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ABSTRACT In this paper, the problem of attitude control for hypersonic vehicle in the present of actuator
fault and unknown uncertainties including modeling uncertainties, aerodynamic parameters uncertainties
is investigated based on integral sliding mode technique. A fault-tolerant control (FTC) law is proposed
consisting of three parts, an improved integral sliding mode(ISM) equivalent control law, a power reaching
law and a new adaptive compensation control law. The proposed FTC possesses triple advantages. Firstly,
when sliding mode is established, the proposed equivalent controller will offer faster convergence speed via
introducing a switching condition into the conventional ISM control. Secondly, the adaptive compensation
control law is presented considering both the unknown uncertainty and the unexpected actuator fault
including additive fault and multiplicative fault. Finally, the boundness of bounded unknown uncertainty is
no longer needed in advance. Simulation results show the effectiveness and the superiority of the proposed
fault-tolerant controller on fast convergence speed and expected attitude tracking performance.

INDEX TERMS Actuator failure, attitude control, fault-tolerant control, hypersonic vehicle, integral sliding
mode.

I. INTRODUCTION
Hypersonic vehicle (HSV) has attracted plenty of interest
among many researchers around the world due to its espe-
cial superiority in quick maneuverability and large flight
envelope. Therefore many issues around HSV have become
popular, especially, attitude control for HSV. For decades,
various researches on HSV have been developed [1]–[7].
As we know,modeling uncertainties and ever-changing exter-
nal environment bring huge difficulty for controller design.
Meanwhile, complex flight conditions and aging components
of flight system often lead to multiple faults, such as actuator
failure, sensor failure and system failure [8]–[16]. All these
failures may lead to stability reduction, system performance
deterioration and security breach of the HSV closed-loop
system, and in case of serious failure, catastrophic accidents
are inevitable. Hence, fault-tolerant control for HSV in the
present of single and multiple faults has become a research
hotspot in recent years [17]–[22].
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To the best of our knowledge, there are two major issues
on FTC design for HSV. Firstly, among all types of HSV
faults, actuator fault has attracted most attention due to its
high occurrence probability. Moreover, the vast majority of
theoretical research and simulation experiment on actuator
faults refer to either addictive faults or multiplicative faults
[42]–[44]. Hence the first challenge is to handle multiple
faults simultaneously. In addition, it is hardly to predict the
fault type, time of fault occurrence and the degree of fault.
As a result, specific information of fault is always difficult
to obtain in the realistic flight process. Then the second
challenge can be summarised, that is, how to design the fault-
tolerant controller with minimal fault information or without
requirement on specific fault to be known a priori.

For decades, many control methods have been involved
for fault-tolerant controller design for HSV [23]–[30].
Jiang et al. [23] designed the back-stepping controller com-
bined with neural network observer to reconfigure flight
controller, when control effector damaged. However,
the remarkable draw of back-stepping method is the ’explo-
sion of complexity’. Then Qi et al. [24] introduced a dynamic
surface strategy into the back-stepping method to eliminate
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the unexpected feature. Also, Qi et al. [24] applied themethod
to longitude control for hypersonic vehicle with faulty redun-
dant elevators. In [25] and [26], model predictive control was
adopted to copewith actuator saturation for HSV.Meanwhile,
plenty of research results are based on sliding mode control
(SMC) technique. In [27] an integral sliding mode control
strategy was investigated to design a fault-tolerant controller
for air-breathing supersonic missiles, even in the presence
of actuator faults. Zhai et al. [28] dealt with the unknown
additive fault causing by unknown actuator failure of HSV.

