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ABSTRACT Review mining from app marketplaces has gained immense popularity from researchers
in recent years. Most studies in this area, however, tend to focus on improving the performance of
classification prediction. In this study, we consider review mining from a different perspective, that is,
mining user actions/decisions along with their respective arguments/reasons. Our motivation is to obtain
a deeper understanding of users’ decisions regarding applications and their underlying justifications, e.g.,
why users give ratings or recommendations. These information abstractions can benefit app developers,
especially in planning app updates, by providing data-driven requirements from users’ points of view.
We utilized a supervised learning approach and built a machine-based annotator to set the ground truth.
Seven classifiers and different feature configurations were trained and evaluated on two app review datasets.
We then extracted relations between user decisions and arguments based on functional and nonfunctional
requirement attributes. The results show an improved performance over the results of the baselines and
favorably acceptable performance compared to the results from a human assessment.

INDEX TERMS Argument mining, data-driven requirement, review mining, software requirement.

I. INTRODUCTION
The last decade marks the explosion of user-generated
content as web and mobile application (app) technologies
have progressively developed. User-generated content, such
as product reviews and mobile app reviews, is created
every day on a unimaginable scale. This development has
given rise to a new business model that is more open and
user-oriented [1], [2].

The usefulness of customer/user reviews can be seen from
two perspectives. First, for other users, app reviews can pro-
vide initial thoughts on whether an app is worth buying and
installing. In fact, 86% of users in 2017 trust online customer
reviews as much as personal recommendations.1 Second, for
developers, user reviews are an invaluable basis for building
user-based requirements, e.g., planning new features for the
next release [3]–[5]. In fact, a one-star increase in a Yelp
rating indicates a 5-9% increase in revenue [6]. For these
reasons, developers are eager to obtain positive reviews from
their customers/users. These reviews in turn can be analyzed
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1https://www.statista.com/statistics/315755/online-custmer-review-trust/

TABLE 1. Review mining studies from different perspectives.

to develop better application updates [7]–[10]. Despite its
great advantages, mining user reviews from appmarketplaces
can potentially be misleading due to bad review practices
such as opinion spam [11] and deceptive reviews [12].

Studies on review mining have been carried out from
many different perspectives (see Table 1). From a senti-
ment analysis perspective, some efforts have been undertaken
to extract user assessments of apps [3], perform polarity
detection [13], and perform intensity measurements [14]. For
further reading, Nayebi et al. [15] and Martin et al. [16]
provided comprehensive surveys on the study of review min-
ing. Moreover, for app development purposes, some studies
conducted app improvements based on user feedback, such
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FIGURE 1. User decisions and justifications.

as detecting bug reports and requests [4], [17], [18], extract-
ing features favored by users [19], [20], extracting com-
plaints [21], and identifying emerging issues in reviews [22].

However, most of the previous studies approached
review mining as text classification problems, which caused
researchers to tend to focus only on improving classification
performance. This development is marked by the emergence
of new deep-learning-based algorithms that allow classifica-
tion predictions to achieve a rate of 95% or more. In addition,
extracting deep and meaningful information from reviews,
such as why users gave a certain rating, bought, or recom-
mended an app, is still not sufficiently explored.

To fill this gap, in this study, we consider learning
user reviews from another perspective, that is, mining user
actions/decisions along with their respective arguments/
reasons. For instance, a review ‘‘The registration process is
seamless, highly recommended’’ contains user decisions and
arguments. The phrase ‘‘highly recommended’’ depicts the
user’s action where the user would recommend the app to oth-
ers, while the phrase ‘‘The registration process is seamless’’
refers to the user’s argument regarding why he/she would
recommend the app.

Mining user decisions and the underlying arguments,
as studied in this paper, can bring about several advan-
tages. First, a user’s decision can become an indicator of
sentiment intensity, e.g., a buying user (i.e., a user who
purchases an app) arguably is more satisfied (has higher
sentiment) than a rating user. By nature, user sentiments
are subjective. Knowing the degree of sentiments can play
a key role in understanding the exact feelings of users,
as pointed out by Akhtar et al. [14]. Second, extracting users’
arguments/justifications can provide answers regarding why
users perform certain actions or make certain decisions, such
as giving a rating, acquiring an app, or recommending an
app. In this regard, user rationales can provide insight into
what motivates users to take certain actions, as studied by
Kurtanovic and Maalej [23]. Finally, extracting the correla-
tion between user decisions and their justification can provide
insights into which app functionalities/features lead to certain
user decisions. For example, in a fitness tracking app, some
users might purchase the app because of its sleep pattern
feature, while other users rate the app because of its heart rate
detection feature [24] (see Fig. 1).

In general, this study aims to extract user arguments
that underlie decisions from app reviews. To achieve this

objective, several challenges should be addressed, such as
unstructured and extremely noisy review texts, the unavail-
ability of labeled user decision datasets, unexplained clas-
sification predictions, the broad spectrum of user argument
expressions, and hidden correlation between user decisions
and arguments. In summary, our paper makes the following
contributions:

1) We mine app reviews with an emphasis on extracting
user arguments that underlie their decisions;

2) We propose an automatic framework based on weakly
supervised learning, from handcrafted rule-based anno-
tators and feature configurations to relation extractors,
to model user decisions and arguments based on func-
tional/nonfunctional requirement attributes;

3) We evaluate, discuss, and compare our results with
human-based judgments. Additionally, we give some
recommendations for the research community.

The rest of the paper is organized as follows: Section II
describes the research question and problem definition used
throughout this paper. We present our method in detail in
Section III, followed by an explanation of the dataset in
Section IV. Section V gives the empirical results of the exper-
iments followed by the discussion in Section VI. We describe
limitations and possible risks to the validity of this study in
Section VII. Section VIII discusses related work in the field
of review mining. Finally, we conclude this work with further
research directions in Section IX.

