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ABSTRACT Airborne SAR tomography (TomoSAR) 3D image reconstruction can be realized with
combination of 2D imaging algorithms and compressed sensing (CS) algorithms. However, most typical
CS algorithms cannot achieve a balance between algorithm efficiency and 3D reconstruction accuracy.
Due to difficulties in flight path control of airborne SAR, it is hard to realize registration of SAR images
with frequency-domain imaging algorithms because of time-varying baseline. To address these problems,
an efficient 3D image reconstruction method for airborne TomoSAR based on back projection (BP)
algorithm and improved adaptive iterative shrinkage-thresholding algorithm (IA-ISTA) is proposed. First,
2D images are achieved with BP algorithm on the ground plane. After registration of SAR images, 3D
image reconstruction results in the elevation direction are realized with IA-ISTA. Selection criterion of
IA-ISTA parameters are given in this paper. At last, final 3D image reconstruction results are achieved
after geometrical transformation based on geometric relationship. Both simulated data and measured data
of a P-band airborne TomoSAR system are used. 3D image reconstruction results show that the proposed
method outperforms traditional methods regarding efficiency and accuracy, which proves the validity and
practicality of the proposed method.

INDEX TERMS Airborne SAR tomography (TomoSAR), 3D image reconstruction, compressed sensing
(CS), iterative shrinkage-thresholding algorithm (ISTA), back projection (BP) algorithm.

I. INTRODUCTION
Due to SAR imaging mechanism, there are serious problems
of layovers and shadows, which hinder the interpretation,
application, and development of SAR remote sensing. With
the increasing demand for acquisition of three-dimensional
structure information, it is very meaningful to develop 3D
imaging techniques, which are significant to 3D environment
construction, target interpretation, and biomass estimation
[1]–[4]. SAR tomography (TomoSAR) is a classical 3D imag-
ing technique, which forms synthetic aperture in the eleva-
tion direction with repeated trajectories. TomoSAR has 3D
imaging ability with multiple observations in the elevation
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direction [5], [6]. The first airborne TomoSAR experiment
was conducted by Deutsches Zentrum für Luft- und Raum-
fahrt (DLR) [7]. After years of development, the Wiener-
SVD algorithm was proposed and compared with traditional
FFT based 3D image reconstruction methods in TomoSAR.
Besides, tomographic results of high resolution TerraSAR-X
images were achieved by applying compressed sensing (CS)
theory in TomoSAR [8]–[11].

TomoSAR 3D image reconstruction can be mainly divided
into two stages. The first stage is high-accuracy 2D imag-
ing and preprocessing, because prerequisite of 3D image
reconstruction is the registration of multi-pass SAR images.
The second stage is 3D image reconstruction in the eleva-
tion direction, in which CS algorithms have been widely
applied.
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In the first stage of TomoSAR 3D image reconstruc-
tion, 2D SAR images are usually obtained with frequency-
domain imaging algorithms on the azimuth and range plane.
However, in an airborne system, due to atmospheric tur-
bulences, it is very difficult for airborne SAR to control
the flight path accurately [12]. With nonideal trajectories
and frequency-domain imaging algorithms, realizing image
registration of SAR is very difficult. Back projection (BP)
algorithm is a time-domain imaging algorithm on the ground
plane. Imaging with BP algorithm can remove flat-earth
phase and realize image registration automatically, because
imaging grids are uniformly defined on the latitude and
longitude coordinate system [13]. In this paper, 3D image
reconstruction model with BP algorithm will be introduced
and the imaging results will be analysed in detail. Based
on BP algorithm, construction of the sensing matrix and 3D
image reconstruction process are illustrated.

In the second stage of TomoSAR 3D image reconstruction,
greedy algorithms and convex optimization algorithms are
typical kinds of CS algorithms, which can be applied in
TomoSAR 3D image reconstruction in the elevation direc-
tion. Orthogonal matching pursuit (OMP) [14] and basis pur-
suit de-noising (BPDN) [15] are representative algorithms of
these two kinds, respectively. However, 3D image reconstruc-
tion performance based on OMP are affected by the sparsity
K , because iteration number of OMP is mainly determined by
sparsity K in theory. On the contrary, BPDN has higher 3D
reconstruction accuracy in the elevation direction, but a large
number of matrix inversion make it time-consuming. Tradi-
tional iterative shrinkage-thresholding algorithm (ISTA) [16]
can be realized without prior information about the spar-
sity K , which does not contain any matrix inversion at the
same time.