Among various control strategies, sliding mode con-
trol stays ahead of others due to its easy implementation
and insensitivity to unknown uncertainty. Therefore, many
researchers focus on fault-tolerant control for HSV on the
basis of SMC, such as linear sliding mode control (LSMC),
integral sliding mode control(ISMC), terminal sliding mode
(TSMC) and high order sliding mode control (HOSMC)
[31]–[39]. However, linear sliding mode control can only
guarantee the asymptotic convergence of system states and
ISMC, TSMC and HOSMC perform better in their finite-
time converge. Sun et al. [31], [32] have utilized ISMC to
design finite-time controller for HSV. Moreover, in [32],
integral sliding mode strategy was employed to tracking-
control issue for HSV with actuator failure. As a result,
the tracking errors of velocity and altitude converged in
finite time. Yet, when initial location of the system states
departs far from the equilibrium point, the actual convergence
speed of the system states is not entirely satisfactory. Thus,
Ding et al. [33] investigated a fast integral sliding mode con-
trol law by simplifying the adjustment process of coeffi-
cients. In addition, terminal sliding mode control is another
finite-time SMC and is also popular among many researchers
[34]–[36]. In [34] a passive fault-tolerant control strategy was
proposed based on adaptive TSMC. However, the establish-
ment of terminal sliding mode results in the singularity of
TSMC. Therefore Liang et al. [35] designed a non-singular
TSMC to avoid the drawback and improve the attitude track-
ing performance. Besides, high-order sliding mode is also an
effective control method and always combines with integral
sliding and terminal sliding mode [36]–[39]. In [36] and
[37], high-order sliding mode technique combined with inte-
gral sliding mode was adopted to design attitude controller
for HSV and velocity-altitude controller for air-breathing
hypersonic vehicle, respectively by Zong et al. However,
the convergence speed of system states of closed-loop under
high-order sliding mode controller is not always gratifying.

Inspired by the above discussion, an improved adaptive
integral sliding mode fault-tolerant controller is proposed
with three advantages. Firstly, inspired by [38] and [39],
a switching condition is introduced into conventional integral
sliding mode control in absence of uncertainties and faults to
accelerate the respond speed of system. In [38], ’unit circle’
is selected as a rational to improve the transient process.
Different from [38], a new switching condition is proposed in
this paper. It offers a more precise range on the basis of actual
system states. Moreover, compared with [39], no additional

parameters are required. Secondly, both the additive fault and
multiplicative fault are considered. Thirdly, actuator faults are
treated as a kind of unknown disturbance. Then the uncertain-
ties include modeling uncertainties, external disturbance and
unknown actuator faults. Moreover, the proposed controller
considers the fact that the bounds of the uncertainties are
unknown before in controller design.

The reminder of this paper is organized as follows. The
preliminaries and problem statement are given in Section II.
The proposed controller is detailed in Section III. Section IV
provides the numerical simulations to illustrate the effective-
ness of the proposed method. Section V concludes the paper.

II. PROBLEM STATEMENT
A. NOTATIONS AND LEMMA
Notations : Rm×n denote m × n matrix. (·)T denotes the
transpose of matrix (·). (·)−1 denotes the inverse of matrix
(·). sgn(·) is the sign function. λmax(·) denotes the maxi-
mum eigenvalues of a matrix. λmin(·) denotes the minimum
eigenvalues of a matrix. For vector o = [o1, o2, · · · , on]T

and real vector γ = [γ1, γ2, · · · , γn]T , the following nota-
tions are defined. ȯ = [ȯ1, ȯ2, · · · , ȯn]T . diag(o) ∈ Rn×n

represents a diagonal matrix composed of each elements
in o. oγ = [oγ11 , o

γ2
2 , · · · , o

γn
n ]T . sigγi (oi) = |oi|γisgn(oi).∫ t

0 sig
γi (oi)dτ =

∫ t
0 |oi(τ )|

γisgn(oi(τ ))dτ . sigγ (o) =

[sigγ1 (o1), sigγ2 (o2), · · · , sigγn (on)]T .
∫ t
0 sig

γ (o(ι))dι =[∫ t
0 sig

γ1 (o1)dι,
∫ t
0 sig

γ2 (o2)dι, . . . ,
∫ t
0 sig

γn (on)dι
]T

.
Lemma 1 ([40]): Let ki > 0(i = 1, 2, 3), such that the

polynomial λ3 + k3λ2 + k2λ + k1 is Hurwitz. There exists
ε ∈ (0, 1) such that the following double integral system{

ȯ1 = o2
ȯ2 = v

(1)

can be stabilized at the origin in finite time under the follow-
ing controller

v = −k1siga1 (o1)− k2siga2 (o2) (2)

with a1 =
a2a3

2a3−a2
, a2 ∈ (1−ε, 1) and a3 = 1. In other words,

the following equation holds.

o1 = o2 = 0 (3)

Lemma 2 ([5]): There exists a positive constant l(0 < l <
1) such that for xi ∈ Rn×1(i = 1, · · · , n), the following
inequality holds.