II. RESEARCH DESIGN
The main objective of this study is to exploit user arguments
concerning their actions toward an app (e.g., a rating and
whether the app is purchased and recommended). In this
section, we explain the problem definition and research ques-
tions (RQ), which are used throughout this paper.

A. PROBLEM DEFINITION
Suppose a set of reviews is denoted by Rn, where n denotes
the number of reviews in the corpus. The tasks are to predict
user decision class Dnk expressed in the review and to extract
correlated arguments Anki; k denotes the index of a user deci-
sion, and i denotes the index of user arguments for decision
Dnk and review Rn.
To determine the user decision classes, we refer to two

previous studies that discuss the variety of user actions
in app reviews. Kurtanovic and Maalej [23] conducted a
grounded theory study involving experts in the field of soft-
ware engineering and described the decision concept as an
action that has already been taken or will be taken by a user;
the decision concept comprises four actions, i.e., acquiring,
updating, switching and relinquishing an app. Kunaefi and
Aritsugi [24], on the other hand, utilized an unsupervised
learning approach with latent dirichlet allocation (LDA) [25]
on argumentative reviews to specify various user decisions
(i.e., acquiring, buying, recommendation, requesting, and rat-
ing decisions). We combine both results and define the user
decision classes as follows:
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FIGURE 2. Our framework.

1) Acquiring Decision is an action expressed by users
indicating that the users are willing to acquire, pur-
chase, and use the app. For example, a review ‘‘The
app works without any glitches. Will purchase it
very soon’’ is considered a review with an acquiring
decision.

2) Recommending Decision represents user action that
indicates a user’s commitment to recommend the app to
others. For instance, ‘‘I have this on my kindle and
my phone. Would recommend to everyone’’ could be
classified as a recommending decision.

3) Requesting Decision is a user decision that denotes
user requests for certain app features or app updates.
For example, ‘‘My only request would be in finding
other friends that play, searching didn’t seem to work
for me.’’ could be considered a requesting decision.

4) Rating Decision is user behavior that describes a user
assessment by giving ratings in the marketplace. For
example, the review ‘‘I’m glad it’s over, so I give it
5 stars for the addiction until the end’’ explains a user
decision on giving a rating for the app.

5) Relinquishing Decision denotes a user’s decision to
uninstall, reject, or cancel the app for several reasons.
For instance, a review ‘‘You have to use real debit cards
to start the game. So I deleted it right away’’ can be
classified as a relinquishing decision.

B. RESEARCH QUESTION
To support the objective of this study, we formulate the
following research questions.

1) RQ1. WHAT FEATURES ARE DISCRIMINANT FOR
CLASSIFYING USER DECISIONS AND HOW GOOD
IS THE PERFORMANCE OF THE CLASSIFIERS?
This research question investigates which of the uti-
lized classifiers perform well in classifying user decisions.
We employ seven machine learning algorithms, namely,

naive Bayes (NB), linear regression (LR), support vector
machine (SVM), random forest (RF), AdaBoost, XGBoost,
andmultilayer perceptron (MLP), to evaluate features that are
discriminant and nondiscriminant for the decision classifica-
tion task. The reason is that those algorithms show notable
performance in previous studies [23], [37].

2) RQ2. WHAT KINDS OF ARGUMENTS ARE USUALLY
EXPRESSED BY USERS IN FAVOR OF THEIR
DECISION CONCERNING AN APP?
This research question aims to reveal various user justifica-
tions behind their decisions. In other words, we are interested
in determining whether certain app functionalities drive cer-
tain user decisions. We base this question on the assumption
that for every decision made by a user, there exists an app’s
feature that influenced it.

3) RQ3. TO WHAT DEGREE IS THE PROPOSED APPROACH’s
RESULT ALIGNED WITH A HUMAN-BASED ASSESSMENT?
This research question is designed to seek evidence con-
cerning the efficacy of our approach. We are interested in
measuring the degree of alignment by comparing our results
with information extracted from another feedback channel,
e.g., an online forum.

III. METHOD AND PROCEDURE
Our proposed framework consists of 5 main modules:
a) rule-based annotation, b) linguistic preprocessing,
c) feature extraction, d) model training, and e) relation extrac-
tion, as depicted in Fig. 2. Each of the modules is described
in the following subsections.

A. RULE-BASED ANNOTATION
In supervised learning, relying on human-based labeled data
is time-consuming and labor-intensive. Our aim in this study
is to develop an automated analysis tool that can generate
results within a single run with minimum human supervision.
Therefore, we developed a rule-based review annotator to
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mimic how human annotators work. Since we are interested
in user arguments and decisions in text reviews, we define the
following rules:

1) The text review needs to be long enough. We base this
assumption on the study by Palau and Moens [26],
which stressed that to be considered argumentative,
a review must contain at least one claim and one
premise. We set a 5-word limit, meaning that reviews
with a word length of less than or equal to 5 are
removed. In this way, we filter out very short reviews
such as ‘‘great app,’’ ‘‘5 stars,’’ and ‘‘nice two thumbs
up,’’ since these reviews do not contain meaningful
information.

2) The text review needs to contain causality links such
as because, since, and therefore, as described by Khoo
et al. [27]. For example, ‘‘I like this app because it
supports NFC payment.’’We called this review an argu-
mentative review.

3) The review needs to contain decision words, such
as purchase, recommend, and rate, which represent
the five user decisions described in subsection II-A.
We called these reviews decision reviews. We explain
how we compose the list of decision words in the
following section.