In order to improve algorithm efficiency of ISTA, a fast
iterative shrinkage-thresholding algorithm (FISTA) [17], [18]
was proposed, which has been successfully applied in SAR
tomography [19]. Besides, element-wise adaptive thresholds
for learned ISTA and ISTA with adaptive threshold were
analysed in theory [20]. In this paper, we propose an improved
adaptive ISTA (IA-ISTA) in 3D image reconstruction of air-
borne SAR tomography. A specific adaptive threshold and
parameter selection criterion of proposed algorithm will be
clearly given.

In summary, we present an efficient 3D image reconstruc-
tion method for airborne TomoSAR based on BP algorithm
and IA-ISTA. Firstly, we will introduce 3D image reconstruc-
tion model and give out 3D image reconstruction process
based on BP algorithm and compressed sensing algorithm.
Secondly, we propose and apply IA-ISTA in 3D image recon-
struction of airborne SAR tomography. Compared with tra-
ditional methods, proposed IA-ISTA converges much faster
without deteriorating 3D image reconstruction performance.
Finally, we compare the 3D reconstruction accuracy and algo-
rithm efficiency among results with OMP, traditional ISTA,
and proposed IA-ISTA. 3D image reconstruction results of
both simulated and measured data of a P-band airborne

TomoSAR system are presented to prove effectiveness of our
proposed method.

The remainder of this paper is arranged as follows.
In Section II, TomoSAR 3D image reconstruction the-
ory based on BP algorithm is introduced and analysed in
detail. Then, 3D image reconstruction algorithm for airborne
TomoSARbased on IA-ISTA is proposed in Section III. Com-
parison among 3D image reconstruction results with OMP,
traditional ISTA, and proposed IA-ISTA will be detailed
shown in section IV with simulated data. In section V, mea-
sured data of a P-band airborne TomoSAR system con-
ducted by Aerospace Information Research Institute, Chinese
Academy of Sciences (AIRCAS) are adopted and analysis of
reconstruction results prove the effectiveness of our proposed
method. Finally, conclusions are drawn in Section VI.

II. ANALYSIS OF 3D IMAGE RECONSTRUCTION
MODEL WITH BP ALGORITHM
The imaging geometry of SAR tomography with BP algo-
rithm is compendiously shown in Fig. 1, which consists ofM
linear trajectories with look angle αm(m = 1, 2, 3, . . . ,M ).
The average look angle of these different trajectories is ᾱ.

FIGURE 1. Imaging geometry of SAR tomography with BP algorithm.

Radar transmits chirp signal with carrier frequency f0,
pulse width Tp, chirp rateKr , and signal bandwidthBw, which
is expressed as follows

st (τ ) = rect(
τ

Tp
) · exp(j · πKrτ 2) (1)

where rect(·) is a gate function.
Time-domain echo signals of target P in the imaging scene

can be expressed as follows

sr1(τ, t) = σ0 · ωr (τ − 2Rp(t)) · ωa(t − tc)

· exp(j · πKr (τ −
2Rp(t)
c

)2) · exp(−j ·
4πRp(t)
λ

)

(2)

where λ represents the wavelength of radar, ωr (·) and ωa(·)
are gate functions, σ0 is the backscattering coefficient of
target P, and Rp(t) is the distance between radar and target
P at the azimuth time t .

47400 VOLUME 9, 2021



D. Han et al.: Efficient 3D Image Reconstruction of Airborne TomoSAR Based on BP and IA-ISTA

After range compression, time-domain echo signals can be
expressed as below

sr2(τ, t) = σ0 · ωa(t − tc)

· sinc(Bw · (τ −
2Rp(t)
c

)) · exp(−j ·
4πRp(t)
λ

)

(3)

2D images are achieved with BP algorithm after the refer-
ence imaging plane is uniformly divided intoNu×Nv imaging
grids. Top view of the imaging geometry with BP algorithm
is shown in Fig. 2.

FIGURE 2. Top view of the imaging geometry with BP algorithm.

