prediction purposes.
Comparison with state-of-the-art head prediction methods proved that the sEMG-based model offers better
performance in predictions when users change their head directions, which was quantified by calculating the
dt peaks. In other words, our sEMG-based prediction model is suitable for VR applications, which require
the user to perform high-intensity or abrupt movements, such as in FPS games or exercise/sports games.

INDEX TERMS Deep neural network, head orientation prediction, high-density electromyography, low-
latency virtual reality, surface electromyography.

I. INTRODUCTION
Virtual Reality (VR) is evolving rapidly with many applica-
tions in various fields, including medicine, navigation, enter-
tainment, training, and education. VR systems with Head
Mounted Displays (HMDs) utilize artificial sensory stimu-
lation to induce the targeted behavior in an organism, while
the organism has little to no awareness of the interference;
however, this sensory stimulation sometimes fails to create a
perceptual illusion because of the latency between the user’s
actions and the displayed image.

The time interval or time delay between a user’s physical
movement and the resulting update of a new frame on the
display is referred as motion-to-photon (MTP) latency [1].
This MTP latency can cause several negative effects for the
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user, such as motion sickness marked by symptoms like
dizziness, nausea, headaches, and general discomfort [2].
For human beings, latency itself is noticeable in the range
of 8–20 ms [3]. However, the end-to-end latency on a VR
system can reach more than 30 ms, depending on the hard-
ware and software configuration. Awell-designed VR system
consisting of a tracking sensor with a 1000 Hz sampling
rate can add a 1-5 ms delay for sampling and digitization,
while additional filtering and necessary calculations can add
another 3-10 ms. Rendering and displaying the frame add
another extra 6-15 ms. However, this last part of the delay can
be reduced if the system uses a higher refresh rate display that
can reach up to 120 Hz [4]. These accumulated delays can be
reduced but never eliminated since they come from the hard-
ware and software requirements. Moreover, recent literature
from 2019-2020 showed that current VR-HMD still possesses
an MTP latency varying between 43 and 85 ms [5]–[9].
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Using anAcer device, R. Gruen et al. (2020) tested the latency
on four different VR devices: Oculus Rift S, Valve Index,
Oculus Quest, and Prim. The first of these devices was a
standalone VR headset, while the others were PC-based VR
headsets [8]. The authors’ hardware-instrumentation-based
measurements showed that the Prism device had the lowest
latency, with 54 ± 1.9 ms. Meanwhile, the Valve Index had
the largest latency, with 94± 2.1 ms [8]. Furthermore, a study
from Staufert et al. measured latency on an HTC Vive, and
the result was 54.51 ± 8.6 ms [6], while the older version
of Oculus VR, Oculus DK2, showed latency as high as 84 ±
6.3ms, as measured by Feldstein and Ellis [9]. Thus, theMTP
latency on VR system is still around 43-85 ms, even with the
latest VR-HMDs like Oculus Rift S and Oculus Quest.

Furthermore, one of the solutions to reduce latency is to
apply head movement predictions to the VR system. This
head movement prediction system can be developed using
various types of sensors and algorithms, such as using differ-
ent types of predictive filters (Kalman Filter, Particle Filters)
with inertial sensors [10]–[14], or using another approach
utilizing biomedical signals such as Electromyography
(EMG) [4], [11].

The idea behind using the EMG signal as a predictor for
head movement is based on the phenomena called Elec-
tromechanical Delay (EMD). EMD is the delay between
generated action potential and muscle contractions or move-
ments. The value of EMD varies between muscle type and
location, and, in some cases, can reach up to 100 ms [4],
[15]. If we trace the chronological order of movements in
humans, first, a signal generated from the brain propagates
through nervous signaling to the target site (muscle); then,
the action potential propagates through the muscles before
the muscle contracts to create the desired movement. This
EMD phenomena suggests that the movement from humans
can be anticipated by detecting the signal with surface EMG.
It was first demonstrated by Y. Barniv and S. Polak that an
EMG signal can predict headmovements by utilizing features
extracted from the surface EMG data [4], [11]. However,
this previous study still had some drawbacks, such as the
utilization of handcrafted features, which added additional
processing times/delays to the system.

