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ABSTRACT Appliance load monitoring in smart homes has been gaining importance due to its significant
advantages in achieving an energy efficient smart grid. The methods to manage such processes can be
classified into hardware-based methods, including intrusive load monitoring (ILM) and software-based
methods referring to non-intrusive loadmonitoring (NILM). ILM is based on low-endmeter devices attached
to home appliances in opposition to NILM techniques, where only a single point of sensing is needed.
Although ILM solutions can be relatively expensive, they provide higher efficiency and reliability than
NILMs. Moreover, future solutions are expected to be hybrid, combining the benefits of NILM along with
individual power measurement by smart plugs and smart appliances. This paper proposes a novel ILM
approach for load monitoring that aims to develop an activity recognition system based on IoT architecture.
The proposed IoT architecture consists of the appliances layer, perception layer, communication network
layer, middleware layer, and application layer. The main function of the appliance recognition module is
to label sensor data and allow the implementation of different home applications. Three different classifier
models are tested using real data from the UK-DALE dataset: feed-forward neural network (FFNN), long
short-term memory (LSTM), and support vector machine (SVM). The developed activities of daily living
(ADL) algorithm maps each ADL to a set of criteria depending on the appliance used. The features are
extracted according to the consumption in Watt-hours and the times where they are switched on. In the
FFNN and the LSTM networks, the accuracy is above 0.9 while around 0.8 for the SVM network. Other
experiments are performed to evaluate the classifier model using a new test set. A sensitivity analysis is also
carried out to study the impact of the group size on the classifier accuracy.

INDEX TERMS Smart home, intrusive load monitoring, IoT platform, activity recognition.

I. INTRODUCTION
Nowadays, the applications of smart home concepts and
home energy management systems (HEMS) have been gain-
ing increasing attention in the research community due
to many advantages they offer. These technologies aim to
facilitate users’ operation and management of household
appliances to operate automatically and optimally. Further-
more, they represent a crucial step in achieving energy effi-
ciency. To build such management systems, it is necessary
to identify and control the energy consumption of major
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appliances in the household responsible for a higher electrical
consumption [1].

The identification of appliance usage opens the door for
the implementation of a series of useful applications. Among
them, demand response (DR) and load planning programs
focus on analyzing individual load levels in homes or build-
ings. This analysis enables the possibility of identifying
less efficient or malfunctioning devices and implementing
the appropriate actions intended for reducing consumption.
In this context, consumers become a key factor; they not only
participate effectively in the sustainable smart grid system,
but they can also have a direct feedback on the statistics
concerning power consumption in real-time [2]. Additional
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useful information could also be inferred from appliance data
such as consumers’ behavior patterns, including occupation,
sleep patterns, and other activities. These activities are com-
monly known as activities of daily living (ADL), with appli-
cations both in the energy domain and in other fields, ranging
from commercial services (e.g., customer profiling and tar-
getedmarketing) and legal sector (e.g., monitoring of curfews
and detection of illegal activities) to remote healthcare mon-
itoring for elder people living alone [3]. To contribute to the
development of an efficient HEMS, it is necessary to carry out
a process that allows identifying and monitoring main loads
in the household. The methods to manage such processes can
be classified into two categories: methods based on hardware
and those based on software, as shown in Fig. 1.

FIGURE 1. Methods of load monitoring.

On the one hand, software-based methods include mea-
surements from only a single point of sensing (smart meter
device). These methods, commonly known as non-intrusive
load monitoring (NILM), offer an attractive solution, essen-
tially due to their low-cost implementation since they only
need a single point of detection. Although these solutions
have centered the attention of most studies in the field for
the last five years, they have shown less precision and greater
difficulty for implementation in real scenarios compared to
hardware-based methods. NILM algorithms are mostly based
on event detection, sampling the aggregated signal captured
by smart meters to obtain individual profiles of electrical
appliances. The aggregated signal can be very noisy, and only
a few electrical appliances could be detected, depending on
the sampling frequency. Even with advanced artificial intelli-
gence (AI) algorithms, it could be possible to monitor only
a few major appliances: e.g., oven, washing machine, air-
conditioner, and electric vehicle (EV) [2], [3]. When facing
these kinds of scenarios in terms of the type of appliance used,
performance remains inconclusive on different datasets [4].
On the other hand, techniques based on hardware include
methods for intrusive load monitoring (ILM), also known as
distributed sensing. This technique can be divided into two
sub-categories: one that refers to a model in which energy
consumption profiles are obtained at device level using sub-
measurement sensors attached to appliances. The second
is smart appliances (SA) which are devices with built-in
capabilities to monitor and report their energy usage [2].

Although these solutions can be relatively expensive, they
provide higher efficiency and reliability than NILMs. Direct
sensors have great potential since they have sensing and
control operation of various devices and appliances because
they can be co-located (e.g., turning off a light when an
occupant leaves a room). An additional benefit is that these
methods typically require a less complex solution regard-
ing appliance recognition. The appliance recognition system
assigns a label that corresponds to the device or appliance
connected to the sensor. Moreover, future load monitoring
techniques are expected to be hybrid, combining the benefits
of NILM and individual power measurement by smart plugs,
smart appliances, and HEMS [5].