Flat-earth phase can be regarded as the phase caused by
reference imaging plane. After removing the flat-earth phase
exp(j·4πRg(t)/λ) and finishing BP interpolation, the coherent
accumulation results of multiple pulses at the imaging grid
(u, v, zref) is shown as below

Im(u, v) =
∑
t

sr2(τ, t) · exp(j ·
4πRg(t)
λ

)

=

∑
t

σ0(u, v) · ωa(t − tc) · sinc(Bw(τ −
2Rp(t)
c

))

· exp(−j ·
4πRp(t)
λ

) · exp(j ·
4πRg(t)
λ

) (4)

where zref is the height of reference imaging plane, and Rg(t)
is the distance between radar and the imaging grid (u, v, zref)
at the azimuth time t in Fig. 2.
As we can see from Fig. 1, target P is projected onto

imaging result A in the 2D image with look angle αm. In the
far field hypothesis, we can assume that 6 OAP is αm and
length lOA can be approximately expressed as below

lOA = zp · cotαm (5)

As is shown in Fig. 1, the virtual trajectory with average
look angle ᾱ is represented as the reference trajectory. Imag-
ing result A of different trajectories can be projected onto
B in the slant range of the reference trajectory. Therefore,
we can achieve different length lOB in TomoSAR trajectories
with different incident angles. After registration of 2D images
generated from different trajectories, the phase difference
exp(−j · 4π/λ · lOB) caused by lOB at the same pixel of 2D
images can be exploited to estimate the height zp in the
elevation direction [21]–[23].

lOB = lOA · sinᾱ = zp · cotαm · sinᾱ (6)

According to the above analysis, the final 2D BP imaging
results at the imaging grid (u, v, zref) of different trajectories
can be approximately expressed as below

Im(u, v) =
∑
p

σ0(u, v) · exp(−j·
4π
λ
· zp · sinᾱ · cotαm) (7)

Because 2D images are achieved with BP algorithm on the
ground plane, there are geometric distortions in the 3D image
reconstruction results. As is shown in Fig. 2, (up, vp, zp) is
the direct 3D reconstruction result. Compared with accurate
spatial location (u′p, v

′
p, z
′
p), height zp is accurate, but the

horizontal coordinates (up, vp) are wrong. Therefore, geo-
metrical transformation should be finished after 3D image
reconstruction with compressed sensing algorithms. After
these manipulations, (u′p, v

′
p, z
′
p) can be calculated as below

u′p = up − zp · cotᾱ · sinθ (8)

v′p = vp − zp · cotᾱ · cosθ (9)

z′p = zp (10)

In summary, processing chain of TomoSAR 3D image
reconstruction based on BP algorithm and proposed IA-ISTA
is evocatively illustrated in Fig. 3 and Fig. 4. Flowchart of
TomoSAR 3D image reconstruction process mainly consists
of the following 4 steps.
step1:We receive raw echo signals of the targets to be recon-

structed in different trajectories of airborne TomoSAR.
step2: 2D BP images are achieved after range compression

of echo signals, flat-earth phase removing, and BP
interpolation by using (3) and (4).

step3: We finish registration of 2D BP images for prepara-
tion of 3D image reconstruction [24], [25]. Then, 3D
image reconstruction of airborne TomoSAR is realized
with proposed IA-ISTA, in which the sensing matrix is
obtained from (7).

step4: Final 3D image reconstruction results are achieved
after geometrical transformation according to the geo-
metric relationship.

III. IA-ISTA BASED 3D IMAGE RECONSTRUCTION
A. TRADITIONAL ISTA
For 3D image reconstruction of SAR tomography with BP
algorithm, the compressed sensing can be expressed as below

y = 8 · x+ ε (11)
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FIGURE 3. Flowchart of 3D image reconstruction process of SAR
tomography with BP algorithm and proposed IA-ISTA on the ground
plane.

where y is a measurement vector of the same pixel Im(u, v) in
the registered 2D image stack, x is a vector to be reconstructed
in the elevation direction, and ε is the noise vector. According
to (7), 8 is an M × Nz sensing matrix with

φmn = exp(−j ·
4π
λ
· zn · sinᾱ · cotαm) (12)

in which zn(n = 1, 2, 3, . . . ,Nz) is the sampling grids in the
elevation direction.

Considering the Lasso problem [15], [26], equation (11)
can be described as the following problem

min
x

1
2
‖y−8 · x‖22 + ζ ‖x‖1 (13)

where ζ is the Lagrange multiplier.
In traditional ISTA, xk+1 is calculated as below after

initializing parameters

xknew = xk −
1
L
·8H(8 · xk − y) (14)

xk+1 = η(xknew) = sign(xknew) ·max(|xknew| − µ, 0) (15)

where η(·) is the shrinkage function, sign(x) is the symbolic
function, µ is the threshold used for traditional ISTA, 8H

represents the conjugate transpose operation of 8, and L
is a constant that should be larger than the max eigenvalue
of 8H8.