Second, the testing data used were limited and did not
cover all movement types and speeds represented in real VR
applications. Third, the model was developed only for the
intra-subject testing method, which means that if another
new user employs the model, additional fine-tuning will be
needed to adjust the pre-trained model. Another limitation
when using surface EMG (sEMG) is the electrode placement,
which needs to be precisely located on the muscle belly;
otherwise, the data produced will not be good. The electrode
placement is also susceptible to the variability between sub-
jects or even between sessions.

This last problem can be solved by using grid elec-
trodes (High-Density EMG). In this method, instead of
placing the electrode on the exact position of the mus-
cle, a grid electrode that contains several electrodes

in rows is placed using columns on the area of the
muscle.

To address the limitations in the previous study, the present
research developed and trained various deep learning models
to predict head orientation from sEMG signals on the neck
muscles. We also compared the results with the HD-EMG-
based prediction model, which we hypothesized could solve
the sensor placement problem in the sEMG system. Finally,
the possibility of applying this method to predict head ori-
entation in VR systems was also investigated for real-world
applications.

II. RELATED STUDIES
Previous literature on head tracking and prediction for VR
was dominated by the usage of various types of filters,
including Kalman Filters (KFs), Extended Kalman Filters
(EKFs), and Particle Filters (PFs) [10], [12], [13], [16]–[18].
The head tracking sensors used in the VR system were also
different from magnetic trackers, which utilize electromag-
netic transmitter–receivers to track head orientation with an
Inertial Measurement Unit (IMU) sensor that combines three
different sensors (an accelerometer, gyroscope, and magne-
tometer). In 1997, A Kiruluta et al. used magnetic trackers
with Kalman Filters to predict head movement under smooth
and abrupt conditions. This Kalman Filter method was based
on a Constant Acceleration (CA) assumption, which assumes
that there is no change in angular velocity between two sam-
pling points. The results showed that predictions under abrupt
movements are not good, with a mean error up to 14.84◦.
Meanwhile, the smooth movement condition showed a mean
error of 4.52◦ [12].
Testing different types of movement is also considered an

important parameter when developing head movement pre-
diction since some models might only work on specific types
ofmovement like slowmovement but performworse on faster
movement. Therefore, most studies used different speeds or
movement intensities to prove that their prediction models
have better generalization. In 2009, H. Himberg et al. tested
three different types of movement, benign, moderate, and
aggressive, for predicting head movement with a magnetic
tracker. The authors proposed using the delta quaternions
method on EKF and predicted head movement 50 ms in the
future. Their results for moderate movement were promising,
with an average error of 0.31◦; with aggressivemovement, the
average error was 1.11◦. However, the aggressive movement
defined in this study was not very intense since the error
for no prediction under aggressive movement was only 3.79◦

compared to other studies that used aggressive movements
with no-prediction errors up to 10◦, which indicates that an
abrupt movement [17].

In 2017, A.G Agundez et al. also utilized extrapolation
combined with various filtering methods to predict head
movement. This study used an Oculus Rift DK2 with the
tracker sampling rate equal to 75 Hz. The data were collected
from 10 users playing a First Person Shooter game on a
VR system. The authors also compared several extrapolation
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methods (linear and polynomial), but their results showed that
linear extrapolation was the best, with yaw and pitch errors of
0.125◦ and 0.200◦, respectively. These results were even bet-
ter when combined with a smoothing filter (Savitsky–Golay
Filter), with the lowest error being only 0.04◦ for 13 ms in
future predictions. This study showed promising results using
a simple extrapolation method for predicting a user’s future
head orientation. However, these studies did not include
predictions based on roll movements, since this movement
was too small and happened in the roll direction; thus, the
extrapolation was not able to handle the movement. This also
proved that the extrapolation method was not a good choice
for predicting very low intensity or almost no-movement
conditions. Another limitation in this studywas the prediction
time, which was only 13 ms in the future. Thus, for VR
systems that have latency greater than 13 ms, this result will
not be useful [19].