Applying the previous rules removes noninformative
reviews and leaves only informative reviews, namely, argu-
mentative and decision reviews. The next crucial task is to
annotate the reviews. Maalej et al. [28] utilized a set of
keywords compiled from the literature and conducted a string
matching classifier to automatically categorize the reviews.
The Sentiment 140 dataset2 was built with a machine-tagged
approach by evaluating the number of emoticons in tweets
(i.e., for positive and for negative) [29], [30]. In this
study, we perform a similar approach to automatically label
the review dataset by employing a rule-based mechanism.

TABLE 2. Example of decision vocabularies.

We list signal words that might represent user deci-
sions/actions and become a clue for a human annotator to
decide whether a user would acquire (e.g., buy, purchase,
or pay) or relinquish (e.g., uninstall, delete, or garbage) the
app, as shown in Table 2. To compose the decision wordlist,
we select one keyword that most represents each decision
class and extract similar words with a word vector repre-
sentation based on the word2vec3 algorithm pretrained on

2https://www.sentiment140.com
3https://code.google.com/archive/p/word2vec/

FIGURE 3. Example of applying the annotator formula.

our datasets. The result is shown in Table 2, where words in
bold are the keyword for each decision. The keywords listed
in Table 2 are not meant to be exhaustive and are likely to be
expanded.

w = 1/sum(found) (1)

sj =
1

root_distance()+ 1
(2)

cj =

{
−1, if negation exist.
1, otherwise.

(3)

Dec_scorei =
n∑
j=0

w× sj × cj (4)

We compute the value of label candidate Dec_scorei
using (4), where i (i.e., i = 0..4) represents each decision
(i.e., acquiring, recommending, requesting, rating, and relin-
quishing). Variable w denotes the weight obtained from (1).
This is performed to normalize the final computation result
between −1 and 1.

Next, for each decision word found, we investigate the
word significance s in the sentence. We make use of a gener-
ated dependency tree that describes the role of each word in
the sentence [31]. Fig. 4 shows an example of a dependency
tree for the review ‘‘I highly recommend this useful app simply
because it works. Not bad at all.’’ Variable s is obtained by
computing the distance of the current word to the ROOTword
with (2). A ROOT word in the dependency tree marks the
main verbs used in the sentence.When the currently evaluated
word is a ROOT word, the value of s is equal to 1 (most
important).

Then, we also take into account the verb context by detect-
ing whether there is a negation sign associated with the
current word or not. Context variable c is computed with (3).
We make use of an NEG tag in the dependency tree using
Spacy4 to detect whether a word has a child word containing
negation. For example, the word bad in Fig. 4 has a child not
with an NEG marker. We assign −1 to c to punish the verb
that indicates the opposite.

4https://spacy.io
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FIGURE 4. Example of a dependency parser tree.

Algorithm 1 User Decision Annotator
1: Input: Unlabeled review dataset (previously filtered

reviews containing argumentative and decision words)
2: Output: Labeled review dataset
3: while not end of review Rn do
4: tokens = tokenize(Rn)
5: lemmas = lemmatize(tokens)
6: for each lemma in lemmas do
7: if lemma in decision vocab Vd then
8: Nd ← Nd + 1
9: end if

10: end for
11: w← 1/sum(Nd) F Eq. (1)
12: for each decision word dw found do
13: sj← 1/(root_distance()+ 1) F Eq. (2)
14: cj← get_context(dw) F Eq. (3)
15: Dec_scorei← Dec_scorei + (w ∗ sj ∗ cj) F

Eq. (4)
16: end for
17: Labeln← max(Dec_scorei) F Eq. (5)
18: end while

We briefly give an example of how to apply the algorithm
to the review ‘‘I highly recommend this useful app simply
because it works. Not bad at all’’, as depicted in Fig. 3.
From the review, the algorithm captures three decision words
based on Table 2, i.e., recommend, useful, and bad, which are
associated with Dec_scorerecommending, Dec_scoreacquiring,
and Dec_scorerelinquishing, respectively. Based on the gener-
ated dependency tree in Fig. 4, the significance values are
srecommend = 1, suseful = 0.5, and sbad = 1.

To determine the final decision label for the review, we use
the max function in (5) to obtain the highest value from
Dec_scorei. Hence, the decision ground truth label for this
review example is a recommending decision. We evaluate the
effectiveness of this algorithm in Section V-A.

Labeln = max(Dec_scorei) (5)

B. LINGUISTIC PREPROCESSING
App review is unique because it contains messy unstructured
text, such as slang, elongated words, and typos [32]. These
characteristics are quite different when compared to product
reviews, which often have to go through an inspection process

before being posted on the marketplace [33]. Hence, several
preprocessing steps should be carefully performed to cope
with these traits.

FIGURE 5. Linguistic preprocessing steps.

One common practice in the work of natural language pro-
cessing (NLP) is to clean sentences from noise by performing
stopword removal, stemming and lemmatization [34]–[37].
In this study, we employ two consecutive preprocessing steps,
namely, noise removal and word restoration, as depicted
in Fig. 5. In brief, we aim to not only clean the text review
of lexical noise but also restore words so that the review can
be meaningful to the reader. We believe that this refinement
of the review sentence is important, as it can provide a strong
foundation for the next process (i.e., feature extraction).

In terms of the noise removal step, we remove syntacti-
cal noise containing emoticons, symbols, punctuations, and
stopwords. For the word restoration step, we perform the
following:

1) ELONGATED WORD RECTIFICATION
We target hyperbolic words expressed by users in the text
review and convert them to their original form. For example,
the word looooove is converted to love. For this purpose,
we utilized an open-source library by zed.5

5https://gist.github.com/zed/9616954
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2) WORD CORRECTION
We also aim to correct typos in a review sentence, and
we make corrections based on dictionary words by using
character distance. For example, the word onlin is corrected
to online. For this purpose, we utilized the pyspellchecker6

library for Python.