B. IMPROVED ADAPTIVE ISTA
Compared with traditional ISTA, proposed IA-ISTA can be
applied as a superior 3D image reconstruction algorithm for

airborne SAR tomography because of both having accurate
reconstruction results and better algorithm efficiency.

The novel modification of proposed IA-ISTA is that an
adaptive threshold T (x, µ, a) is adopted to calculate xk+1 in
(15) instead of a constant µ in traditional ISTA.

Firstly, IA-ISTA doesn’t need the sparsity K as a prior
information for TomoSAR 3D image reconstruction.
Secondly, IA-ISTA uses T (x, µ, a) as an adaptive threshold
in the shrinkage function η(·) instead of the constant µ
in traditional ISTA, which can greatly increase the rate of
convergence.

In proposed IA-ISTA, xk+1 is calculated as below after
initializing parameters

xknew = xk −
1
L
·8H(8 · xk − y) (16)

xk+1 = η(xknew) = sign(xknew)

·max(|xknew| − T (x
k
new, µ, a), 0) (17)

In IA-ISTA, x gets refreshed along with the iteration of
algorithm. When the algorithm converges, xk+1 ≈ xk and
xknew ≈ xk . According to (16) and (17), xk should satisfy the
following condition

xk ≈ sign(xk ) ·max(|xk | − T (xk , µ, a), 0) (18)

If T (x, µ, a) is a function which converges to 0 when x
gradually becomes larger as the algorithm iterates, the algo-
rithm will converge more quickly [20]. In this paper, we pro-
pose an adaptive threshold which is defined below

T (x, µ, a) = µ/(|x|/a+ 1) (19)

The gradient of adaptive threshold T (x, µ, a) with respect
to x is calculated as below

∇T (x, µ, a)/∇x = −µ · sign(x)/(|x|/
√
a+
√
a)2 (20)

In gradient (20), both parameter µ and a determine the
sparsity of IA-ISTA, and rate of convergence in IA-ISTA is
mainly determined by parameter a. Parameter selection in
IA-ISTA is illustrated as follows.

1) L is a constant which should be larger than the max
eigenvalue of 8H8.

2) Predefined tolerance δ is a very small non-negative
number which determines the number of iterations.

3) In the proposed adaptive threshold T (x, µ, a), param-
eter µ and a are small non-negative numbers. In this
paper,µ is set to 0.01×|yref|, and a is set to 0.1×|yref|,
where yref is an element chosen from the measurement
vector y.

The whole processing chain of 3D image reconstruction
algorithm for airborne TomoSAR based on IA-ISTA is shown
in Table 1.

Firstly, we input the measurement vector y, the sensing
matrix 8 with φmn = exp(−j · 4π/λ · zn · sinᾱ · cotαm), and
number of iterations Ni.
Secondly, initialization of all the parameters in IA-ISTA is

finished.
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FIGURE 4. Diagram of 3D image reconstruction process of SAR tomography with BP algorithm and proposed IA-ISTA on
the ground plane: (a) echo signals of 3D targets to be reconstructed, (b) 2D imaging process with BP algorithm on the
ground plane, (c) 3D image reconstruction results using proposed IA-ISTA, (d) final 3D image reconstruction results after
geometrical transformation.

TABLE 1. IA-ISTA based 3D image reconstruction algorithm.

Thirdly, (16) and (17) are adopted in the iteration of
IA-ISTA, in which the shrinkage function η(·) gets adap-
tively refreshed while xk is refreshing. When the number
of iterations is larger than the threshold or the relative error∥∥xk+1 − xk∥∥2 is smaller than the predefined tolerance δ, 3D
image reconstruction process based on IA-ISTA should be
automatically terminated.

Finally, xk is the reconstruction result of SAR tomography
in the elevation direction.

TABLE 2. Simulation parameters.