Moreover, a recent study from X. Hou et al. in 2020
utilized Long Short-TermMemory (LSTM)- andMulti-Layer
Perceptron (MLP)-based models to predict the 6DoF of a VR
user’s movement [20]. In this study, the authors studies 20
participants using an HTC Vive with the 6DoF VR apps of
Virtual Museum and Virtual Rome. Then, with the multi-axis
model from LSTM and MLP, the authors produced position
and orientation predictions of the user based on 840.000 sam-
ple points. Here, the LSTM model achieved better result for
a relatively slower speed and more regular motion, while the
MLP model achieved better results for sessions with quicker
variations and abrupt changes [20]. Even though this study
predicted 6DoF motion among VR users, the data collected
from the sample did not explore the worst-case scenarios for
when the user performs abrupt movements while playing VR
games, focusing instead on scenery-based VR apps. Another
limitation in this study was their use of 60 window time
data (666 ms) to predict only 11 ms in the future, which
is not practical since recent VR-HMDs still have latency
between 43 and 85 ms [5]–[9].

Modern VR devices cannot be separated by the devel-
opment of mobile VR systems that rely on cloud-based
volumetric streaming system. This kind of VR device also
needs a motion prediction system to overcome latency. Thus,
in 2020, S. Gul et al. used a Microsoft Holo Lens with
an autoregressive model to predict the 6DoF position and
orientation of a VR user [21]. This study collected data from
five users while freely interacting with static virtual objects.
Then, the authors used 32 window data (160 ms) to predict
the user’s next 20–100 ms of movement in the future. The
results showed that if the user’s pose linearly changed and
there was no changing direction, the prediction would be
accurate. Otherwise, the prediction was worse than that under
the baseline method [21].

In 2005, Y. Barniv et al. were the first to study head
movement predictions based on EMG data [11]. The authors
used features extracted from 32 EMG electrodes on the neck
muscles to predict head movement. The authors continued
their study in 2006 with some improvements [4]. However,

as previously described in the introduction section, this study
still has some drawbacks, such as the utilization of EMG
features and the intra-subject testing method.

To sum up, state-of-the-art VR head orientation prediction
still has limitations in predicting high-intensity and abrupt
movements when the user moves at a high speed and changes
his or her movement direction abruptly. Moreover, how far
in advance the system can predict future head orientations is
another limitation that needs to be improved since the best
result with an error of less than 1◦ achieved only a 13 ms
prediction time [19]. Moreover, head movement prediction
with EMG data still has problems with model generalization
and electrode placement, as electrodes need to be placed
precisely on the muscle belly when using an sEMG sensor.

Based on above literature review and state-of-the-art head
orientation prediction studies on VR systems, this research
was developed to address the limitations of predictions for
high-intensity or abruptmovements by using an sEMGplaced
on the neck muscle. The second purpose of this study was to
compared the results of an HD-EMG-based prediction model
with those of the intra- and inter-subject testing method,
which we hypothesized could solve the sensor placement
problem in the sEMG system. Finally, the possibility of
applying this method to predict head orientation in a VR
system was also investigated for real world applications.

III. METHOD AND EQUIPMENT
A. SUBJECT AND EXPERIMENTAL PROTOCOL
In total, 31 subjects participated in this study. All subjects
were divided into one of two groups: those using a surface
EMG (sEMG) and those using HD-EMG. The sEMG group
consisted of 20 subjects (Age = 29.9 ± 7.7 years old), while
the HD-EMG group consisted of 11 subjects (Age = 27.5 ±
3.9 years old). Since the main purpose of this study was not
to measure motion sickness itself, the current subject recruit-
ment plan to recruit only from the young adult population was
considered sufficient for this study. Moreover, based on the
results of D. Saredakis et al., age was not considered to be a
main contributor to VR motion sickness, while other factors
such as VR content, visual stimulation, and exposure time
were considered noteworthy [22]. All subjects were informed
about this study’s experimental procedure and signed their
informed consent before the experiment.