3) EXPAND CONTRACTION
App reviews often contain slang words or informal abbrevi-
ations. We therefore target contracted words in reviews and
convert them into dictionary form. For example, we expand
not only the word ‘‘I’ve’’, which is converted to ‘‘I have’’, but
also words such as ‘‘osm’’ and ‘‘coz’’, which are converted to
‘‘awesome’’ and ‘‘because,’’ respectively.

4) LONG TEXT PRUNING
A review text can sometimes be extremely long, especially
when users explain their experiences that are not related to
the app or possibly a spam review. One common approach is
pruning the text review to a certain length of words. Jha and
Mahmoud [38] suggested pruning text length to a certain n
value (n = 12, 13, 14), as it gives the optimal classification
performance based on their experience.We adopted their sug-
gestion to limit long text reviews to a maximum of 14 words.
Our goal in this step is to turn a long review sentence into
a more straightforward sentence while maintaining users’
expressions regarding their decisions and arguments.

C. FEATURE EXTRACTION
In this phase, we employ two-level feature extraction, namely,
sentence-level extraction and review-level extraction.

1) SENTENCE-LEVEL FEATURES
We decompose a review into sentences using a sentence
tokenizer.7 For each sentence, we extract POS tags to differ-
entiate the role of each word in the sentence (e.g., noun, verb,
adverb, and adjective). We then employ named entity recog-
nition (NER), which is used for detecting concept entities
such as organizations, people, and monetary values. We also
take into account some indicative keywords for detecting
argumentative phrases in the sentence, such as because, so
that, and since.

Additionally, we extract lexical features in terms of
n-grams (n = 1, 2, 3) and word combinations. An n-gram
feature captures a sequence of n words in a sentence that
are important for extracting meaningful phrases such as
‘‘New York’’ instead of the individual words ‘‘New’’ and
‘‘York.’’Word combinations, on the other hand, extracts com-
binations of every word in the sentence that might not be
captured by n-grams (Fig. 6). Table 3 shows the differences
in the results obtained by n-grams and word combinations for
the sentence ‘‘fun simple control highly recommend.’’As seen

6https://pypi.org/project/pyspellchecker/
7https://nltk.org

FIGURE 6. Word combination example.

TABLE 3. Word combination example.

TABLE 4. Features used for decision prediction.

in Table 3, the word combination feature gives more results
than the n-gram feature.

2) REVIEW-LEVEL FEATURES
For the document or review-level features, we extract rating
and sentiment scores and use the results as added features.
This is done because we are interested in acknowledging
whether user ratings and sentiment can be used to clas-
sify user decisions. For rating value, we convert the num-
ber of stars given by users in each review into an integer
value (a scale of 1 to 5). For the sentiment score, we uti-
lized VADER, a sentiment analysis system by Hutto and
Gilbert [39] that was developed based on social media text
and is arguably similar to the app review studied in this paper.
In addition, VADER returns a more detailed score for each
sentiment class, namely, positive sentiment score, negative
sentiment score, neutral sentiment score, and compound sen-
timent score (an aggregation of other scores). Table 4 lists all
features that are used for classification tasks.

D. CLASSIFICATION
In this phase, we train machine learning algorithms to predict
user decisions in the datasets. Seven classifiers and various
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feature configurations described in the previous section are
utilized to examinewhich classifier and configuration yielded
the best result. We selected three classifiers from the single
methods (i.e., NB, LR, and SVM), three classifiers from
the ensemble methods (i.e., RF, AdaBoost, and XGBoost)
and a multilayer perceptron (MLP) classifier that represents
a neural network method. This selection is based on the
notable performances of these classifiers within previous
studies [23], [37]. The reason is that we want to compare
the performances of different machine learning methods
(i.e., single, ensemble, and neural network) with regard to
user decision classification tasks.

For NB and LR, we utilize multinomial and liblinear
algorithms, respectively. For SVM, we use linear kernel, set
degree = 3 and gamma = auto. For RF, AdaBoost, and
XGBoost, we set n_estimators = 100 and use a decision
tree as the base estimator. For MLP, we set max_iter = 500.
We measure the F1-score on a 10-fold cross-validated dataset
to evaluate the performance of the classifiers. For classifier
implementation, the Scikit-Learn library8 is used in a Python
development environment.

E. ARGUMENT EXTRACTION
Predicting user decisions and their arguments can be catego-
rized as a cause-effect problem or causality relation extrac-
tion. For example, the cause-effect pair is (Ai, Di, ri), where
(Ai → Di) represents the argument Ai that leads to user
decision Di and ri denotes the relation. Causality relations
can be helpful for discovering unknown relationships among
entities [40].

Since we are interested in extracting user arguments in
the context of software improvement, we focus on mining
software attribute-related arguments in the form of func-
tional requirements (FRs) and nonfunctional requirements
(NFRs) (see Fig. 7). FRs relate to the functionalities/features
of an application and are mostly expressed explicitly, such
as in the review ‘‘I like its super-fast fingerprint reader.’’
In this review, the phrase ‘‘super-fast fingerprint reader’’
refers to an app feature or a function (functional require-
ment) provided by the app. An NFR-based review, on the
other hand, relates to software quality attributes in the form
of -ilities (e.g., usability, dependability, supportability, and
performance), which are generally implicit [38], [41], [42].
For example, in the review ‘‘this app uses a lot of battery,’’ the
phrase ‘‘uses a lot of battery’’ indicates the user’s evaluation
concerning a performance aspect of the app. Table 5 describes
review examples for both FRs and NFRs.