(
n∑
i=1

|xi|)l ≤
n∑
i=1

|xi|l ≤ n1−l(
n∑
i=1

|xi|)l (4)

B. MATHEMATIC MODEL AND CONTROL OBJECTIVE
The mathematic model of attitude dynamics of rigid-body
hypersonic vehicle is formulated in the control-orient form
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as follows [4]

α̇ = q− p tanβcosα + r tanβsinα
β̇ = p sinα − r cosα
µ̇ = p secβcosα + r secβsinα

ṗ =
Izz
I∗
Mx +

Ixz
I∗
Mz + Ip1pq+ Ip2qr

q̇ =
1
Iyy
My + Iq1(r2 − p2)+ Iq2pr

ṙ =
Ixz
I∗
Mx +

Ixx
I∗
Mz + Ir1pq+ Ir2qr

(5)

where α, β, µ are angle of attack, side-slip angle and bank
angle, respectively. p, q, r are the angular rate (roll, pitch,
and yaw rates respectively). Ixx , Iyy, Izz are the moment
of inertia. Ixz is product of inertia. I∗ = IxxIzz − I2xz.
Ip1, Ip2, Iq1, Iq2, Ir1, Ir2 are formulated as below. Ip1 =
((Ixx − Iyy + Izz)Ixz)/I∗, Ip2 = ((Iyy − Izz)Izz − I2xz)/I

∗, Iq1 =
Ixz/Iyy, Iq2 = (Izz − Ixx)/Iyy, Ir1 = ((Ixx − Iyy)Ixx + I2xz)/I

∗,
Ir2 = ((−Ixx + Iyy − Izz)Ixz)/I∗.
Then (5) can be rewritten in the following form

ẋ1 = R(x1)x2 +11 (6)

ẋ2 = I−1(−x×2 Ix2 +M +12) (7)

where x1 = [α, β, µ]T and x2 = [p, q, r]T . 11 ∈

R3×1 is unknown modeling uncertainties. Control input is
M = [Mx ,My,Mz]T . Inertia matrix I , linear skew-symmetric
matrix operator x×2 and coordinate-transformation matrix
R(x1) are as follows

I =

 Ixx 0 − Ixz
0 Iyy 0

−Ixz 0 Izz

, x×2 =
 0 − r q

r 0 − p

−q p 0

 and

R(x1) =

− cosα tanβ 1 − sinα tanβ

sinα 0 − cosα

− cosα secβ 0 − sinα secβ

.
12 ∈ R3×1 is unknown bounded external disturbance [5],
[37]. Apart from the above unknown uncertainties, inertia
uncertainty is also considered herein and formulated as 1I ,
thus the inertia matrix I is rewritten as I = In + 1I . In
denotes the nominal inertia matrix. Then (7) turns to

ẋ2 = I−1n (−x×2 Inx2 + u)+ I
−1
n (−x×2 1Ix2 −1Iẋ2 +12)

(8)

with u = M .
Generally, the deflection of aerodynamic surface brings

control torque. Therefore, actuator fault is reflected by control
torqueM and the actuator fault discussed in this paper can be
expressed as

u = 2ud + ρ (9)

with ud = [ud1, ud2, ud3]T is the expected control input
vector. 2 is the actuator effectiveness matrix and 2 =

diag(θ1, θ2, θ3), 0 < θi(i = 1, 2, 3) ≤ 1. If θi(i = 1, 2, 3) =
1, it means the ith actuator conducts normally, otherwise,
ith actuator works with failure. Additive fault is denoted by

ρ = [ρ1, ρ2, ρ3]T , ρ < |ρi(i = 1, 2, 3)| ≤ ρ̄ (ρ and
ρ̄ are unknown positive constants). Therefore, the dynamic
equation of attitude control system with inertia uncertainties,
unknown external uncertainties and multiple-type actuator
faults can be given by (6) and (8).

Fundamentally speaking, the attitude control objective is
to force the aerodynamic angels x1 = [α, β, µ]T track the
desired aerodynamic angels x1d = [αd , βd , µd ]T , which can
be expressed as a tracking error vector e = [e1, e2, e3]T ,

e = x1 − x1d (10)

ė = ẋ1 − ẋ1d (11)

with ‖ẋ1d‖ ≤ ξ1d (ξ1d > 0). Define z1 = e and z2 = ż1, then
a double integral system can be obtained,{

ż1 = z2
ż2 = ẍ1 − ẍ1d

(12)

z1 = [z11, z12, z13]T and z2 = [z21, z22, z23]T . The represen-
tation of ẍ1 can be obtained by differentiating x1 twice,