Since smart appliances are not widely used due to their
high market prices and interoperability issues, distributed
sensing becomes an attractive solution. To allow the integra-
tion of all electrical devices, a home area network (HAN)
is required. This communication network will carry con-
trol data generated by sensors attached to home appliances,
carrying control commands from the home gateway to the
appliances, and from the utility to the appliances registered in
the home gateway [6]. Taking all this information into con-
sideration allows thinking of an ILM solution as an internet
of things (IoT) platform for load monitoring and its numerous
applications. Among these applications, identifying ADLs is
a good choice in terms of resident autonomy. One of the
most frequent examples is that it has allowed older people
to be nursed at home, and it also enabled to build a consumer
profile that can contribute tomore efficient energy use. There-
fore, ADLs are the best suited to be provided as inputs for
different home applications [7]. Table 1 summarizes the com-
parison of both techniques. Compared with the ILM solution,
NILM uses only one sensing point (smart meter). Therefore,
a communication network that allows data exchange between
sensors and the home gateway is not necessary. These aspects
have expanded the acceptance of a massive deployment of
these NILM solutions; however, the reliability of these sys-
tems is still a challenge.

TABLE 1. NILM versus ILM.

Most of the previous research works are related to NILM
techniques. However, access to smart meter measurements is
still limited and challenging in some countries due to regula-
tion and implementation issues. Furthermore, high-resolution
data cannot be achieved with most commercial smart meters
today with complexity in setup, data storage, and cost.
On the other hand, with the advances in IoT and com-
munication technologies, the ILM solution has become an
affordable option to overcome the difficulty of implementing
NILM solutions. ILM is a promising approach for the future
development of residential load monitoring for different

45326 VOLUME 9, 2021



P. Franco et al.: IoT Based Approach for Load Monitoring and Activity Recognition in Smart Homes

applications such as home automation, load forecasting,
demand response, energy feedback, and health care system.
However, different requirements should be considered con-
cerning data resolution, accuracy, real-time, and the number
of appliances to be covered. To the best of our knowledge,
there is no previous work available of ILM for appliance
recognition and ADL classification due to issues of cost,
installation, and communication [5], [8].

This paper proposes an ILM approach for load monitoring
and activity recognition based on IoT architecture in smart
homes. First, appliances are identified by a machine learn-
ing (ML) based appliance recognition system. Three different
models are tested in this regard: A vanilla feed-forward neural
network (FFNN), a long short-term memory (LSTM) neural
network, and a support vector machine (SVM) classifier.
All three models are compared in terms of accuracy, preci-
sion, recall, and F1-score. Then, the best model is used for
ADL identification. The ADL identification is an algorithm
that maps each ADL to a set of criteria depending on the
appliance used. The features are extracted according to their
consumption in Watt-hours (Wh) and the times where they
are switched on. Experimental results show that the proposed
system is an efficient solution for the classification of activ-
ities of daily living. The main contributions of this paper are
summarized in three main aspects:

• A novel ILM solution for load monitoring and ADL
identification is developed and analyzed as part of an IoT
architecture. This architecture can support other applica-
tions, which guarantees overall system scalability.

• Three ML classifier models are benchmarked to be inte-
grated with the appliance recognition system: FFNN,
LSTM, and SVM. The objective of appliance recogni-
tion module is to label sensor data to allow the imple-
mentation of different home applications such as ADL
classification.

• The proposed ADL classifier is applied and tested in
different experiments employing real data gathered in
the UK-DALE dataset.

The remainder of this paper is organized as follows: in
section two, a literature review is provided, recent proposals
regarding appliance recognition and human activity classifi-
cation in the context of smart homes. In section three, theo-
retical aspects of ILM systems are discussed, and in section
four, the proposed system architecture is presented. Results
of ML models benchmark and classification experiments are
presented in section five. Finally, a discussion of the results
and the conclusions are provided in sections six and seven.

II. RELATED WORK
There is plenty of work done regarding appliance recognition
in the context of smart homes [9]–[13]. In [9], the authors
presented an approach for detecting and identifying in-use
appliances analyzing low-frequency monitoring data gath-
ered by meters (e.g., smart plugs) distributed in a smart home.
The system implements a supervised classification algorithm

with artificial neural networks validated using a dataset of
power traces collected in real-world home settings. Since the
objective was to develop an appliance recognition system,
they mainly focus on the application level for experiments.
In [10], the authors proposed an electrical device identifi-
cation model based on three features: energy consumption,
time usage, and location. The information enhanced in such
features was used to train six different ML classifier models:
Random Forest (RF), Bagging, LogitBoost, Decision Trees
(DT), Naive Bayes, and SVM. Results showed a high level
of accuracy, which represents good performance of the pro-
posed features. In that work, authors focused on standard
techniques as the objective was to obtain a neutral assessment
of the features. Thus, non-specific applications such as ADL
classification were performed. They considered the system as
part of a smart grid environment. However, they only centered
on application-related issues without giving any information
about the infrastructure or the IoT-based architecture to sup-
port the system.

A supervised learning classifier was developed in [11]
for appliance classification based on its power signature.
Besides building an individual appliance metering device, the
objective was to create what authors called a ‘‘load library’’
of appliance power signatures for training and recognition.
The model employed for classification was a K-Nearest
Neighbors (KNN), and results have proved that the timing
of data acquisition is critical. Even though experimental
results showed high accuracy, the authors did not compare
the KNN with any other ML model or algorithm. A recent
approach in [4] aimed to design and develop an IoT end-
to-end solution to recognize electric appliances that can
operate in real-time considering low hardware cost. Three
ML algorithms, K-nearest neighbors (KNN), Decision Tree
(DT), and Random Forest (RF), have been implemented
for classifying the operating appliances. Authors do not
impose any requirements regarding the instant when data
collection needs to be carried out throughout the appliance’s
operational cycle, or the amount of data that needs to be
collected before classification takes place. Only using a
high-resolution CT-sensor, they guaranteed cost reduction
yet obtaining satisfying results. Their implementation, in a
laboratory, was described as a data acquisition system that
further processed the data for classification. Although they
achieve a high classification accuracy, around 95 %, the work
did not give any details regarding ADL classification or any
other application deployment.