Next, we explain how values are assigned to nodes and
edges of a graph. To extract user arguments from a review,
we make use of the explainability module of machine learn-
ing algorithms by Ribeiro et al. [43]. Fig. 8 shows an
example of explainer results obtained with Ribeiro et al.’s
approach. It shows the most likely contributive words learned
by the ML algorithm during training for each prediction.

8https://scikit-learn.org/stable/

FIGURE 7. Argument to decision representation.

FIGURE 8. Explanation of the classification result.

For example, the review in Fig. 8 is predicted to be an
acquiring decision with a prediction probability of 0.91, and
the most contributive words are worth and addictive.

We combine the results of this interpretability with
the app’s feature extractor using the SAFE pattern [44]
because this approach produces only one word that might
become biased and ambiguous. SAFE is a pattern-based
approach for the purpose of extracting app features from
app reviews. Johann et al. [44] utilized 18 handcrafted part-
of-speech (POS) patterns to extract app features mentioned
by users (e.g., ‘‘noun-noun-noun’’ to capture features such
as ‘‘email chat history’’ or ‘‘adjective-adjective-noun’’ to
capture ‘‘super bright flashlight’’) from a review. The ben-
efit of this approach is that it does not require training or
statistical models [45], [46]. We accommodate this approach
to extract functional requirements and nonfunctional require-
ments from reviews.

However, for the results to be valid, several processing
steps are required. These steps are summarized in Fig. 9. For
each review in the dataset, we predict the user decision using
one of the classifiers, as explained in the previous subsection.
For each prediction, we extract the contributive keywords
from reviews that support the prediction. Then, we compare
these keywords with the result of the SAFE pattern, which
results in a list of feature phrases. We used dictionary-based
software quality attributes by Jha andMahmoud [38] to deter-
mine whether a certain feature can be categorized as an FR
or NFR (i.e., dependability, performance, supportability, and
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TABLE 5. Descriptions and examples of FRs and NFRs.

FIGURE 9. Find matching attributes based on the explanation.

usability). If we found a match, then a relation is populated
in the causality graph, and the weight is set to 1 (see Fig. 7).

After we draw every relation found in the review, we then
find and merge similar attributes based on their context
using the combination of two semantic similarity measures,
namely, global-context similarity and local-context similar-
ity. For global-context similarity, we employ WordNet [47],
an online lexical database that provides synset-based vocab-
ularies. In (6), t1 and t2 represent the terms, depth is the
depth of the term from the root, and lcs is the least common
subsumer of both terms [48].

To accommodate domain-dependent words, we utilized
cosine similarity based on a word2vec vector trained on
our app review datasets (7). In (7), Vt1 and Vt2 represent
vectors of t1 (term 1) and t2 (term 2), respectively. The ratio-
nale behind this is that text reviews contain many domain-
dependent words that might not be recognized by general
lexical databases. For example, the words screen and load-
ing have higher similarity in the latter approach than in the
prior approach. Thus, we can merge similar arguments such
as ‘‘work weather app’’ and ‘‘accurate weather app’’ into
one argument (sim = 0.839). For every merging process,
we increment the weight of the edge by 1 to indicate the

TABLE 6. Semantic similarity example for merging feature attributes.

TABLE 7. Details of acronyms.

importance of the attribute. To give a better context, Table 6
shows some similarity results on several different arguments.
Based on the experiment, we set the similarity threshold to
0.7 to determine whether two arguments should be merged or
not. The final attributes, as a result of the merger process,
are then populated into a causality graph with the Pyvis
library [49]. As a reference for readers, we display details of
acronyms used throughout the paper in Table 7.

simglobal(t1, t2) = 2 ∗
depth(lcs(t1, t2))

depth(t1)+ depth(t2)
(6)

simlocal(t1, t2) =
Vt1 ∗ Vt2
‖Vt1‖‖Vt2‖

(7)

simaggregate =
simglobal + simlocal

2
(8)
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IV. DATASET
We conduct the experiments using two app review datasets as
follows:

1) Android app and feedback from F-droid9 (288k). This
dataset is used because it provides a large amount of
Android app reviews specifically for software evolu-
tion and quality improvement [50], which is similar to
the objective of this study.

2) Amazon reviews for android10 (752k) [51]. In addition
to the size of the user reviews it provides, this dataset
is used as a comparison for the F-droid dataset since
Amazon has different user characteristics, especially in
terms of style and user expression.

The F-droid dataset contains 395 different apps with an
average number of 730 reviews for each app, while the
Amazon dataset contains 750 apps with an average number
of 500 reviews for each app. Both datasets have different
characteristics since they contain reviews from different mar-
ketplaces. As Table 8 shows, in the F-droid dataset, users are
more concise in expressing their reviews, with an average
number of 13.482 words in a review compared to the Amazon
dataset with an average number of 48.720 words in a review.
This is in line with Amazon’s policy in which reviews are
filtered before they are posted to the website.

TABLE 8. Dataset statistics.

V. RESULT
In this section, we present our results obtained by the fol-
lowing three experiments, which consist of examining the
effectiveness of our machine-based annotator, evaluating the
performance of the classifiers and feature configurations, and
assessing the efficacy of the argument extractor.

A. MACHINE-BASED ANNOTATOR
Based on our rule-based annotation algorithm,we obtained an
identical label distribution for both the F-droid (Fig. 10(a))
and Amazon (Fig. 10(b)) reviews. Both figures describe a
similar pattern where users express more acquirements and
requests in their reviews compared to recommendations.

We compared this result with that of the human anno-
tators by randomly selecting 500 reviews and asking the
annotators to label the reviews. The human-based annotation
process involved 3 annotators (different from the authors
of this paper), consisting of 1 Ph.D. student and 2 Masters
students in the field of computer science. All annotators were

9http://f-droid.org
10http://jmcauley.ucsd.edu/data/amazon/index.html

TABLE 9. Example of the machine-labelled review results.