ẍ1 =
d
dt
(R(x1)x2 +11)

=
dR(x1)
dt

x2 + R(x1)ẋ2 + 1̇1 (13)

Differentiate R(x1), one obtains

dR(x1)
dt

=

 sinαtanβα̇ − cosαsec2ββ̇

cosαα̇

sinα cosβα̇ − cosαtanβsecββ̇

0 − cosαtanβα̇ − sinαsec2ββ̇

0 sinαα̇

0 − cosαcosβα̇ − cosαtanβsecββ̇

 (14)

Substituting (8) and (14) into (13) yields

ẍ1 =
dR(x1)
dt

x2 − R(x1)I−1n x×2 Inx2

×R(x1)I−1n (−x×2 1Ix2 −1Iẋ2)

+R(x1)I−1n u+ R(x1)I−1n 12 + 1̇1 (15)

By the following definition

F0 ,
dR(x1)
dt

x2 − R(x1)I−1n x×2 Inx2,

y1F , R(x1)I−1n (−x×2 1Ix2 −1Iẋ2),

G0 , R(x1)I−1n ,

13 , R(x1)I−1n 12 + 1̇1,

one can obtain

ẍ1 = F0 + G0u+ Fd (16)

where Fd = 1F+13. Substituting (9) into (16) yields

ẍ1 = F0 + G0(2ud + ρ)+ Fd (17)
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Combined with (12), (17) can be expressed as{
ż1 = z2
ż2 = F0 + G0(2ud + ρ)+ Fd − ẍ1d

(18)

Assumption 1 ([5], [41]): F0, G0, Fd , z1, z2, ẍ1d are
bounded and the following inequalities exist

‖F0‖ ≤ ξ0‖x2‖2 (19)

g < ‖G0‖ < ḡ (20)

‖Fd‖ < ξ1 + ξ2‖x2‖2 (21)

‖z1‖ < ξz1, ‖z2‖ < ξz2, ‖ẍ1d‖ < ξ2d (22)

where ξ, ξ1, ξ2, g, ḡ, ξz1, ξz2 and ξ2d are positive constants.
Therefore, the control objective can be formulated as

lim
t→t1
‖z1‖ = lim

t→t1
‖e‖ = 0 (23)

where t1 ∈ (0,+∞) . When (23) holds, the aerodynamic
angels α, β, µ can track the desired angels αd , βd , µd .

III. IMPROVED ADAPTIVE INTEGRAL SLIDING MODE
FAULT-TOLERANT CONTROL LAW
In order to accomplish the fault-tolerant control law design
mentioned above, a new improved integral sliding mode con-
troller is proposed at the very beginning. Then combined with
the improved integral sliding mode controller, an adaptive
fault-tolerant control law is designed, as a result, the tracking
error will converge with fast transient process even in the
present of unknown uncertainties and actuator failure.

A. IMPROVED INTEGRAL SLIDING MODE CONTROL LAW
DESIGN
In this section, an improved integral sliding mode control
law is proposed for double integral system (1), aiming at
obtaining quicker convergence. Firstly, an integral sliding
mode manifold s is given as follows

s = o2 +
∫ t

0
k1siga1 (o1)ds+

∫ t

0
k2siga2 (o2)ds (24)

where a1 =
a2a3

2a3−a2
, a2 ∈ (0, 1), a3 = 1. Then, motivated

by [38] and [39], an improved integral sliding control law is
designed for double integral system (1) as follows

vn = −R−1BTPsig (25)

where

sig=

{
[siga1 (o1), siga2 (o2)]T , |oj| ≤ a

1/(1−aj)
j (j = 1, 2)

o, otherwise
(26)

where o = [o1, o2]T , B = [0, 1]T , a = [a1, a2]T . R is
a positive constant and obeys the following linear-quadratic
performance index

J =
∫
∞

0
(oTQo+ Rv2n)dt. (27)

P is the positive-define solution of the algebraic matrix Ric-
cati equation

PA+ ATP + Q− PBR−1BTP = 0 (28)

where A =

[
0 1

0 0

]
. Thus K = [k1, k2]T = R−1BTP.