IV. SIMULATED RESULTS
A. SIMULATION CONFIGURATION
The simulation parameters are enumerated in Table 2.
Considering unambiguous height in the elevation direction of

airborne TomoSAR [23], we choose chirp signals at L-band
for simulation with carrier frequency f0 = 1.5GHz. Simulated
observation geometry consists of 11 linear trajectories with
average look angle ᾱ = 45◦. Slant range of the middle
trajectory is set to 3000m and the height interval of the
11 trajectories in the elevation direction is set to 10m, so the
calculation results of look angles of different trajectories are
shown in Table 2. The azimuth angle θ of the TomoSAR
equivalent phase center in Fig. 2 is set to 0◦. Under the
assumption that the length of antenna D is 2m, the synthetic
aperture is 300m, which is calculated with

Ls =
λ · R
D

(21)

B. 3D IMAGE RECONSTRUCTION BASED ON IA-ISTA
Firstly, we achieve 2D SAR images from echo signals
of different trajectories by using BP algorithm illustrated
in Section II.

Secondly, after registration of 2D SAR images, we then
construct sensing matrix 8 according to simulation parame-
ters enumerated in Table 2, which is anM×Nz sensing matrix
with

φmn = exp(−j ·
4π
λ
· zn · sinᾱ · cotαm) (22)

TomoSAR 3D image reconstruction can be regarded as the
following problem

min
x

1
2
‖y−8 · x‖22 + ζ ‖x‖1 (23)

According to the sensing matrix 8 and selection criterion
of parameters illustrated in Section III, we can confirm the
parameters in proposed IA-ISTA.

With processing chain of proposed IA-ISTA illustrated
in Table 1, TomoSAR 3D image reconstruction problem can
be solved with the following modificated iterations

xknew = xk −
1
L
·8H(8 · xk − y) (24)

xk+1 = η(xknew)

= sign(xknew) ·max(|xknew| − T (x
k
new, µ, a), 0) (25)

where T (x, µ, a) = µ/(|x|/a+ 1).
T (x, µ, a) is a proposed specific adaptive threshold in the

shrinkage function η(·) instead of the constantµ in traditional
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ISTA, which gets automatically refreshed in the iterations
(24) and (25) along with the change of x.
After 3D image reconstruction with proposed IA-ISTA,

final TomoSAR 3D image reconstruction results can be
achieved with geometrical transformation by using (8),
(9), and (10).

C. ANALYSIS OF RESOLUTION
Theoretical resolutions of 2D images and 3D image recon-
struction results can be calculated as below

ρa =
D
2

(26)

ρr =
c

2 · Bw · sinᾱ
(27)

ρz =
λ · R

2 · Lz · sinᾱ
(28)

where Lz is the tomographic aperture, ρa is the resolution in
the azimuth range, ρr is the resolution in the ground range,
and ρz is the resolution in the elevation direction. Using
simulation parameters in Table 2, ρa is calculated as 1m, ρr
is calculated as 1.06m, and ρz is calculated as 3m.
Proposed IA-ISTA is a modification of traditional ISTA,

which can achieve super resolution in the elevation direction.
However, it is very complicated to find the super resolution of
proposed IA-ISTA. Therefore, we conduct Monte Carlo sim-
ulation to detect two scatterers with different distance in the
elevation direction. The definition of a successful detection
is refered to [11]. When the detection rate of Monte Carlo
simulation is 0.5, we can consider the distance between the
two scatterers as the super resolution of proposed IA-ISTA.
Figure 5 is the detection rate alongwith the change of distance
between the two scatterers with different SNR. In Fig. 5,
the detection rate is affected by the change of SNR.When the
detection rate is 0.5, super resolution of proposed IA-ISTA in
the elevation direction is around 0.5m.

D. RESULTS OF SIMULATED POINT SCATTERERS
The simulated point scatterers are shown in Fig. 6, which
are located in the geodetic coordinate system. The imaging
scene on the ground plane is set up as 50m × 50m, which
is uniformly separated into 501 × 501 grids with an interval
being 0.1m×0.1m. In this simulation, we add Gaussian white
noise with SNR being −10dB.

Figure 7 is the 2D image of simulated point scatterers using
BP algorithm with SNR being −10dB. As we can see from
Fig. 7, simulated point scatterers with height 0m, 10m, and
20m in Fig. 6 are projected onto point A framed in Fig. 7 due
to layovers.

In the simulated results, L in (11) is set to 250. Sampled
elevation position zn in (12) ranges from −2m to 23m with
an interval being 0.125m.

OMP, traditional ISTA and proposed IA-ISTA are adopted
for 3D image reconstruction of the pixel (10m,0m) in point
A. When the algorithms converge, number of iterations is rep-
resented as Ni. Iteration number of traditional ISTA is much

FIGURE 5. Detection rate along with the change of distance between the
two scatterers with different SNR.