TABLE 10. Interagreement with human coders.

briefed before performing the coding process. The result
yields a favorably acceptable interagreement ratio between
0.58-0.84, as depicted in Table 10. The lowest average per-
centage belongs to the recommending decision (0.60), while
the highest is the acquiring decision (0.79), with a total aver-
age percentage of 0.72 for all five decisions. Based on our
observations, the recommending decision obtains the lowest
agreement because users often express their recommenda-
tion together with other decisions, such as buying or rating.
In other words, some reviews contain more than one user
action, yielding a dispute in the annotation result.

Acquiring, requesting, and relinquishing decisions have
a fairly good interagreement value when compared to the
others, with average percentage values of 0.79, 0.75, and
0.74, respectively. This is because all three decisions have
a relatively specific usage of words that make our machine-
based annotator work properly. For example, in acquiring
decisions, users mostly used words such as useful, download,
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TABLE 11. Classification Results on F-Droid Reviews (F1-score).

TABLE 12. Classification Results on Amazon Reviews (F1-score).

FIGURE 10. Decision distribution.

and buy, while for expressing rejection, users mostly used
words such as poor, uninstall, and delete.

To provide more context, we display some examples
from our annotator for both correct and incorrect samples

in Table 9. According to the experiment, our machine-
labeling algorithm is effective for straightforward reviews but
has the opposite result for longer reviews.

Although some results are not yet on par with the results
obtained by human-based labeling, this approach has a sig-
nificant impact on increasing the processing speed because
it is done automatically by machines and only takes minutes
compared to weeks when human labor is used. Additionally,
the agreement results in some decision classes that reached
more than 0.80 points have the potential for improvement in
future research.

B. CLASSIFIER PERFORMANCE
We evaluate the performance of the classifiers with respect to
feature configurations. Table 11 and Table 12 show the results
of the experiments with different feature configurations.

We set three baselines, namely, bag-of-words (BoW), sen-
timent score (SC), and user rating (RT), for each of the fea-
tures. Out of the three baselines, BoW performed quite well
on both datasets and obtained the highest F1-score of 0.94
(XGBoost) on the F-droid dataset and 0.86 (XGBoost) on the
Amazon dataset.

Moreover, the sentiment and rating features are not effec-
tive for classifying the decision reviews. When the senti-
ment score is used as a feature, the highest F1-scores are
0.31 (F-droid) and 0.30 (Amazon); however, the rating fea-
ture obtains the highest F1-score of 0.25 for both datasets.
Even the combination of BoW+RT (BoW and rating) and
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FIGURE 11. Confusion matrix for Amazon reviews (ntest = 4000 or 20% of the dataset) with previously
undersampled data targeting equal review distribution for each class.

BoW+SC (BoW and sentiment) cannot improve the per-
formance of the classifiers. It can be concluded that the
rating and sentiment are not discriminant for predicting user
decisions.

In general, the best F1-score is obtained by the combi-
nation of all features (BoW+WC+RT+SC) as well as the
BoW+WC (BoW and word combination) feature combina-
tion with F1-scores of 0.95 (F-droid) and 0.87 (Amazon).
In terms of classifier performance, XGBoost, SVM, RF, and
MLP performed very well compared to the other classifiers.

To further examine the classifiers’ performance results
against the classification result in each class, we display the
confusion matrices of the experiments in Fig. 11. As seen
in Fig. 11, the BoW+WC feature combination slightly
increases the correct prediction for almost all decision cat-
egories. The requesting class experiences the highest cor-
rect prediction, while the acquiring class shows the lowest.
In addition, recommendation decisions and rating decisions
receive the highest misprediction rates compared with other
classes. Based on our observation, the explanation for this is
that many of the acquiring users also wrote their recommen-
dations and ratings to express their satisfaction, such as in the
review ‘‘I bought this app last month and didn’t regret at all,
highly recommended for everyone.’’ In this review, the user
acquires (i.e., purchases) and recommends the app at the
same time, which makes the classifier incorrectly predict the
decision.

To evaluate the time performance, we plot the time required
(i.e., training and testing) by all classifiers to finish the

FIGURE 12. Computation time for all classifiers and feature
configurations with n = 20, 000, which has an 80% and 20% data review
split for training and testing, respectively.

classification task with a boxplot, as depicted in Fig. 12. For
the training time, RF and MLP obtained a slightly higher
median value than the other classifiers, followed byAdaBoost
and XGBoost (Fig. 12(a)). From the aspect of feature config-
uration, BoW+WCand the combination of all features (ALL)
require significant training and testing times, indicated by
their high median and interquartile range values compared to
those of the other features (Fig. 12(b) and Fig. 12(d)). The
reason for this is that the WC feature composes all word-
pair combinations of the review text. Despite the increased

45088 VOLUME 9, 2021



A. Kunaefi, M. Aritsugi: Extracting Arguments Based on User Decisions in App Reviews

performance, WC might require quite expensive computa-
tions, especially if the review data become large. This poses
potential future research on how to reduce the dimension-
ality of the WC feature. Furthermore, the SVM classifier
requires the longest testing time, while NB is the fastest
(Fig. 12(c)). Combining the trade-off between F1-score and
runtime, XGBoost achieves the best overall result compared
to the other classifiers.

C. ARGUMENT EXTRACTION
We display the result of the causality graph for the subset of
the Amazon dataset containing 5000 reviews (Fig. 13) based
on the algorithm described in subsection III-E. As shown in
the graph, there are five epicenters that represent the five
user decisions. Each epicenter is surrounded by nodes with
different colors representing different types of user arguments
(i.e., FRs or NFRs).