With the help of control law (25), the closed-loop system
(1) will be stable in finite time. Then the following theorem
can be obtained.
Theorem 1: The system states o1, o2 in (1) will converge to

origin in finite time under the control law (25) with a3 = 1,
a2 ∈ (0, 1) and a1 =

a2a3
2a3−a2

.
Proof: There are two cases to be discussed.
Case 1: |oi| > a

1/(1−aj)
j

If |oi| > a
1/(1−aj)
j , the control law vn in (25) becomes

vn1 = −R−1BTPo. (29)

Obviously, (1) can be written in the form of state space as
follows

ȯ = Ao+ Bvn1. (30)

where A is the state matrix of (30), and B is the con-
trol input matrix of (30). Therefore vn1 acts as the optimal
control law for double integral system (1) [38]. Therefore
the system states of (1) will converge to a region O ={
(o1, o2) : |oj| < a

1/(1−aj)
j (j = 1, 2)

}
.

Case 2: |oi| ≤ a
1/(1−aj)
j

If |oi| ≤ a
1/(1−aj)
j , the control law vn in (25) becomes

vn2 = −R−1BTPsiga(o). (31)

According to optimal control theory, the elements in
R−1BTP are always positive. In fact, (31) is in accordance
with (2). Then according to Lemma 1, when system states
o1 ∈ O and o2 ∈ O, the closed-loop system (1) will be stable
in finite time.
Remark 1: Different from the existing methods designed in

[38], we proposed a new strategy to improve the convergence
speed of system states o1, o2. In [38], ‘‘far from’’ and ‘‘near
to’’ are chosen as a condition to improve the convergence
speed. However, it is not rigorous enough. Therefore we
propose a strict condition to obtain fast convergence speed.
For further analysis, define w1 and w2 as follows

w1 = siga1 (o1) (32)

w2 = o1 (33)

The graphical presentation of w1 and w2 w.r.t. o1 in first
quadrant is shown in Fig.1. Suppose that the parallel line wp2
of w2 intersect w1 at point C . Then we have the location of
point C as

(
a1/(1−a1)1 , aa1/(1−a1)1

)
. It is clearly that, system

state o1 converges to origin on w2 faster than that on w1
inside Circle 1(see Fig1). Also, system state o1 converges
to origin on w1 slower than that on w2 outside Circle 1.
Therefore, in control law (25), a1/(1−a1)1 is chosen as the
switching condition to design an improved control law.
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FIGURE 1. Graphical presentation of w1,w2,wp2.

B. ADAPTIVE FAULT-TOLERANT CONTROL LAW BASED ON
IMPROVED INTEGRAL SLIDING MODE
In this section, an adaptive fault-tolerant control law is devel-
oped based on integral sliding mode technology. With the
help of the proposed control law, both the reachability of
sliding surface and convergence of the system states in (18)
can be guaranteed even in spite of unknown uncertainties,
disturbance and actuator failure.

Firstly, based on Theorem 1, an integral sliding mode
function vector S is as follows

S = z2 +
∫ t

0
cz1sigbz1 (z1(s))ds+

∫ t

0
cz2sigbz2 (z2(s))ds

(34)

where S = [s1, s2, s3]T . cz1 = diag(c1, c1, c1), cz2 =
diag(c2, c2, c2). bz1 = [b1, b1, b1]T , bz2 = [b2, b2, b2]T .
The auxiliary equivalent control law vN = [vN1, vN2, vN3]T .
vNi(i = 1, 2, 3) is designed in accordance with (25) in
Theorem 1.

vNi =

{
−R−1BTPSigi, |zij| ≤ b

1/(1−bj)
j (j = 1, 2)

−R−1BTPZi, otherwise
(i = 1, 2, 3) (35)

where Zi = [z1i, z2i]T (i = 1, 2, 3) and Sigi =

[sigb1 (z1i(t)), sigb2 (z2i(t))]T (i = 1, 2, 3).
Combining with integral sliding mode function (34),

an adaptive sliding mode control law is proposed as follows

ud = ueq + ur + uc (36)

where ueq ∈ R3×1 is equivalent control law. ur ∈ R3×1

forces the sliding function (34) converge. uc ∈ R3×1 deals
with the model uncertainty, external disturbances, and actua-
tor failures. ueq and ur are given as follows

ueq = −G−10 (F0 − vN − ẍ1d ) (37)

ur = −G−10 (τ s+ ηsgn(s)|s|
1
2 ) (38)

where τ =diag(τ1, τ2, τ3), τi > 0(i = 1, 2, 3). η =
diag(η1, η2, η3), ηi > 0(i = 1, 2, 3). Taking the time deriva-

tive of (34) yields

Ṡ = ż2 + vN = Fn + G02ud + Fd + Fa (39)

and

Fa = G0ρ (40)