For the sEMG experiment, 3 pairs of wireless sEMG sen-
sors from Delsys Trigno (Delsys, MA, USA) were placed
on the subject’s neck muscles. A total of 6 sEMG sensors
with a sampling rate of 2000 Hz were placed on the left and
right Sternocleidomastoid, Splenius Capitis, and Trapezius
muscles. We decided to include only 3 pairs of muscles
since the muscles on the neck are relatively small, and with
the current wireless sensor size, it was only possible to
place 3 pairs of sensors without sacrificing the signal quality
due to poor sensor placement. All the sensors were then
secured by medical-grade tape to prevent any displacement
during the experiment.
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Meanwhile, for the HD-EMG experiment, 2 arrays of
sensors were placed on the left and right back-sides of the
neck muscles. Each of the array sensors consisted of 4 × 8
electrodes. The HD-EMG is an EMG sensor that uses 2D grid
electrodes featuring many closely spaced electrodes (3-6 mm
center to center). This device generally measures activity
distributed over an area under the grid electrode [23]. In this
study, a wireless 64 channel HD-EMG system from Sessan-
taquattro (OT Bioelectronica, Torino, Italy) was used with a
two 4×8 electrodes configuration. The HD-EMG systemwas
also equipped with 2 auxiliary input channels that were used
as input for the analog trigger to enable synchronization with
the IMU sensor.

To monitor head movement, 1 IMU sensor from Delsys
Trigno IM was used and placed on the subject’s forehead.
The IMU sensor consisted of a triaxial accelerometer, a gyro-
scope, and a magnetometer. The IMU sensor data were
resampled to 1000 Hz, and the range for each sensor was
±6 g for acceleration, ±2000◦/s for angular velocity, and
±4900µT for the magnetometer. For the sEMG experiment,
since the IMU and sEMG came from the same system, both
of them were directly synchronized. However, for the HD-
EMG, since the IMU sensor was different and separated
with HD-EMG, the synchronization process was done with
a separate trigger box that connected the HD-EMG system
and IMU sensor system.

After the sensor was placed on the designated muscle,
both of the experimental groups followed same tasks for each
subject. Every subject was instructed to perform 5 types of
head movements:

1) Continuous head rotation: the subjects rotated their
heads left and right continuously at their preferred
speed

2) Continuous head rotation (faster): like the previous
task, but each subject was asked to perform a faster
movement than before

3) Continuous head flexion/extension: The subjects were
asked to move their heads up and down (flexion and
extension) continuously at their preferred speed

4) Continuous head roll: the subjects were asked to per-
form a continuous head roll left and right at their pre-
ferred speed

5) Continuous free head movement: in this task, the sub-
jects were asked to move their heads in any direction at
their preferred speed

All these trials were repeated 3 times, and during each rep-
etition, the data were recorded for 10 seconds. The purpose of
the first 4 tasks was to isolate eachmovement direction for the
EMG signal, while the last task was used tomimic real human
headmotion when using a VR system (a free movement task).

B. DATA PROCESSING AND MODEL TRAINING
The raw data from the IMU sensor were resampled
to 1000 Hz and combined using sensor fusion and a comple-
mentary filter algorithm to generate head orientation in terms

of pitch, roll, and yaw (in degrees). The pitch and roll angle
can be measured using (1) and (2), where gx , gy, and gz are
the normalizedmeasured acceleration from the accelerometer
on each axis, and Bx , By, and Bz are components of the
magnetometer sensor [24], [25]:

pitch (θ ) = tan−1(
−gx√
g2y+g2z

) (1)

roll (φ) = tan−1
(
gy
gz

)
(2)

C. MEANWHILE, THE YAW ANGLE CAN BE FOUND
WITH (3)

yaw (ψ) = tan−1
Bz sin φ−By cos φ

Bx cos θ+By sin θ sin φ+Bz sin θ cos φ
(3)

We used a simple complementary filter to combine the
outputs from the accelerometer and gyroscope to remove the
drift in the angular estimation for each sensor in both devices.
The angle calculated from accelerometer data was fed into a
low pass filter, while the angle from the integrated gyroscope
data was fed into a high pass filter. The final estimation of the
angle was obtained from the sum of both measurements (4):

α0= kαgyro+(1− k)αacc (4)

where α0 is the final estimation of the angle (pitch, roll,
and yaw), αgyro is the angle estimated from integration of
the gyroscope data, and αacc is the angle estimated from
accelerometer data (1) and (2). Meanwhile, k is the weighting
factor, for which we used k = 0.98 [26].

The head orientation data were then shifted 50 ms ahead
of the sEMG and HD-EMG signals to become the ground
truth for model training. The 50 ms shifting time was chosen
based on the EMD value from the EMG signal. However,
since the actual EMD value is difficult to measure due to the
variation between subjects and muscles, we needed to define
a specific dt as the part of the pattern recognition solution.
This dt value should be large enough to compensate for the
end-to-end latency from the VR system, which can range up
to 20 ms.