The authors in [12] presented a survey on intrusive load
monitoring, which gives details about its implementation
requirements. Though the paper only focused on summariz-
ing the main ILM techniques proposed in the literature, the
authors have defined the architecture, feature extraction, and
ML models typically used for ILM applications. That work
allows envisioning the ILM systems as an IoT platform with
more opportunities for enhancing different smart home appli-
cations. Regarding the classification of daily living activities,
authors in [3] presented a deep learning approach based on
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multilayer feed-forward neural networks (FFNNs) that can
identify common electrical appliances in a household from a
typical SM measurement (i.e., a NILM solution). The per-
formance of this approach was tested and validated using
a publicly available UK-DALE dataset. The detected appli-
ances were used to identify householders’ activities. These
activities are usually referenced as activities of daily living
(ADLs). Thus, they developed an ADL classifier to provide
useful information to consumers, including detailed feedback
on the energy usage and its main contributors, allowing the
creation of itemized energy bills. Moreover, the informa-
tion can then be used to emphasize opportunities for energy
saving and costs reduction and identify inefficient and/or
malfunctioning home appliances. The proposed classification
algorithm could be extended to be used as an ILM solution.

In [13], the authors presented an activity recognition and
anomaly detection approach to identify daily activities in a
smart home context. The system is a unified deep learning
approach bases on a Probabilistic Neural Network (PNN)
classifier that processes pre-segmented activities, so there is
no need for an appliance recognition system. Then, a H2O
autoencoder detects anomalies within each activity class.
This system could be implemented on COVID-19 scenar-
ios, as recovery from this virus requires isolation to stop
spreading the disease and minimize the risk of contagions.
Therefore, a remote healthcare system could help effectively
treat patients without hospitalization.

On the one hand, in [5], the authors explained that the
development of power electronics significantly improves
the accuracy and flexibility of power control, but greatly
affects the applicability of NILM methods. Power converters
not only allow the power of appliances to be continuously
adjusted, but also eliminate harmonics and compensate
the reactive power. As a result, features extracted from the
appliances will become indistinguishable. Furthermore, the
authors agree that future residential load monitoring is
expected to be a hybrid form with the combination of NILM,
individual power measurement by smart plugs, smart appli-
ances, and HEMS. The author in [14] presented a survey
that establishes a base for the development of important
applications for the remote and automatic intervention of
energy consumption inside buildings and homes. The work
provided a theoretical background of the load monitoring
methodologies, concluding that it is feasible to have fine-
grained monitoring and control of appliances using ILM in
smart houses to provide healthcare, convenience, entertain-
ment, energy efficiency, and security.

On the other hand, previous research in ADL classifi-
cation [3], [8], [15] has been based on NILM techniques.
In [16], the authors introduced a framework in which the daily
activities are detected via a data-driven activity detection
approach, using the data provided by a NILM system. They
aimed to estimate the personalized appliance usage for differ-
ent daily activities performed by regular occupants in a build-
ing. Experiments were carried out in three single-occupancy
testbed apartment units, using a supervised learningmodel for

activity recognition. The authors of [8] modeled a SVM and
a random decision forest classifier using data from three test
homes. The trained models were used to monitor two patients
with dementia during a six-month clinical trial, undertaken in
partnership with Mersey Care NHS Foundation Trust. Using
the data collected from electricity readings, the technology
can accurately identify the use of individual electrical devices
in the home and the routine behaviors of people to detect
when anomalies occur.

In a recent work [17], the authors examined different ways
in which smart energy data could be used in remote health
and well-being monitoring. The authors considered three
broad application domains: ambient assisted living support,
population-level screening and support, and self-monitoring.
The report also considered energy-health sector research
synergies and opportunities for realizing solutions at scale.
It emphasized the potential benefits of smart energy data in
supporting the health and care system, giving a complete
description of the two main categories in which the research
was focused on: NILM and IoT-based methods (ILM).

Other approaches as [18], [19] presented a solution based
on IoT, but considering wearable sensors, such as accelerom-
eters and smart devices, and in the case of [20], the authors
proposed an intrusive approach based on computer vision
techniques: a background subtraction of images, followed by
3D Convolutional Neural Networks. They used a camera to
record the video and a processor that performs the task of
recognition, which raises privacy concerns and hence, a low
opportunity for a massive adaption of the system.

A survey presented in [21], thrives to lead to a fully
integrated IoT-based health care system, acknowledging the
need to integrate the various IoT services. These applications
produce a large amount of data to be handled properly for
monitoring. In that sense, cloud computing can take an impor-
tant role, as it is a promising approach for efficient knowledge
processing in the health sector. Another approach [22] pre-
sented an overview of sensor fusion technology and explored
the relationship between sensor fusion and dense sensor net-
works. The multi-sensor approach can achieve an impres-
sive result due to the comprehensive description of activities
from the sensors deployed in an indoor environment. Recent
applications in remote healthcare have reaffirmed the above
approaches, proposing innovative solutions in this regard.
The authors in [23] presented a smart home control platform
that offered fully customized automatic control schemes and
performed the analysis of historical records of the use of
home automation devices, in order to detect residents’ behav-
ior patterns through IoT and machine learning, improving the
comfort schemes of domestic systems.