Fn = F0 − vN − ẍ1d (41)

Substituting (36) and (37) into (39), it can be obtained

Ṡ = FN + G02(ur + uc)+ Fd + Fa (42)

and

FN = (E− G02G−10 )Fn (43)

where E = diag(1, 1, 1).
Assumption 2 ( [5]): Considering that G0 and ρ are

bounded, it is obtained

‖Fa‖ ≤ gbρb (44)

with gb = max{|g|, |ḡ|}, ρb = max{|ρ|, |ρ̄|}.
Assumption 3: Considering that G0 and 2 are bounded,

there exists a positive constant ξ3 such that

‖E− G02G−10 ‖ ≤ ξ3 (45)

Then uc can be obtained by

uc =

{
−8G0

s
||s|| , 8 > δ

−82G0
s
δ
, 8 ≤ δ

(46)

with δ is a boundary constant. 8 = ξ̂4ξ5 + ξ̂6ξ7 + ξ̂8,
ξ̂4, ξ̂6, ξ̂8 are the estimates of ξ4, ξ6, ξ8 respectively and
obey the following updating laws

˙̂
ξ4 = −c41ξ̂4 + c42ξ5‖s‖
˙̂
ξ6 = −c61ξ̂6 + c62ξ7‖s‖
˙̂
ξ8 = −c81ξ̂8 + c82‖s‖

(47)

and ξ4 = max


(ξ0ξ21d + ξ2d )ξ3, ξ0ξ3, 2ξ0ξ1dξ3,

λmax(c1)
√
3
(1−b1)

‖z1‖b1ξ3,

λmax(c2)
√
3
(1−b2)

‖z2‖b2ξ3

,
ξ5 = 1+ ‖z1‖b1 + ‖z2‖ + ‖z2‖2 + ‖z2‖b2 ,
ξ6 = max

{
ξ1 + ξ2ξ

2
1d , 2ξ2ξ, ξ2

}
, ξ7 = 1+ ‖z2‖ + ‖z2‖2,

ξ8 = gbρb. c41, c42, c61, c62 and c81, c82 are designed
positive constants.
Remark 2: According to Lemma 2, the following inequal-

ities exist.

‖cz1sigbz1 (z1(t))‖ ≤ λmax(cz1)
√
3
(1−b1)

‖z1‖b1 (48)

‖cz2sigbz2 (z2(t))‖ ≤ λmax(cz2)
√
3
(1−b2)

‖z2‖b2 (49)

Hence the main result is given in the following theorem.
Theorem 2: For nonlinear system (18), the state variable

zji(i = 1, 2, 3, j = 1, 2) can converge to a neighborhood
region of zero by defining a sliding function (34) and the
adaptive fault-tolerant control law (36).
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Proof: Select the Lyapunov functional candidate as

V =
sT s
2
+

ξ̃24

2c42λ2
+

ξ̃26

2c62λ2
+

ξ̃28

2c82λ2
(50)

where ξ̃4 = ξ4 − λ2ξ̂4, ξ̃6 = ξ6 − λ2ξ̂6, ξ̃8 = ξ8 − λ2ξ̂8
and λ2 = λmin(G02G0). Taking the time derivate of (50) and
using (36)-(38) and (42) yield

V̇ = sTG02ur + sT (FN + Fd + Fa)

+ sTG02uc +
c41
c42
ξ̃4ξ̂4 − ξ̃4ξ5‖s‖

+
c61
c62
ξ̃6ξ̂6 − ξ̃6ξ7‖s‖ +

c81
c82
ξ̃8ξ̂8 − ξ̃8‖s‖ (51)

Obviously, the following inequalities can be obtained.
sT (FN + Fd + Fa) ≤ ‖s‖(‖FN‖ + ‖Fd‖ + ‖Fa‖)

≤ (ξ4ξ5 + ξ6ξ7 + ξ8)‖s‖
,

sTG02ur = −G02G−10 τ‖s‖2 − G02G−10 η‖s‖
3
2

≤ −λ1τ‖s‖2 − λ1η‖s‖
3
2

.