1) SEMG DATA PROCESSING AND FEATURE EXTRACTION
The raw data of the sEMG signal were resampled to 1000 Hz
and filtered with a 2nd order Butterworth bandpass filter with
a band frequency of 50-500 Hz. The filtered signal was then
fully rectified and smoothed with the moving average. The
sample of the raw sEMG signal from the sternocleidomastoid
muscle and head’s yaw angle is shown in Figure 1.

The sEMG signals were treated in two different ways for
the two different types of model training. The first one used
only the pre-processed data as explained above, while the
second one applied an additional feature extraction method
after pre-processing the raw signal. Several features used in
this study are explained bellow:
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FIGURE 1. Sample of right and left sternocleidomastoid muscle raw data
with head’s yaw angle (a) and Illustration of sensor placement location
on neck muscle (b).

Moving Average [27]: This feature was used to calculate
the absolute amplitude averaged over a small window of time
to obtain smoother data (5):

Mov Avg =
1
W

∑t

i=t−W
S (i) . (5)

Integrated EMG [27] is summation of the absolute val-
ues of the sEMG signal amplitude (area under the curve),
expressed as (6)

iEMG =
∑t

i=t−W
S(i). (6)

EMGVariance [27] is defined as the average square values
of the deviation. The variance of EMG is also another power
index and defined as (7)

VAR =
1

W − 1

∑t

i=t−W
S2i . (7)

The EMG Average Slope [11] is computed as the average
gradient of the rectified sEMG signal (8):

AVG SL =

∑t
i=t−W |S (i)−S (i− 1) |

W
. (8)

The curve complexity of EMG [11] is the sum of the
gradient of the rectified sEMG signal. This feature measures
the curve ‘‘shape’’ according to Hou and Dey [20] (9):

CurveComp =
∑t

i=t−W
|S (i)−S (i− 1) | (9)

whereW is the window size, and S is the preprocessed sEMG
signal.

2) HD-EMG SIGNAL PROCESSING
Raw data of the HD-EMG signal were filtered with a 2nd
order Butterworth bandpass filter featuring a band frequency
of 50-500 Hz. The filtered signal was fully rectified and the
Root Mean Square (RMS) values for every 10 ms window
data were calculated. A 10 ms window was chosen experi-
mentally based on the additional processing/delay time for
the system and the features/information stored in the win-
dowed data.

After that, the pre-processed HD-EMG signals were
reshaped by row x column to become the input for the con-
volutional layers. Several configurations of row x column for
the HD-EMG signal were examined to obtain the model with
the best performance.

3) MODEL TRAINING
To determine whichmodel offers the best performance in pre-
dicting future head orientation, various deep learning model
architectures were examined in this study. The model archi-
tectures tested in this study included 1D- and 2D- Convo-
lutional Neural Network (CNN), Long Short-Term Memory
(LSTM), Artificial Neural Network (ANN), and a hybrid
model of 1D-CNN and LSTM.

The CNN architecture performs convolutional operations
on the input data, followed by pooling and fully connecting
the layers. The CNN layers enable automatic feature extrac-
tion followed by pooling and fully connecting the layers to
construct a deep network. CNN has extensive applications
in object detection and classification problems, including for
self-driving cars and healthcare applications [28], [29]. This
architecture features more (deep) layers that are capable of
performing automatic feature selection from raw input data,
which makes deep learning superior to machine learning
algorithms since the former does not require input from hand-
crafted features for learning.

Specifically, for the model with a 2D-CNN architecture,
additional time-series to image transformation were needed.
All the features input into the 2D-CNN model were reshaped
as row × column × step, where step is the moving window
(35 ms in our case). For example, the pre-processed data from
HD-EMG were N × 64 channel × 35 ms (step), where N
is the number of samples. Then, the data were reshaped to
(N×8× 8×35).
Furthermore, we tried two methods to input our data

into the model. First, we directly input the 3D arrays
(N×8× 8×35) into the custom 2D-CNN model without
transforming the arrays into an image form. Secondly,
we used the original shape of theHD-EMGdata without time-
windowing (N×8×8) and then created a normalized heatmap
image for each sample from the 8×8 electrode. This heatmap
of the HD-EMG data provides a graphical representation that
uses a color-code to represent different values. Finally, each
heatmap image of HD-EMG was used as the input for the
2D-CNN model.