A different solution is presented in [24], where authors
designed a distributed platform tomonitor the patient’s move-
ments and the status during rehabilitation exercises. This
information can be processed and analyzed remotely by the
doctor assigned to the patient. Real-time monitoring of the
elderly can benefit from the use of data mining algorithms,
namely Support Vector Machine (SVM), from the use of data
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TABLE 2. Summary of previous research work.

mining algorithms, namely Support Vector Machine (SVM),
Gaussian Distribution of Clustered Knowledge, Multilayer
Perceptron, Naive Bayes, Decision Trees, ZeroR, and OneR
to gain insights into the data in order to detect and even predict
future fall.

Based on the above discussion, it is possible to state that:

• Future trends in energy and load monitoring need to feed
on IoT technologies in order to achieve state-of-the-art
performance.

• To the best of our knowledge, our work proposes a
novel solution based on ILM for ADL classification, that
allows identifying the daily activities of house occupants
in a simple manner, which can be useful for a series of
applications.

• Most promising results in IoT for activity recognition
have been obtained in remote healthcare applications.
There is a limited number of proposals in other domains
such as energy consumption understanding, malfunc-
tioning, and anomaly detection.

Table 2 gives a summary of the main aspects of interest
analyzed in previous research work. The table highlights
and compares different research domains regarding general
system architecture, appliance recognition model, real-time
implementation, and ADL classification. The given analysis
can serve as a comparison that allows better understanding
and visualizing the proposal given in this work. While almost
every paper has focused either on appliance recognition or
real-time implementation, this paper covers aspects of overall
infrastructure and applications.

III. INTRUSIVE LOAD MONITORING
This section discusses the main concepts of intrusive load
monitoring (ILM). The ILM technique is based on mea-
suring the electricity consumption of appliances using a
low-end metering device. The applications of ILM could
be implemented in both household and building contexts.

The submeters or sensor nodes are typically placed close to
the target appliances. The name intrusive is used since extra
types of equipment, in addition to smart meters, are needed to
identify electrical devices correctly. According to [12], ILM
solutions can be categorized into three groups in terms of
equipment deployment granularity:

• ILM Group 1: This category includes submeters used
to monitor households’ zone or areas, measuring the
consumption after the primary utility energy meter.

• ILM Group 2: This category groups submeters at the
plug level to directly monitor appliances connected to
the outlet or multi-outlet.

• ILM Group 3: This category consists of submeters
directly embedded in the appliances or placed in a dedi-
cated outlet (i.e., outlet for a specific appliance).

As previously mentioned, for an ILM deployment, not only
sensor nodes are needed, but a home area communication
network is also required. Hence, it is feasible to analyze the
architecture of such a system from an IoT perspective. Fig. 2
shows a detailed description of different layers for an IoT
architecture that could be implemented for load monitoring
applications.

• The lower part holds the physical devices layer, in which
data is collected to form a data flow that is further sent to
the upper layer. This layer is where energy transactions
take place. The physical devices layer includes com-
mon home appliances (e.g., refrigerators, lamps, iron,
microwave, oven, etc.) and major loads such as EVs
and heating, ventilation, and air conditioning (HVAC)
systems.

• The second level is the perception layer responsible
for data acquisition since many sensors and actuators
are deployed to gather information. For this process,
depending on the target application, the electricity con-
sumption may vary [12]. A critical parameter to be con-
sidered is data sampling, classified into high-speed and
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FIGURE 2. Internet of things (IoT) architecture for intrusive load monitoring (ILM).

low-speed sampling. Data sampling values above 1 kHz
are considered high, increasing the complexity of data
storage, transmission, and processing compared to low-
speed sampling. Therefore, high-speed sampling is often
considered far from being a practical approach for
large-scale applications [25]. It is possible to measure
both time-dependent and/or frequency-based features.
Typical time-dependent features are active power (P),
reactive power (Q), voltage (V), current (I), and V-I
trajectories. From these features, others can be obtained,
such as the complex power and apparent power. Pop-
ular frequency-based features include Discrete Fourier
Transform (DFT) and Fast Fourier Transform (FFT), but
these last features are preferred when a high sampling
rate is considered [12].

• The third layer is the communication network layer,
which enables the integration and communication
among different devices. The technology adopted for
load monitoring depends on the location of the server at

which data is sent. In HAN communication architecture,
data servers are often at the edges of the network. Thus
short-range wireless communication is preferred where
the most popular standards are Bluetooth, Wi-Fi, and
Zigbee [5].

• The middleware layer mediates the interaction between
IoT devices and software applications. Since com-
putational requirements for this layer are very high,
most referenced solutions sit at the domains of cloud
and fog computing (e.g., VM-based: MagnetOS and
TinyVM, databased: SINA and TinyDB, service-based:
LinkSmart, SenseWrap, FIWARE and AutoSec, and
Fog node-based: EMCP and eclipse Kura). There-
fore, this layer acts as an architecture abstraction
between the user interface and all deployed devices.
Functional requirements, including data management,
data storage, big data analysis, real-time data anal-
ysis, and deep data analysis with AI should be
considered [25].
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FIGURE 3. Proposed framework for load monitoring and activity recognition system.

• At the top of the architecture lies the application layer.
It refers to the specific services dedicated to users. Thus,
this layer defines a variety of applications in which
ILM solutions could be performed. These solutions feed
on the energy usages of appliances that are measured
separately by submeters. Therefore, appliance-level load
data needs to be directly labeled [5].

Among the most common ILM applications are under-
standing local and global energy consumption, evaluation and
simulation of NILM environments, human activity recogni-
tion, and appliance localization. Details concerning each of
these applications can be found in [12]. This work focuses
on human activity recognition since this information can
provide insights into household occupants’ behavior, which
has several applications in the energy domain and other
fields [3]. For example, understanding human-building inter-
actions (HBI) at the appliance level in a smart building
context can improve demand-supply balance efficiency, iden-
tifying the patterns of using different flexible loads (e.g., EV)
in a building. In addition, to provide a statistical measure to
evaluate the benefits of engaging end- users in adaptive man-
agement of loads (e.g., engagement in DR programs) [26].