FIGURE 13. Causality graph (Amazon reviews).

A graph that represents user arguments and decisions
can reveal unknown relationships in the data, for example,
an argument (node) that connects to more than one deci-
sion. Additionally, we can easily acknowledge higher priority
attributes based on the weight of the edge/relation. Table 13
shows the top arguments (highest weights) for each decision
for the F-droid dataset. As seen in the table, the arguments
arguably make sense for most of the decisions. For example,
for the recommending decision, users argue that the app has
easy control, many options (usability category), and supports
direct synchronization (supportability category).

Fig. 14 summarizes the distribution of the argument types
(FRs and NFRs) for each decision class. From the figure,
app features and usability are arguments most written by
users for expressing acquiring, rating, and relinquishing deci-
sions. In addition, users decide to abandon the apps based
on dependability and usability reasons. Performance reasons

(e.g., battery, speed, and memory) were least expressed by
users in any decision.

VI. DISCUSSION
In this section, we discuss important findings from our exper-
iments by revisiting the previous research questions described
in subsection II-B.

A. RQ1. DISCRIMINANT AND NONDISCRRIMINANT
FEATURES FOR CLASSIFYING USER DECISIONS
Based on our results, lexical features (i.e., n-grams and word
combinations) are good predictors for classifying user deci-
sions. By contrast, statistical features, such as user ratings,
sentiment scores, and NERs, are nondiscriminant for the
classification task.

To strengthen this conclusion, we plot user sentiments and
ratings for each decision class with a bar plot and a scatter
plot (see Fig. 15). In both figures (Fig. 15(a) and Fig. 15(b)),
the user rating for all decisions has the same pattern (except
for relinquishing decision), where most users give 4- to 5-star
ratings regardless of their decision in the reviews (i.e., acquir-
ing, requesting, rating, or recommending). By contrast, for
relinquishing decisions, most users give a 1-star rating.

Similarly, the sentiment and the decision scatter plots,
as depicted in Fig. 15(c) and Fig. 15(d), do not show different
patterns than the five decisions. From the plots, the sentiment
score measurement for each decision is fairly even from the
best to the worst sentiments (−1 indicates very bad and
1 indicates very good sentiment). This can be caused by the
characteristics of users who make reviews containing two
perspectives, namely, the pros and cons of an application.

These findings should make us aware that rating or sen-
timent alone is not enough to assess whether users like
the application or not. In other words, from a practitioner
prospective, we need to further ask what the actual meaning
of a user rating is in our application. Behind the rating values,
there are users who are willing to buy and even recommend an
application, but on the other hand, there are users who merely
like the app without any intention to acquire the app. This
is where learning user decisions/behaviors comes into play,
from which we can more deeply analyze the actual value of
our application.

B. RQ2. VARIETY OF USER ARGUMENTS THAT DRIVE
DECISIONS
From the experiments, user arguments related to app func-
tionalities/features are arguments most expressed by users
for all five decisions (see Fig. 14). From a decision perspec-
tive, each user argument represents a fairly specific ratio-
nale. For the acquiring decisions, the most common user
reasons were acquiring the app’s free version, enjoying the
app, and connectivity with other systems. For recommen-
dation decisions, users encourage other users for reasons
such as the app’s simple control, synchronization support,
and battery performance. Arguments, such as asking for new
updates, adding more options, and fixing issues, support
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TABLE 13. Top arguments for each decision.

FIGURE 14. Distribution of FR/NFR attributes among 5 decision categories.

users’ requesting decisions. For rating decisions, users based
their decisions on justifications, such as camera function,
easy app control, and an app’s user interface. Dependability

reasons, such as an app having bugs, an app showing errors,
and a crashed app, were the most expressed arguments sup-
porting relinquishing decisions.
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FIGURE 15. Decision vs. Rating and sentiment.

From the argument’s perspective, both FR- and NFR-based
arguments present interesting results. For example, in terms
of usability, users based their decisions mostly on an app’s
user interface, app control, and available app options. These
results are in contrast with performance-related arguments,
where users mainly mentioned memory management, battery
consumption, and app loading time. These findings stress that
nonfunctional requirements are pivotal to user considerations
in making decisions.

In general, our results are consistent with the study by
Lim et al. [52], which conducted a massive survey con-
cerning user behavior involving 4,824 respondents across
15 countries. For example, Lim et al. reported that most
app users did not pay for apps (57%) and chose the free
version of the app. They also pointed out that NFR-based
requirements were important considerations for app users,
which is similar to the results of this study.

A slightly different result was shown in terms of the relin-
quishing decision. Lim et al. stated that users abandon an
app because they no longer need the app (44%) and found
better alternatives (38%), while our result indicates that users
abandon an app for common reasons such as the presence of
bugs, errors, and crashes. This result, however, is in line with
the result of another study by Khalid et al. [21].

C. RQ3. COMPLIANCE WITH HUMAN-ASSESSMENT
Table 13 shows the extraction results, which are diffi-
cult to evaluate, from hundreds of apps, as described in
subsection IV. To answer RQ3, we focus and analyze reviews
from a single app and compare the results with the results of
a human assessment to seek evidence on the efficacy of our
approach.

To accomplish this, we utilized reviews from the Bitde-
fender app. This app was chosen because it has an active
community forum on its website.11 Among the many pages
on the Bitdefender website, we focused on the page entitled
sent_to_devel, which compiles all user feedback for the next
app release development, which is similar to the purpose
of this study. We list the top 10 threads from the forum
from 2018 until 2020 based on the number of user views
and interactions. On the other hand, we crawled Bitdefender
app reviews from the Google Play Store and performed argu-
ment and decision extraction.

TABLE 14. Comparison with the Bitdefender user forum.