Also used in this study was LSTM model architecture,
which was developed to take advantage of sequential data
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FIGURE 2. The illustration for input and output data for the model training process on the CNN Model.

such as the time series data of sensors like sEMG. LSTM
utilizes memory cells to store contextual information; then,
with the inclusion of some logic gates, themodel can learn the
temporal features from the sequential data [28]. In this study,
we developed a custom network that consisted of each archi-
tecture (2D-CNN, 1D-CNN, and LSTM), and the number of
layers, kernels, and filters was found by experimental trial-
and-error. The final model architecture is shown in Figure 3
(1D-CNN). All models in this study used the Mean Absolute
Error (MAE) as the loss function (10):

MAE =
1
n

∑n

j=1

∣∣yj−ŷj∣∣ (10)

where y^ is the head orientation prediction, and y is the
ground truth.

Themean absolute error of the testing data in the pitch, roll,
and yaw directions was measured and compared between the
different models. The total parameters, model sizes, and total
Floating Point Operations per Second (FLOPS) were also
calculated for each of the models to compare the complexity
between the models.

Other metrics calculated for the turning point of the head
(maximal or minimal degree point of head orientation) were
also investigated. The delta θ peaks (dθ peaks) were calcu-
lated using the difference of the degree between the peak
of the ground truth and the closest peak of prediction. This
metric was used to measure how good the model predicted
the head orientation when the head was turning or changing
direction. Delta time peaks (dt peaks) were calculated from
the difference of the time between the peak of the ground truth
and the closest peak of prediction. This metric was used to
measure how accurately the model was able to detect whether
the head would stop or change direction (turning around).

The inter-subject and intra-subject testing methods were
used in this study. For the intra-subject testing method, the
testing data came from part of the subject data that included in

the training data. Meanwhile, the inter-subject testing method
utilized testing data from a subject never exposed to the train-
ing process. Therefore, in the inter-subject testing method,
the testing subject was a completely new subject (one of the
subjects). Figure 2 illustrates the input and output data for the
model training process.

To compare our results with state-of-the-art head orienta-
tion prediction, we used the linear extrapolation method to
predict the pitch, roll, and yaw of the head orientation. This
linear extrapolation is the baseline for the head orientation
predictions used on VR devices such as the Oculus Rift
[30] and tested in other studies [19]. The formula for linear
extrapolation is provided in (11):

y (xk)∗= y (xk−2)+
(xk−xk−1)
xk−1−xk−2

(y
(
xk−2)

)
−y

(
xk−2)

)
)

(11)

where y (xk)∗ is the predicted value, and y(xk ) is the measured
value.

IV. RESULTS
The results for the sEMG-based and HD-EMG-based pre-
dictions are shown in Table 1. All the results, except for
the models with only sEMG and HD-EMG features, were
trained with three axis output from the same model. We also
trained another model that separates each axis output for each
model, and the result is shown in Table 2. The results from
Table 1, Table 2, and Table 3 came from the intra-subject
testing method.

The results for the dθ peaks and dt peaks are expressed
in degrees and milliseconds, respectively. A summary of all
trained model dθ peaks and dt peaks is shown in Table 3.

All of the above results were testing using the intra-subject
testingmethod. However, for the inter-subject testingmethod,
the model was only trained on the best input combination
result: sEMG feature extraction + IMU and preprocessed
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FIGURE 3. The testing result from the best performing model (1D-CNN) on the pre-processed EMG + IMU input combination. The red
line is the prediction using the model, while the black line is the ground truth (right figure). Detailed model architecture of the best
performing model for pre-processed EMG + IMU (1D-CNN) is shown (left figure).

TABLE 1. Mean absolute error of the models from sEMG- and
HD-EMG-based head orientation predictions (3-axis output model). This
result came from the intra-subject testing method.

sEMG + IMU. The summary for this result is shown in
Table 4.