In healthcare monitoring, assistive technologies are often
proprietary and tailored to specific application scenarios.
By identifying ADLs, it is possible to provide early interven-
tion for patients with a mental condition such as dementia [8]
and monitor the wellbeing of elder people living alone [15].
The concept of ADL was first proposed by Katz [27]. The
authors demonstrate that age-related diseases directly impact

ADLs by creating ADL indices to measure the dependence
level of a person.

A. APPLIANCE RECOGNITION
Fig. 3 shows the proposed framework for loadmonitoring and
activity recognition system. Before performing ADL classi-
fication, it is necessary to recognize appliances properly. For
this matter, machine learning (ML) and deep learning (DL)
models have proven to be very efficient [7], [11], [12].
Specifically, supervised learning has allowed the correct gen-
eralization in front of unseen data [7], [11]. In Fig. 4, a typical
ML-based framework for appliance recognition is shown.
Feature extraction block provides a vector of features that
extracts individual characteristics of each sample (e.g., the
shape of the consumption profile, maximum power value,
number of transitions). The ML-based block is presented as
a black box, meaning that it is possible to implement several
ML models, such as Support Vector Machines [12], KNNs,
DT, RF [4], FFNN, and LSTM networks [9]. The output
of this system will be the target appliance class, in other
words, the type of each appliance (e.g., kettle, boiler, washing
machine).

B. LOAD CLASSIFICATION
George Hart, as part of his work of the early 90s [28], states
that appliances can be classified according to their opera-
tional state as follows:
• Type 1: Devices with only two operational states
(ON/OFF appliances), e.g., toaster, kettle, etc.
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FIGURE 4. Application classification module architecture.

• Type 2:Multistate devices could be represented by finite
state machines (FSMs), e.g., washing machines, refrig-
erators, heat pumps, etc.

• Type 3: Continuously variable devices (CVD), referring
to appliances with varying power absorption character-
istics, e.g., electric drill, laptops, etc.

• Type 4: Permanent consumer devices, which remain
actives for a long time (weeks or days), consume energy
at a constant rate, e.g., TV receivers, telephones set,
smoke detectors, etc.

Continuously variable devices are considered extremely
difficult to recognize since they can exhibit significantly
different patterns depending on their usage [4]. Based on
their consumption patterns, the class of permanent consumer
devices can be understood as a sub-class of ON/OFF appli-
ances [5]. FSMs or multistate devices have a variant number
of states, and so the consumption of each appliance. This
work processes all appliance profiles in the same manner,
analyzing the load as a general and this procedure can be
applied to the previous four types of data. The feature extrac-
tion module that makes it possible is further explained as part
of the proposed system.

IV. PROPOSED SYSTEM
In this section, the proposed ADL classification system based
on ILM techniques is presented. As previously discussed,
the ADL classification system operates at the application
layer of the IoT platform, depicted in Fig. 1. Such a system
allows identifying the daily activities of house occupants in a
simple manner, which can be useful for various applications.
In more specific, the advantages of the proposed system can
be analyzed from three points of view:

• Architecture: As part of an IoT infrastructure, this sys-
tem can be coupled with different home applications that
contribute to implementing a sustainable smart grid and
more efficient energy usage.

• Classification: This process requires providing a label
for each sensor. This label corresponds to the device
or appliance connected to the sensor. Machine learning
models, such as FFNN, LSTM networks and SVMs
allow labeling the data and contributing to the correct
classifier generalization, which implies a proper perfor-
mance in front of unseen data and removes the need for
manually setting a label for each sensor.

• Consumers: They will be aware of their electrical
consumption and activities and act accordingly to use
energy efficiently.

Fig. 5 shows the proposed system architecture of the ADL
classifier system. Sensor data inputs to an appliance recog-
nition module. Within a window of time, data is divided into
groups of samples that are different from a stand-by signal
to build a vector of ten features that represents distinguishing
characteristics of the power signatures provided by sensors.
These features are as follow:

1) Maximum power value.
2) Minimum power value.
3) Mean power for nonzero values.
4) Number of samples equal to zero.
5) Number of samples with power less than or equal

to 30 W.
6) Number of samples with power between 30 and 400W.
7) Number of samples with power between 400 and

1000 W.
8) Number of samples with power greater than 1000 W.
9) Number of power transitions greater than 1000 W.

10) Number of power transitions between 10 and 100 W.

The size of each group was set to 105 samples, and to
analyze these power measurements from the first nonzero
sample, as suggested in [9], allows that those devices with a
long duration, such as washing machines or dishwashers, can
be represented with a full-length load profile. Three different
models were tested for ML-based classification, including
two neural networks: a FFNN and a LSTM, and a SVM
classifier implemented instancing the SVC class provided by
the scikit-learn library referenced in [29].

Details of these three models will be discussed in the next
subsections. In the three cases, the model was trained with the
same number of training samples in each class. After every
device is identified, these labels along with the timestamps
of every sample are used to recognize common activities
of consumers. The specific algorithm implemented for this
process is further discussed in subsection IV-E.

A. FFNN CLASSIFIER
A feed forward neural network or Multilayer Percep-
tron (MLP) is a machine learning model where informa-
tion flows from the input through intermediate computations
to finally reach the output. There are no feedback connec-
tions, meaning that none of any layer’s outputs is fed back
into itself. When determining a FFNN model configuration,
no specific procedures are established to choose the number
of hidden layers and neurons units. Too many parameters will
conduct to overfitting, which affects model generalization
and performance; on the contrary, a very simple model tends
to underfit and thus, more features need to be extracted from
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FIGURE 5. Proposed system architecture for ADL classifier system and appliance recognition.