FIGURE 6. Simulated point scatterers located in the geodetic coordinate
system.

bigger than that of proposed IA-ISTA, so we use lg(Ni) to
representNi. Figure 8 is the needed number of iterations using
traditional ISTA and proposed IA-ISTA when the algorithms
converge along with the change of predefined tolerance δ,
which shows that proposed IA-ISTA has much better rate
of convergence with the same predefined tolerance δ than
traditional ISTA and greatly improves algorithm efficiency.

In 3D image reconstruction process with OMP, sparsity K
is set to 2 and 3, respectively. In 3D image reconstruction
process with traditional ISTA and proposed IA-ISTA, L in
(14) and (16) is set to 250 and the predefined tolerance δ is
set to 10−3.

3D image reconstruction results of the pixel (10m,0m)
in point A with different algorithms are shown in Fig. 9.
In Fig. 9, simulated point scatterers can be accurately dis-
tinguished at their actual height 0m, 10m, and 20m. We use
mean squared error (MSE), mean absolute error (MAE),
and structural similarity (SSIM) to evaluate the accuracy of
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FIGURE 7. 2D image of simulated point scatterers using BP algorithm
with SNR being −10dB (A is the layover position of 3 scatterers with
different heights).

FIGURE 8. Needed number of iterations Ni along with the change of
predefined tolerance δ.

TABLE 3. Evaluation of 3D image reconstruction results.

reconstruction results [27], which is shown in Table 3. From
Fig. 9 and Table 3, we can see that 3D image reconstruc-
tion results with IA-ISTA and traditional ISTA are similar,
which are better than 3D image reconstruction results with
OMP. SSIM of 3D image reconstruction results with these
algorithms are similar, but MSE and MAE of 3D image
reconstruction results with traditional ISTA and proposed
IA-ISTA are both better than the 3D image reconstruction
results with OMP.

FIGURE 9. 3D image reconstruction results: (a) OMP with sparsity K = 1,
(b) OMP with sparsity K = 2, (c) traditional ISTA, (d) proposed IA-ISTA.

With proposed IA-ISTA, 3D image reconstruction results
of the simulated point scatterers are shown in Fig. 10.
Figure 10(a) is the direct 3D image reconstruction results
with proposed IA-ISTA. And, Fig. 10(b) is the 3D image
reconstruction results after geometrical transformation by
using (8), (9), and (10). In Fig. 10, we can see that 3D
image reconstruction results of simulated point scatterers
will be located at their actual positions after geometrical
transformation.

E. RESULTS OF SIMULATED BUILDING
The simulated building is shown in Fig. 11, which is located
in the geodetic coordinate system. Colorbar of Fig. 11 rep-
resents height of the simulated building. The imaging scene
on the ground plane is set up as 50m × 50m, which is
uniformly separated into 501 × 501 grids with an interval
being 0.1m× 0.1m.
In the simulated results, sampled elevation position zn in

(12) ranges from−2m to 23m with an interval being 0.125m.
OMP, traditional ISTA, and proposed IA-ISTA are adopted
for 3D image reconstruction of the simulated building. In 3D
image reconstruction process by using OMP, sparsity K is
set to 3. In 3D image reconstruction process with elevation
resolution ρz = 3m by using traditional ISTA and proposed
IA-ISTA, L in (14) and (16) is set to 250 and the predefined
tolerance δ is set to 10−3. In 3D image reconstruction process
with elevation resolution ρz = 6m by using traditional ISTA
and proposed IA-ISTA, L in (14) and (16) is set to 500 and
the predefined tolerance δ is set to 10−3.

Figure 12 is the 3D image reconstruction results with dif-
ferent elevation resolution ρz by usingOMP, traditional ISTA,
and proposed IA-ISTA after geometrical transformation,
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FIGURE 10. 3D image reconstruction results of simulated point scatterers
with proposed IA-ISTA: (a) before geometrical transformation, (b) after
geometrical transformation.

FIGURE 11. Simulated building located in the geodetic coordinate system.

in which colorbar represents height of the reconstruction
results.

ProcessingwithMATLAB2016 and CPU intel Xeon 6148,
time cost of 3D image reconstruction with traditional ISTA
and proposed IA-ISTA is illustrated in Table 4 and Table 5.
Under the same simulation configuration, time cost of pro-
posed IA-ISTA is much smaller than that of traditional ISTA.