Table 14 shows the comparison of our result (i.e., the
extracted arguments from the requesting decision) and the
Bitdefender user forum, where our result captured 6 out

11https://community.bitdefender.com/en/discussions/tagged/sent-to-
devel/, accessed: Nov 29th, 2020
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of 10 requests from user feedback in the forum. This result
is arguably acceptable considering that we use an automatic
machine-based labeling approach. In addition to this result,
our approach captures richer information concerning app fea-
tures from several user decision perspectives (i.e., acquiring,
recommending, rating, and relinquishing) rather than only
one perspective (request/suggestion). For example, in terms
of acquirement, our results reveal that some of the common
arguments expressed by users are that the apps has an excel-
lent security package, reduced prices, and great technical
support.

VII. LIMITATIONS & VALIDITY RISKS
Our approach in this study has several limitations; i.e., it
merely employs statistical machine learning algorithms that
rely on a text-based feature engineering extraction process
and does not include a deep learning algorithm. Additionally,
this study omits the temporal aspect of the review, such as
users who updated their reviews and changed their decisions
over time (e.g., added more stars).

Internal Validity. This risk concerns factors that might
influence the results from an internal perspective. One risk
might come from the annotation process performed by human
coders, which can be subjective. To counteract this issue,
we selected coders with a computer science background and
briefed the coders prior to the annotation process.

External Validity. This risk is related to factors from
an external aspect, e.g., the validity of user reviews in the
corpus. We employ a relatively small dataset (1 million in
total out of billions of reviews in an app marketplace), which
might not be representative. To alleviate this issue, we employ
two different datasets (from two different marketplaces) that
represent different user characteristics and behaviors.

VIII. RELATED STUDIES
Data-driven requirement. The world of software engi-
neering has moved toward data-driven requirement analysis,
which utilizes explosively user-generated content, in recent
years [1]. Chen et al. [32] extracted informative reviews
from a whole review corpus to help app developers under-
stand user requests. Different studies tried to reveal aspects
that users dislike [53] and like [19] within an app. Mining
information about bugs and feature requests [17], as well
as app maintenance [4], has also attracted attention from
researchers. While these works explore what users like, dis-
like, and want, we focus on arguments or why users perform
certain actions/decisions. Our study targets two aspects from
the reviews, namely, user decisions (e.g., purchasing, ratings,
and recommendations) that could describe user intensity in
supporting apps and user arguments that reflect an app’s
features/functionalities in favor of their decision.

Argument mining. Argument mining has recently gained
popularity from researchers because it can reveal reason-
ing comprehension in argumentative text. Earlier studies
of argument mining targeted text essays and legal text
[26], [35], [36]. More recent studies conducted argument

mining on app reviews to learn user justifications over certain
user behaviors [23], [37]. A recent survey by Cabrio and
Villata reported weaknesses and challenges in the study of
argument mining within the last decade [54]. In this study,
we had a different point of view because we highlight specific
user arguments targeting software quality attributes (i.e., FRs
and NFRs) in correlation with their decisions expressed in the
reviews.

Explainable AI. As the performance of machine learn-
ing increases every day, the research community and users
demand a more transparent system that can provide interpre-
tations, at some level of detail, of themachine learning results.
Ribeiro et al. [43] developed a proxy model out of a full deep
neural network model to identify inputs that are most influ-
ential on a decision. Zilke et al. [56] introduced a decision
tree model to decompose a deep neural network model to
easily explain predictions. Gilpin et al. performed a survey of
explanatory artificial intelligence (XAI) and pointed out that
current approaches are insufficient [55]. They concluded that
machine learningmodels are hard to explain; hence, our study
uses an interpretation module and combines it with other
techniques (i.e., semantic similarity) to extract informative
features from the classification results.

IX. CONCLUSION & FUTURE WORK
In this paper, we performed user argument extraction based
on user decisions regarding an app. We developed a rule-
based user decision annotation algorithm for building anno-
tated datasets for training purposes that reduced the time
consumed when human annotators were used. We extracted
sentence-level and review-level features from text and trained
two datasets using various feature configurations. We built
a causality graph by extracting argument-to-decision rela-
tion representations from reviews. We evaluated and dis-
cussed the results of our framework and compared them with
the results of the human annotators, which were favorably
acceptable.

Based on our experiments, the sentiment score and rating
cannot be used as user decision predictors. In other words,
the sentiment score and rating alone are not enough to mea-
sure the intensity of users when expressing their satisfac-
tion (i.e., rate, recommend, and purchase) or dissatisfaction
(i.e., complaint, request, and relinquish) with an app. In con-
trast, lexical features (i.e., n-grams and word combinations)
produce the best results for predicting user decisions. In terms
of the classifiers, most of the classifiers utilized perform well
for the user decision classification task. However, XGBoost
outperformed other classifiers based on the F1-score and
runtime assessment.

From the user argument perspective, we found that both
FRs and NFRs play a significant role for app users in driv-
ing their decisions. Users based their decisions mostly on
app features, such as easy levels, multiple game characters,
and decent galleries. From an NFR point of view, usabil-
ity aspect (e.g., clean user interface, easy application con-
trol, and availability of options), supportability (e.g., version
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update, direct synchronization, and customer support), and
performance aspect (e.g., memory management, battery con-
sumption, and loading time) greatly influence many users
in making their decisions. Users abandoned apps based on
common arguments, such as the existence of bugs, errors, and
crashes.

In the future, we will extend our study in two directions to
learn user decisions and justifications. First, we are interested
in enhancing our approach by employing dimensionality
reduction on word combination features and utilizing lan-
guage model generation with an unsupervised deep learning
approach. Second, we will investigate more user actions to
address multilabel classification, that is, users who perform
more than one decision in a review.
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