The result for testing data to determine the best input
combination (pre-processed sEMG + IMU) on the 1D-CNN
model is shown in Figure 3. Meanwhile for prediction result
on testing data for HD-EMG + IMU input combination can
be seen in Figure 4.

V. DISCUSSION
The results for the sEMG group showed that the combination
of preprocessed sEMG + IMU outperformed the other input
combinations, including the one using sEMG features. This
occurred because the chosen features were not optimized
for this application, as the features chosen were based on
a previous study that also used sEMG signals for mod-
eling purposes [27]. Another reason why the model with
pre-processed data performed better than that with extracted
features was because this study trained the model via the deep
learning method, which is specialized for learning automatic
feature representations in large sets of raw data. This results
agrees with a study from A. Phinyomark et al. reviewed

TABLE 2. Mean absolute error of the model from the sEMG- and
HD-EMG-based head orientation prediction (1-axis output model). This
result came from the intra-subject testing method.

FIGURE 4. dθ peaks and dt peaks calculated from the sEMG-based model.

the recognition of several EMG patterns using the feature
learning and deep learningmethods and showed that the EMG
pattern recognition system based on the deep learningmethod
offers better classification accuracy than its counterparts such
as Support VectorMachine, K-Nearest Neighbors,Multi Lay-
ers Perceptron, and Random Forest [31].

In terms of model architecture, the pre-processed sEMG
and sEMG features utilized different model architectures
in their best performing models. Pre-processed sEMG used
1D-CNN as its best model, while the sEMG features utilized
themodel with 2D-CNN architecture. This could be related to
the nature of 2D-CNN architecture, which learns from spatial
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TABLE 3. Summary of dθ peaks and dt peaks for all trained models.

features instead of sequences, the latter of which can only
be found in sEMG features because of the large dimension
of its features (6 channels ∗ 5 features = 30 total features).
Meanwhile, the data from pre-processed sEMG carried infor-
mation on its sequence of signals. Thus, in this case, 1D-CNN
was more suitable and performed better for this input data.
We also found that the model using input data directly from
the reshaped array without transformation to an image form
achieved better performance in terms of MAE and processing
speed compared to the model with image transformation
input. This is likely because of the size of the image, which,
after transformation, is far larger than the size of an array.
Therefore, if the dimension of an array is sufficient to become
the input for the 2D-CNNmodel, it is better to retain the array
form instead of first transforming it into an image.

Compared to the result from HD-EMG, both the pre-
processed EMG and sEMG features provided better predic-
tions, except in the roll direction for sEMG features + IMU
input, for which the HD-EMG+ IMU combination provided
better results with a 0.52◦ error difference. This performance
could be related to the number of data collected for both
groups since the sEMG group features more data compared
to the HD-EMG group (20 subjects compared to 11 subjects
in the HD-EMG group). However, the result from HD-EMG
proved that input from the HD-EMG data could also being
used to predict future head orientation. The lower accuracy
of the HD-EMG model could be compensated for by the
ease of its use and comfort for the subject when using grid
electrodes from the HD-EMG system. When using the HD-
EMG system, the subject does not necessary know exactly
where the muscle belly is located, which is required when
using sEMG electrodes to obtain a high-quality sEMG signal.
This performance vs. usability tradeoff creates another oppor-
tunity for HD-EMG to replace sEMG for predicting future
head orientations if the model accuracy can be improved in
the future by collecting more data and fine-tuning the model.

Studies from Barniv et al. [11] and Polak et al. [4] also uti-
lized features extracted from sEMG to predict head motion.
However, the target prediction was different since this study
predicted head angular velocity (rad/sec), while our study
predicted head orientation (pitch, roll, and yaw in degrees).

TABLE 4. Performance comparison for the inter-subject testing method.

Another difference is that the previous study used one out-
put/axis model, providing three separate models for three
different movement axes. In Table 2, we can see that the
model with one axis output offers slightly better performance
compared to the three-axis-output model. However, this fac-
tor was compensated for by the size of the model, which was
three times larger due to containing three separate models.
The accuracy of each axis model can be increased by tuning
each model with separate parameters because, in this study,
each separated model used the same parameters.