where λ1 = λmin(G02G−10 ). Then, (51) turns to

V̇ ≤ −λ1τ‖s‖2 − λ1η‖s‖
3
2

+ λ2ξ̂4ξ5‖s‖ + λ2ξ̂6ξ7‖s‖ + λ2ξ̂8‖s‖

+
c41
c42
ξ̃4ξ̂4 +

c61
c62
ξ̃6ξ̂6 +

c81
c82
ξ̃8ξ̂8 + sTG02uc

≤ −λ1τ‖s‖2 −
c41ξ̃24
2λ2c42

−
c61ξ̃26
2λ2c62

−
c81ξ̃28
2λ2c82

− λ1η‖s‖
3
2 + λ2ξ̂4ξ5‖s‖ + λ2ξ̂6ξ7‖s‖ + λ2ξ̂8‖s‖

+ sTG02uc +
c41ξ24
2λ2c42

+
c61ξ26
2λ2c62

+
c81ξ28
2λ2c82

(52)

Combined with (50), it can be obtained

V̇ ≤ −τ1V − λ1η‖s‖
3
2 + τ2 + sTG02uc

+ λ2ξ̂4ξ5‖s‖ + λ2ξ̂6ξ7‖s‖ + λ2ξ̂8‖s‖ (53)

where −τλ1‖s‖2 − ηλ1‖s‖
3
2 , τ2 =

c41
2λ2 c42

ξ24 +
c61

2λ2 c62
ξ26 +

c81
2λ2 c82

ξ28 .
Then there are two cases to be discussed.
Case 1: If8 > δ, substituting the first equation in (46) into

(51) yields

V̇ ≤ −τ1V − λ1η‖s‖
3
2 + τ2

+ λ2ξ̂4ξ5‖s‖ + λ2ξ̂6ξ7‖s‖ + λ2ξ̂8‖s‖

−8λ2‖s‖ (54)

with λ2 = λmin(G02G0) . Then one has

V̇ ≤ −τ1V − λ1η‖s‖
3
2 + τ2

+ λ2ξ̂4ξ5‖s‖ + λ2ξ̂6ξ7‖s‖ + λ2ξ̂8‖s‖

− λ2(ξ̂4ξ5 + ξ̂6ξ7 + ξ̂8)‖s‖

≤ −τ1V − λ1η‖s‖
3
2 + τ2 (55)

Case 2: If 8 ≤ δ, substituting the second equation in (46 )
into (51) yields

V̇ ≤ −τ1V − λ1η‖s‖
3
2 + τ2 − λ28

2 ‖s‖
2

δ

× λ2ξ̂4ξ5‖s‖ + λ2ξ̂6ξ7‖s‖ + λ2ξ̂8‖s‖

≤ −τ1V − λ1η‖s‖
3
2 + τ2

+ λ28‖s‖ − λ282 ‖s‖
2

δ
(56)

Obviously, the maximum value of λ28‖s‖ − λ282 ‖s‖
2

δ
is τ3 = 1

4λ2δ when 8‖s‖ =
1
2δ. Then one has the following

inequality

V̇ ≤ −τ1V − λ1η‖s‖
3
2 + τ2 + τ3 (57)

Note that

‖s‖1+
1
2 = 2

3
4 (
1
2
sT s)

3
4 ≥ (

1
2
sT s)

3
4 (58)

Then one has

−(
1
2
sT s)

3
4 ≤ −V

3
4 + τ4 (59)

where τ4 = (
ξ̃24

2c42λ2
)
3
4 + (

ξ̃26
2c62λ2

)
3
4 + (

ξ̃28
2c82λ2

)
3
4 .

Then (55) and (57) turns{
V̇ ≤ −τ1V − λ1ηV

3
4 + τ2

V̇ ≤ −τ1V − λ1ηV
3
4 + τ5

(60)

where τ5 = τ2 + τ3 + τ4.
Therefore, the sliding surface will be stabilized into the

region �,

� =

{
‖s‖ ≤ min

{√
2τ6
τ1
,
√
2
(
τ6

λ1η

) 2
3
}}

(61)

where τ6 = max{τ2, τ5}. Therefore, the sliding mode func-
tion will converge to the neighborhood of ‖s‖ = 0, that is,
the real sliding mode is established. Thus it can be obtained
that

|ṡ1| ≤ τs1, |ṡ2| ≤ τs2, |ṡ3| ≤ τs3 (62)

where τs1 > 0, τs2 > 0, τs3 > 0.
Thus, we have

ż2(t)+ cz1sigbz1 (z1(s))+ cz2sigbz2 (z2(s)) = τ s (63)

where τ s = [τs1, τs2, τs3]T . By resorting to Theorem 1,
zji(j = 1, 2, i = 1, 2, 3) will converge to a vicinity of the
origin in finite time.