FIGURE 6. Proposed FFNN classifier architecture. The model has 10 input
neurons, two hidden layers of 500 and 100 neurons respectively
and 5 output neurons. Dropout has been set with 0.5 probability. The off
neurons have been represented in dark blue.

data. The number of hidden layers and neurons is directly
proportional to system requirements such as computational
power, time, and labeled data [3]. The proposed FFNN classi-
fier architecture is represented in Fig. 6. It consists of 10 input
neurons as the same number of features are extracted from
sensor data. Then, two hidden layers of 500 and 100 neurons,
respectively, alternated with a dropout layer that reduces
the overfitting and achieves higher accuracy. The number of
neurons in the output layer depends on the number of classes

FIGURE 7. Proposed LSTM classifier architecture. The model has 10 input
neurons, a double LSTM hidden layer of 200 cells each. Dropout has been
set for the first hidden layer with 0.5 probability. The off neurons have
been represented in dark blue.

into input data that will be classified. This paper considers
five different appliances; therefore, the output layer has only
five neurons.

B. LSTM CLASSIFIER
A long short-term memory network is a type of recurrent
neural network (RNN) model that employs a memory cell
with gated inputs, outputs, and feedback loops. Its main
contribution is that it allows to address the vanishing gradient
problem, very common for RNNs, where gradient informa-
tion disappears or explodes, and it is propagated back through
time.
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FIGURE 8. Confusion matrix for the three implemented classifier models.

Thus, this kind of system is reported to be better suited
for time series data [30]. The proposed LSTM classifier
architecture model can be seen in Fig. 7. Similar to the FFNN
classifier, the number of cells in the input and output layers
is 10 and 5, respectively, since the feature vector length is 10
and the number of target classes is 5. Then, an intermediate
dropout and another LSTM hidden layer were included to
improve system generalization and to ensure capturing non-
linearities of the input data.

C. SVM CLASSIFIER
Support vector machines are aML technique that bases on the
structure risk minimum principle of statistical theory. It can
be used for both classification and regression problems, and
its main advantage lies in its working principle. It constructs a
hyper-plane or set of hyper-planes in a high or infinite dimen-
sional space. A good separation for hyper-planes implies a
larger distance to the nearest training data points of any class,

which is often referenced as functional margin. The larger
the margin, the lower will be the generalization error of the
classifier.

To be adapted to nonlinear data, the only requirement is to
change the kernel. Kernel function aims to take input data and
transform it into the required form. In this case, default ‘rbf’
function was selected for implementation, which means that
Radial Basis Function acts as kernel. This is a real function
whose value depends only on the distance from the origin or
as an alternative on the distance to some center [31].

D. TARGET APPLIANCES
Target appliances were selected considering the daily activity
that could be inferred from its use. To identify various activ-
ities a set of FSMs appliances was analyzed, but the same
analysis could be performed for every device in a household.
The only requirement is to attach a sensor node next to each
target device. Selected appliances, along with some useful
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FIGURE 9. Accuracy variation in terms of group size. Four different sizes were
tested: 50, 75, 105, 150.

FIGURE 10. Example of appliance recognition and ADL classification.

metadata available in UK-DALE dataset are summarized in
Table 2. In this work, only appliances fromHouse 1were used
for training.

E. ADL CLASSIFICATION ALGORITHM
The proposed ADL classification algorithm maps each
ADL according to a set of criteria based on appli-
ance usage: their power consumption and the timestamps
when they are switched on. Following this algorithm,
it is possible to detect a total of eleven ADLs: Wash-
ing the dishes after breakfast, Washing the dishes after
lunch, Washing the dishes after dinner, Baking food for
breakfast, Baking food for lunch, Baking food for din-
ner, Ironing, Drying hair, Doing laundry, sleeping and
unoccupied.

The sleeping and unoccupied ADLs are identified by an
absence of detections of major appliances during the hours
when the householder is most likely to be ‘‘asleep’’ or ‘‘out
of the house’’ for the night or day hours, respectively. Con-
tinuously variable and permanent consumer devices (low
power draw appliances) are, according to [4], extremely
difficult to recognize since they can exhibit significantly
different patterns depending on their usage or they can
be regarded as a sub-class of ON-OFF appliances. In the

case of the proposed algorithm, we assumed a scenario
with only five multistate (FSM) appliances, and there-
fore, no other loads are considered in the decision for
non-activity.

The pseudo-code for the classification algorithm is repre-
sented in Algorithm 1. The proposed algorithm analyzes a
time-window of sensor data. After the classifier model for
appliance recognition is loaded, active power and samples
timestamps of every target device is ridden. Then, several
groups of samples are formed and for each one of them
features are extracted. The array of features obtained is stored
in a CSV file to be further inputted to the ML classifier
model. Depending on the size of the time-window, it will
be the total of groups formed. The group size can also be
modified, but for training, it was set to 105 samples. From
each vector of features, an activity with its corresponding date
and time is returned. If no activity is detected (it could be a
vector of zeros or a vector from a standby mode), then no
activity is registered. In these cases, if the timestamps indicate
a night hour, then the house is classified as unoccupied;
otherwise, sleeping is returned. The criteria for classifying
ADLs should be customized to each individual household,
and the algorithm could be adapted for the most common
daily activity.
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Algorithm 1 Activities of Daily Living Classification
1: set window_size
2: load classifier model
3: read sensor data (active power and timestamps)
4: for len(window_size) do
5: if amount_of_samples = len(group_size) then
6: feature_vector = feature_extraction(samples)
7: store feature_vector and timestamps in array
8: end if
9: end for
10: store array of feature vectors in inference csv file
11: load inference csv file
12: standardize inference data
13: for each row do
14: convert time to ISO format
15: if not activation detected and ISOtime = night_hours