Using EMG signals with the deep learning method showed
positive trends marked by an increasing number of published
papers related to this topic every year from 2014 to 2018 [32].
Most of these papers investigated applications in hand ges-
ture classification, speech, and emotion applications, as well
as sleep stage classification [33], [34]. However, the high-
variability of the sEMG signal remains a problem, and most
of these studies was still utilized intra-subject or intra-session
methods for testing their models. Besides classification mod-
els that still use the intra-session testing method, problems
like the regression model with deep learning on sEMG still
utilize intra-session testing methods, as shown in a study by
J. Chen, who performed a continuous estimation of human
lower limb joints with sEMG signals [35]. Likewise, in 2019,
Y. Chen developed a continuous estimation model of the
upper limb joint angle with the sEMG and deep learningmod-
els [36]. These previous studies proved that sEMG signals
are better for use in intra-session testing, and the results in
Table 4 agree with these previous claims. However, this study
also proved that evenwith the risk of decreasing performance,
inter-session and inter-subject testing methods can be used
in sEMG-related studies. This result could be achieved if the
training datawere large enough to obtain better generalization
performance. Our results for the inter-subject testing method
in this study open the opportunity for real-world applications
under conditions where the user data were never exposed to
any training data before. Thus, there is no need to develop
another transfer learning/ fine-tuning model for convenience
of time-saving purposes. However, fine tuning or transfer
learning will always be a good option if we do not want to
sacrifice model performance.

We also compared our results with state-of-the-art head
orientation predictions in VR applications using the extrap-
olation method. This extrapolation method has been used for
recent commercializedVR headsets, such as Oculus Rift [30].
Another study proved that linear extrapolation outperforms
the polynomial extrapolation method [19]. In terms of MAE,
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extrapolation that only uses IMU sensor data outperformed
the other model with sEMG and HD-EMG data. However,
the result for dt peaks using the extrapolation method was
superior to all EMG-based predictions. This indicates that
the extrapolation method tends to inaccurately predict the
time when one’s head changes direction, which is indicated
by the peak on the graph. These dθ peaks and dt peaks are
important when a VR user engages in intense or abrupt move-
ments, such as when playing First Person Shooter games
or exercise/sports-based games. Therefore, even though our
EMG-based prediction model did not offer better overall
performance in terms of MAE, our prediction model out-
performed the extrapolation method in predicting when the
user would change their head direction (dt peaks). In other
words, our sEMG-based prediction model is suitable for VR
applications that require the user to perform high-intensity or
abrupt movements, such as in FPS games or exercise/sports-
based games. An illustration of dθ peaks and dt peaks is
provided in Figure 4.

Future work based on this study could implement this
system in a real VR system as the default head motion pre-
diction model. The predicted head orientation can be used
to pre-render the frame, which can then be stored in cache
memory. After that, if the predicted head orientation is found
to be correct in the future, the cached predicted frame will
be rendered to the VR headset. Otherwise, the actual view
from the real head orientation will be rendered. Furthermore,
this pre-rendering from predicted head orientation could be
integrated with game engines like Unity or included in some
VR games that require the user to move abruptly, such as First
Person Shooter (FPS) games.

VI. CONCLUSION
The result from this study showed that the head orienta-
tion prediction model with input from a combination of
pre-processed sEMG + IMU outperforms the model using
HD-EMG + IMU. However, the decreased performance on
HD-EMG was compensated for by the comfort and ease of
use of the HD-EMG electrode compared with sEMG. This
tradeoff should be considered if the user wants to choose
between performance and usability. In terms of the best model
performance, the 1D-CNN-based model with input from pre-
processed sEMG + IMU data achieved the best results with
the MAE of the pitch, roll, and yaw equal to 3.08◦, 4.36◦, and
4.50◦, respectively.
The results from the inter-subject testing method used in

this study also open up an opportunity for real-world appli-
cations in which the user does not have to perform additional
transfer learning or fine-tuning processes, as these processes
can take a longer time. However, transfer learning and fine-
tuning the model will always be a good option if the user does
not want to sacrifice the performance of the prediction model.
Moreover, our results also proved that the sEMG-basedmodel
offers better performance in predicting when the user will
change his or her head direction, which was quantified by
calculating the dt peaks. In other words, our sEMG-based

prediction model is suitable for VR applications that require
the user to perform high-intensity or abrupt movements, such
as in FPS games or exercise/sports-based games.
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