IV. SIMULATION
This section carries out several simulations to evaluate the
improved integral sliding mode control law (25) and the
proposed adaptive fault-tolerant control law (36) for HSV
attitude control. Simulation experiment is carried out by
MATLAB R2018b.
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FIGURE 2. Comparison results of states o1,o2 under controller (21) and
the controller (25).

A. NUMERICAL EXAMPLE 1
Consider the double integral system (1) and rewrite (1) as
below {

ȯ1 = o2
ȯ2 = v

(64)

Controller (2) and controller (25) are used for double inte-
gral system (64) respectively. Initial values are set as o1(0) =
−30 and o2(0) = 10 . Parameters in controller (2) and

controller (25) are set as a2 = 2/3 . R = 35,Q =

[
10 0

0 20

]
.

K = R−1BTP and P is the positive-define solution of (28).
As a result, (25) turns

vn =


−Ko, |oj| > (

2
3
)

1
1− 2

3

−Ksiga(o), |oj| ≤ (
2
3
)

1
1− 2

3

(j = 1, 2) (65)

Simulation result is illustrated in Fig.2. It is clearly that
the convergence speed of oj(j = 1, 2) with controller (25) is
faster evidently than that with controller (2). Also, as is shown
in Fig.3, with the improved controller (25), the establishment
of sliding mode can be obtained faster than that with the
controller (2).

B. NUMERICAL EXAMPLE 2
In this subsection, several simulation results are presented
to evaluate the effectiveness of the proposed fault-tolerant
controller (36). The mathematical model of HSV attitude
control is given by (5). Initial system states are set as α(0) =
6deg, β(0) = 0 deg, µ(0) = 1 deg. p(0) = 0deg/s,
q(0) = 0deg/s, r(0) = 0deg/s. The desired aerodynamic
angel vector is set as [αd , βd , µd ]T = [3deg, 0deg, 3deg]T .
The parameters in vNi(i = 1, 2, 3) are set in accordance with
(65). Other parameters used are listed in Table 1. The model
parameters and aerodynamics coefficients used herein can be
found in [45].

FIGURE 3. Sliding surface s.

FIGURE 4. Tracking error of attitude angle.

FIGURE 5. Sliding mode surface s1, s2, s3.

The external disturbance is defined as 1M and is set as
follows,

1M =

 1+ sin(π t/125)

1+ sin(π t/125)

1+ sin(π t/125)

× 104(N · m).
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FIGURE 6. Control torque.

TABLE 1. Controller parameters.

The environment uncertainties are set as 1I = 10%I ,
20% bias atmospheric density and 10% bias for aerodynamic
coefficients. The actuator faults factor θi(i = 1, 2, 3) and
ρi(i = 1, 2, 3) are given in Table 1.

Assume that the actuators fail at t = 9s, it is clearly that
the actuator failures have the adverse impact on the closed-
loop system(See Fig.4-Fig.6). When actuator fails, the con-
trol inputs undergo very obvious changes(Fig.6). It leads to
a noticeable fluctuation which occurs in the tracking error
of attitude angle e1, e2, e3(Fig.4) and sliding mode sur-
face(Fig.5). Fortunately, with the help of the proposed fault-
tolerant controller (36), the performance degradation of the
faulty closed-system can be stopped soon. Clearly, within 5s,
the attitude angle tracking error e1, e2 and e3 return to
the vicinity of origin(Fig.4). Meanwhile the establishment
of sliding mode is achieved again(Fig.5). The control input
torques are also readjusted(Fig.6).

V. CONCLUSION
For addressing the fault-tolerant control problem for the
attitude system of HSV, an improved adaptive integral slid-
ing mode fault-tolerant controller is presented. With the
proposed fault-tolerant controller, the transient process of
the system states will be accelerated. Meanwhile, the adap-
tive compensation part in the proposed fault-tolerant control
provides the closed-loop system the assurance in stability
even in the present of additive fault and multiplicative fault.
Concurrently, the need for bound of unknown uncertainty

and unknown fault is removed. The simulation example has
shown the effectiveness of the proposed fault-tolerant control
strategy. Furthermore, in our future work, other types of fault
will be considered, such as sensor faults and system faults,
and so forth.
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