TABLE 4. Time cost of traditional ISTA and proposed IA-ISTA (ρz = 3m).

TABLE 5. Time cost of traditional ISTA and proposed IA-ISTA (ρz = 6m).

TABLE 6. Evaluation of 3D image reconstruction results (ρz = 3m).

TABLE 7. Evaluation of 3D image reconstruction results (ρz = 6m).

We use MSE, MAE, SSIM, and 3D entropy to evaluate 3D
image reconstruction results with different algorithms, which
is shown in Table 6 and Table 7. 3D entropy of reconstruction
results is defined as below

P(i, j) =
χ (i, j)

(Nu × Nv × Nz)
(29)

H = −
255∑
i=0

255∑
j=0

P(i, j) · ln(P(i, j)) (30)

where (i, j) is combination of the pixel grey level value i(0 ≤
i ≤ 255) and the local mean of neighbour domain j(0 ≤
j ≤ 255) which the pixel belongs to. χ (i, j) is the statistical
quantity of (i, j). In this paper, we calculate j by using the local
3× 3× 3 pixels.

Consistent with results of simulated point scatterers, SSIM
of 3D image reconstruction results with these algorithms are
similar, but MSE, MAE, and 3D entropy of 3D image recon-
struction results with traditional ISTA and proposed IA-ISTA
are all better than those of the 3D image reconstruction results
with OMP. Through the comparison of Table 6 and Table 7,
we can find that 3D image reconstruction performance can be
affected by the resolution ρz in the elevation direction. MSE,
MAE, SSIM, and 3D entropy of 3D image reconstruction
results with ρz = 3m are all better than those of 3D image
reconstruction results with ρz = 6m.
In summary, based on 3D image reconstruction results

and analysis of simulated point scatterers and building,
we can conclude that proposed IA-ISTA is an effective 3D
image reconstruction algorithm in the elevation direction for
TomoSAR, which has better rate of convergence and higher
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FIGURE 12. 3D image reconstruction results of simulated building after geometrical transformation: (a) OMP with sparsity K = 3 (ρz = 3m),
(b) traditional ISTA (ρz = 3m), (c) proposed IA-ISTA (ρz = 3m), (d) OMP with sparsity K = 3 (ρz = 6m), (e) traditional ISTA (ρz = 6m),
(f) proposed IA-ISTA (ρz = 6m).

algorithm efficiency than traditional ISTA under the same
experimental conditions and algorithm parameters.

V. EXPERIMENTAL RESULTS
A. EXPERIMENT DESCRIPTION
The airborne SAR tomography experiment at P-band was
conducted by AIRCAS in Dunhuang, Gansu province, China,
in 2020. The airborne TomoSAR experiment consists of
7 linear trajectories with different look angles, which are as
parallel as possible. Optical and SAR images of the imaging
area are clearly shown in Fig. 13, in which the imaging targets
are buildings with 11 floors and a roof. Height of each floor
is around 4m, so height of the building is approximately
50 meters. TomoSAR experiment and system configuration
is briefly enumerated in Table 8.

TABLE 8. TomoSAR experiment and system configuration.

B. TOMOSAR 3D IMAGE RECONSTRUCTION RESULTS
As is shown in Fig. 13(b), 2D images of the imaging area in
different trajectories are achieved with BP algorithm on the

ground plane at the reference imaging height 1076m, which
is measured by differential GPS.

Before realizing 3D image reconstruction in the elevation
direction, a DFT based registration algorithm [24], [25] is
applied to finish registration among 2D SAR images of dif-
ferent trajectories, which can realize image registration at
sub-pixel level in theory. After normalization, center of the
imaging area represents (0m,0m). Figure 14 is the coherence
of the imaging area between two trajectories with look angle
43.516◦ and 43.520◦ before and after image registration.
And, Figure 15 is the statistical histogram of coherence
coefficient, which measures complex correlation coefficient
between images f and g over an N -pixel local area. The
correlation coefficient is defined as follows

γ =
|
∑N

i=1 fi · g
H
i |√∑N

i=1 |fi|
2 ·
∑N

i=1 |gi|
2

(31)

As is shown in Fig. 14 and Fig. 15, peak of the coherence
coefficient in Fig. 15 increases from 0.73 to 0.98 when N is
set to 3×3. The coherence of the imaging area can be greatly
improved after registration.