then
16: activity = ‘‘sleeping’’ with (probability) at

(ISOtime)
17: else if not activation detected and ISOtime =

daily_hours then
18: activity = ‘‘unoccupied’’ with (probability) at

(ISOtime)
19: else
20: prediction = model.predict(feature_vector)
21: if prediction = ‘‘dishwasher’’ and ISOtime =

morning_hours then
22: activity = ‘‘Washing the dishes after breakfast’’

with(probability) at (ISOtime)
23: else if prediction = ‘‘dishwasher’’ and ISOtime =

afternoon_hours then
24: activity = ‘‘Washing the dishes after lunch’’ with

(probability) at (ISOtime)
25: else if prediction = ‘‘dishwasher’’ and ISOtime =

evening_hours then
26: activity = ‘‘Washing the dishes after dinner’’ with

(probability) at (ISOtime)
27: else if prediction = ‘‘hair_dryer’’ then
28: activity = ‘‘Drying hair’’ with (probability) at

(ISOtime)
29: else if prediction = ‘‘iron’’ then
30: activity = ‘‘Ironing’’ with (probability) at

(ISOtime)
31: else if prediction = ‘‘oven’’ and ISOtime =

moming_hours then
32: activity = ‘‘Baking food for breakfast’’ with

(probability) at (ISOtime)
33: else if prediction = ‘‘oven’’ and ISOtime =

afternoon_hours then
34: activity = ‘‘Baking food for lunch’’ with

(probability) at (ISOtime)
35: else if prediction = ‘‘oven’’ and ISOtime =

evening_hours then
36: activity = ‘‘Baking food for dinner’’ with

(probability) at (ISOtime)

Algorithm1 Continued. Activities of Daily Living Classifi-
cation
37: else if prediction = ’’washing_machine’’ then
38: activity = ‘‘Doing laundry’’ with (probability) at

(ISOtime)
39: end if
40: end if
41: end for
42: return Activity detected. Probability. Time (ISO 8601

format;

V. RESULTS
This section discusses all experiments and results obtained
with the designed system. First, the three ML-based classifier
models are compared in terms of accuracy, precision, recall,
and F1 score, and then a sensitivity analysis is performed
considering different groups.

A. EXPERIMENTS
1) UK-DALE DATASET
In order to perform every experiment, real-time data is
needed. Since no customized or proper data is available,
the United Kingdom-Domestic Appliance Level Electricity
(UK-DALE) dataset [32] was employed. It contains aggre-
gated and disaggregated appliance data for five houses in
London, England, over several years. The dataset has two
types of resolution data available: 6s and 1s. The data is stored
in CSV files. The first column is a UNIX timestamp, and
the rest can vary depending on the resolution data used. For
the 6s data, the second column in each CSV file is a non-
negative integer that records active power from the individual
appliance. The data gathered were obtained through smart
plugs attached to individual appliances [3] to measure their
energy consumption. Only House 1 was considered during
training, mainly due to the fact that each house in the dataset
has a different number of appliances, and to identify different
daily activities, House 1 offers more possibilities. The same
appliances from House 5 were used to test the performance
in front of new data. The results for this last experiment will
be discussed later in this section.

2) CLASSIFIER MODELS
As previously mentioned, three different classifier models
were employed: a vanilla neural network (FFNN), a LSTM
network, and a SVM classifier. The three models were imple-
mented in Keras running over Tensorflow. Random param-
eters were set to initialize the system, and depending on
the results, they were further readjusted to finally obtain the
definitive configuration detailed in the previous section. The
confusion matrix for each of the three classifiers is presented
in Fig. 8 (a-c). As it can be seen, the best results are obtained
with the FFNN classifier with only three misclassified sam-
ples. A higher number of incorrectly classified samples are
obtained with the SVM classifier. LSTM classifier achieved
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TABLE 3. Target appliances from house 1 in UK-DALE dataset.

a slightly lower accuracy than the FFNN, but still, it is above
0.9 using less parameters.

Table 3 shows a comparison for each class of the classifiers
in terms of accuracy, precision, recall, and F1-score. For
the three cases, misclassifications are related mostly to hair
dryer, dishwasher, and oven. For the SVM classifier, the iron
obtained the best results as it returned a 100%precision, recall
and F1-score. As for the LSTM, the best results in terms
of precision, recall and F1-score can vary depending on the
model. Higher precision is obtained for the iron, washing
machine, and oven; however, lower recall is attributed to
the latter, achieving a 0.86957 F1-score for this appliance.
In the case of the FFNN classifier, in all cases, F1-score was
above 0.9.

Given these results, the FFNN was stored and further used
in the activity recognition module. A second experiment was
performed to test the model generalization in front of new
data. The same five appliances were selected for a different
house, in this case, House 5. The confusion matrix for this
experiment is shown in Fig. 8 (d). From this figure, it is
evident that there is a decrease in all metrics, meaning that
if the system is implemented in different houses, it will be
necessary to collect data and then retrain the classifier. For
this scenario, the accuracy decreased to 0.61.

3) SENSITIVITY ANALYSIS
A sensitivity analysis was performed to analyze the impact
of the group size on the accuracy of each model. Fig. 9 shows
the results corresponding to this test. Three different values of
the group size: 50, 75, and 150 were set and compared to the
initial 105. From the graph in Fig. 9, it can be seen that if the
group size is decreased, the accuracy is also diminished, but
more samples will be obtained for training. On the contrary,
if the group size is incremented it can either improve or
decreased depending on the model employed. For the LSTM
classifier, with a 150-group size, no misclassifications are
obtained achieving a 100% accuracy, but with a lower amount
of training samples, which could not be beneficial for its
behavior in front of unseen data.

In all cases, the algorithm can recognize simultaneous
activities within the analyzed time window. It is also impor-
tant to note that simultaneous activities can occur while nei-
ther is based on the absence of activations (i.e., sleeping, and
unoccupied).

VI. APPLIANCE RECOGNITION AND ADL CLASSIFICATION
In this section, a discussion of the results and future work will
be presented. Based on the results obtained through different
experiments, the system performance is satisfactory. For a

certain input window, groups of samples are gathered, and
features are extracted from each of them to be later labeled
and associated with an activity executed by house occu-
pants. Although the system does not work in real-time, it can
identify simultaneous activities as it analyses a sequence of
feature vectors independently of the timestamps.

To be used in a different household, the classifier should be
first retrained. This happens since houses may have the same
type of appliances, but their consumption can vary depend-
ing on the vendor or appliance model. Feature extraction
influences the fact that different appliances can be modeled
as a general and not depending on the type of loads (e.g.,
ON/OFF, FSM), which means that a TV, a kettle, or a vacuum
cleaner will be analyzed in the same way. With a variation in
the group size, the accuracy will also be different and some
modifications in the model will be needed to achieve a higher
score. In order to compare our work with the state-of-the-art
techniques, in [9], among the target appliances covered by the
authors were a washing machine, an iron, a microwave oven,
and a dishwasher. However, they run different experiments to

validate the results using real-world data collected in an
initial phase of a trial of the Energy@home system. In the case
of the ADL classification, our algorithm is similar to the one
presented by authors in [3]. Both map each ADL according
to a set of criteria based on appliance usage such as the
power consumption and the timestamps when switched on.
However, authors in [3] used a NILM approach to recognize
appliances; therefore, the system needs to disaggregate the
smart meter power consumption signal. The two algorithms
associate the lack of use of electrical appliances in a cer-
tain time-period, specifically during the night or daily hours,
with the ‘‘sleeping’’ and ‘‘unoccupied’’ activities, to rep-
resent the period of time where occupants are in sleeping
hours or the house is empty, respectively. In the case of [3],
the authors used a different algorithm per activity inferred
while we present a unified proposal. To compare appliance
recognition and ADL classification processes as a general,
Table 5 describes the two classifiers concerning the input and
output of both models.

Furthermore, Fig. 10 shows a visual representation of the
two concepts expressing how they complement each other
and how they were conceived for the proposed system. In the
case of the proposed algorithm, we assumed a scenario with
only five appliances and therefore, no other loads are consid-
ered in the decision for non-activity. We based this criterion
only on the absence of all appliances’ activations. For a
practical implementation of the system, this restriction should
be modified, and more appliances need to be considered to
obtain proper insights into the household occupants’ behav-
ior. By testing on real data, such as UK-DALE publicly avail-
able dataset, we prove that the proposed classification system
performs accurately and, therefore, it can be implemented
practically.

Future work will be focused on making the system capable
of working in real-time, more appliances can be included
to identify a higher number of activities and proper insights
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TABLE 4. Evaluation metrics for the five classes using FFNN, LSTM and SVM.

TABLE 5. Comparison of appliance recognition and ADL classification.

into the behavior of the household occupants, which will also
make the system suited for a smart home with a considerable
number of appliances. Furthermore, future work will study
the ways of including special devices such as movement
sensors to better distinguish among these situations. Such
a system can be implemented in a laboratory environment
to gather and process real data that reflects the habits of
house occupants. The contribution of this study is significant
since there is a great number of applications. To implement
the real-time system, a communication network should also
be carried out to allow data exchange between the differ-
ent appliances and the proposed ADL classification system.
Therefore, in the next stage, our work will be focused on
designing and implementing the complete IoT platform in a
laboratory environment.

VII. CONCLUSION
Smart homes aim to facilitate the operation and management
of household appliances so that it can be operated automat-
ically and optimally. With the identification of appliance
usage, a series of smart grid applications could be carried
out such as demand response and load planning. This work
presented a framework for an IoT approach able to support
distributed sensing and ADL classification system based
on ILM in smart homes. ILM is based on low-end meter
devices attached to home appliances in opposition to NILM
techniques, where only a single point of sensing is needed.
This work proposed an ADL classification system that com-
bines state-of-the-art solutions among its different modules.
ML models are applied in the appliance recognition module.
Specifically, three different models were tested using the UK-
DALE dataset: a FFNN, a LSTM and an SVM. Accuracy was
above 0.9 for the FFNN and the LSTM classifiers and around
0.8 for SVM. Once appliances are recognized, the ADL clas-
sification algorithm infers an activity based on the appliance
label obtained and on the timestamps of the samples. To test
the performance of the classifier in front of new data, the
system was applied for a different house in the same dataset,
notably decreasing the accuracy. Results suggest that before
having the system in full operation, it might be necessary to
retrain the classifier with the new data. Another experiment
was performed to analyze the impact of the group size on the

ML classifier accuracy. These groups gather a fixed number
of samples from which appliances are identified. If the group
size decreases or does the opposite, the same behavior can be
expected for the accuracy, apart from the LSTM model that
increases the accuracy when the group size is bigger. Future
work aims to improve the results obtained and implement the
system in a laboratory environment.
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