In the experimental results, sampled elevation position
zn in (12) ranges from 1026m to 1226m with an interval
being 1m. OMP, traditional ISTA and proposed IA-ISTA are
adopted for 3D image reconstruction of the imaging area
framed in Fig. 13.

In 3D image reconstruction process with OMP, sparsity K
is set to 2. In 3D image reconstruction process with traditional
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FIGURE 13. Optical and SAR images of the imaging area: (a) optical
image visualized in Google-Earth, (b) SAR image with BP algorithm,
(c) optical photo taken on the ground.

FIGURE 14. Coherence of the imaging area: (a) before registration,
(b) after registration.

ISTA and proposed IA-ISTA, L in (14) and (16) is set to
450 and the predefined tolerance δ is set to 0.1.
Figure 16 is the front view and side view of 3D image

reconstruction results of the imaging area framed in Fig. 13(b)
with different algorithms, in which display threshold of point
cloud is 0.03 after normalization and colorbar represents alti-
tude of the imaging area. ProcessingwithMATLAB2016 and
CPU intel Xeon 6148, time cost of 3D image reconstruction

FIGURE 15. Statistical histogram of correlation coefficient.

TABLE 9. Time cost of traditional ISTA and proposed IA-ISTA.

TABLE 10. Evaluation of 3D image reconstruction results.

with traditional ISTA and proposed IA-ISTA is illustrated
in Table 9.

With proposed IA-ISTA, the final 3D image reconstruction
results of the imaging area after geometrical transformation
are shown in Fig. 17, in which colorbar represents altitude of
the imaging area.

We use 3D entropy to evaluate 3D image reconstruction
results with different algorithms, which is shown in Table 10.

Consistent with the simulated results, we can achieve sim-
ilar and accurate 3D image reconstruction results with tra-
ditional ISTA and proposed IA-ISTA, which are both better
than that with OMP. Compared with reconstruction results
with OMP, 3D entropy of reconstruction results with tradi-
tional ISTA and proposed IA-ISTA get effectively decreased.
Especially in the side view of 3D image reconstruction
results, we can see that there are a lot of outliers at the bot-
tom of reconstructed results with OMP, because the sparsity
K of OMP is empirically set to 2, which determines the
iteration number of OMP and severely affects the final 3D
image reconstruction results. Under the same experimental
conditions and algorithm parameters, time cost of traditional
ISTA is approximately 8.4 times as large as that of proposed
IA-ISTA. In Fig. 17, the imaging area has been well recon-
structed with proposed algorithm after geometrical transfor-
mation. Height of the reconstruction results is very close to
50m, which is consistent with the real height of buildings with
11 floors and a roof.
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FIGURE 16. Front view and side view of 3D image reconstruction results: (a) front view (OMP with sparsity K = 2), (b) front view (traditional
ISTA), (c) front view (proposed IA-ISTA), (d) side view (OMP with sparsity K = 2), (e) side view (traditional ISTA), (f) side view (proposed
IA-ISTA).

FIGURE 17. Final 3D image reconstruction results of the imaging area
with proposed algorithm after geometrical transformation.

In summary, analysis and 3D image reconstruction results
of measured data of a P-band TomoSAR system indicate
that we can simultaneously improve algorithm efficiency and
achieve relatively acurate 3D image reconstruction results by
using proposed IA-ISTA.

VI. CONCLUSION
This study set out to find an efficient 3D image reconstruction
method for airborne TomoSAR. A novel 3D image recon-
struction method adopting back projection algorithm and
improved adaptive iterative shrinkage-thresholding algorithm
(IA-ISTA) is proposed in this paper, which can take both 3D
reconstruction accuracy and speed into account.

First, we introduced TomoSAR 3D image reconstruction
model with BP algorithm in details. Based on IA-ISTA and
BP algorithm, a novel 3D image reconstruction procedure
for airborne TomoSAR is developed, which has better recon-
struction performance and algorithm efficiency than tradi-
tional methods. At last, analysis and 3D image reconstruction
results of both simulated and measured data of a P-band
airborne TomoSAR system conducted by AIRCAS validate
reconstruction performance and high efficiency of the pro-
posed method.

In our future study, this proposed method will be fur-
therly applied in 3D image reconstruction of Airborne
TomoSARwith multi-azimuth observation angles due to high
reconstruction speed and favourable reconstruction results,
because panoramic 3D image reconstruction with multi-
zimuth observations requires high reconstruction accuracy
and contains a tremendous amount of computation.
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